Associate Professor,
University of Hamburg
Email: thomas.schmidt AT math.uni-hamburg.de
Home-page: http://www.math.uni-hamburg.de/home/schmidt
arxiv id: schmidt_t_2
orcid id: 0000-0001-6361-2168
Available papers (24):
[plain text]
- E. Ficola - T. Schmidt (Submitted Paper)
Lower semicontinuity and existence results for anisotropic TV functionals with signed measure data (2024)
- T. Schmidt - J. H. Schütt (Calc. Var. Partial Differ. Equ.)
The optimal Hölder exponent in Massari’s regularity theorem (2023)
- T. Schmidt (Submitted Paper)
Isoperimetric conditions, lower semicontinuity, and existence results
for perimeter functionals with measure data (2023)
- S. Piontek - T. Schmidt (ESAIM, Control Optim. Calc. Var.)
Higher integrability for the gradient of Mumford-Shah almost-minimizers (2020)
- L. Ambrosio - C. De Lellis - T. Schmidt (J. Reine Angew. Math.)
Partial regularity for mass-minimizing currents in Hilbert spaces (2018)
- C. Scheven - T. Schmidt (Ann. Inst. Henri Poincaré, Anal. Non Linéaire)
On the dual formulation of obstacle problems for the total variation and the area functional (2018)
- C. Scheven - T. Schmidt (J. Differ. Equations)
BV supersolutions to equations of 1-Laplace and minimal surface type (2016)
- L. Beck - T. Schmidt (Nonlinear Anal., Theory Methods Appl.)
Interior gradient regularity for $\rm BV$ minimizers of singular variational problems (2015)
- T. Schmidt (Proc. Am. Math. Soc.)
Strict interior approximation of sets of finite perimeter and functions of bounded variation (2015)
- L. Beck - T. Schmidt (J. Funct. Anal.)
Convex duality and uniqueness for $\rm BV$-minimizers (2015)
- C. Scheven - T. Schmidt (Preprint)
An Anzellotti type pairing for divergence-measure fields and a notion of weakly super-$1$-harmonic functions (2015)
- T. Schmidt (Habilitation Thesis)
$\rm BV$ Minimizers of Variational Integrals: Existence, Uniqueness, Regularity (2015)
- T. Schmidt (Indiana Univ. Math. J.)
Partial regularity for degenerate variational problems and image restoration models in $\rm BV$ (2014)
- T. Schmidt (Adv. Math.)
${\rm W}^{2,1+\varepsilon}$ estimates for the Monge-Ampère equation (2013)
- L. Ambrosio - T. Schmidt (Proc. Lond. Math. Soc. (3))
Compactness results for normal currents and the Plateau problem in dual Banach spaces (2013)
- L. Beck - T. Schmidt (J. Reine Angew. Math.)
On the Dirichlet problem for variational integrals in $BV$ (2013)
- M. Carozza - A. Passarelli di Napoli - T. Schmidt - A. Verde (Q. J. Math.)
Local and asymptotic regularity results for quasiconvex and quasimonotone problems (2012)
- C. Scheven - T. Schmidt (J. Differ. Equations)
Asymptotically regular problems I: Higher integrability (2010)
- S. Schemm - T. Schmidt (Proc. R. Soc. Edinb., Sect. A, Math.)
Partial regularity of strong local minimizers of quasiconvex integrals with $(p,q)$-growth (2009)
- C. Scheven - T. Schmidt (Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5))
Asymptotically regular problems II: Partial Lipschitz continuity and a singular set of positive measure (2009)
- T. Schmidt (NoDEA, Nonlinear Differ. Equ. Appl.)
A simple partial regularity proof for minimizers of variational integrals (2009)
- T. Schmidt (Arch. Ration. Mech. Anal.)
Regularity of relaxed minimizers of quasiconvex variational integrals with $(p,q)$-growth (2009)
- T. Schmidt (Adv. Calc. Var.)
Regularity theorems for degenerate quasiconvex energies with $(p,q)$-growth (2008)
- T. Schmidt (Calc. Var. Partial Differ. Equ.)
Regularity of minimizers of $W^{1,p}$-quasiconvex variational integrals with $(p,q)$-growth (2008)
Seminars:
Speaker: