T. Schmidt: Regularity theorems for degenerate quasiconvex energies with $(p,q)$-growth Adv. Calc. Var. Vol. 1, N. 3, p. 241-270, 2008 T. Schmidt: Regularity of minimizers of $W^{1,p}$-quasiconvex variational integrals with $(p,q)$-growth Calc. Var. Partial Differ. Equ. Vol. 32, N. 1, p. 1-24, 2008 S. Schemm, T. Schmidt: Partial regularity of strong local minimizers of quasiconvex integrals with $(p,q)$-growth Proc. R. Soc. Edinb., Sect. A, Math. Vol. 139, N. 3, p. 595-621, 2009 C. Scheven, T. Schmidt: Asymptotically regular problems II: Partial Lipschitz continuity and a singular set of positive measure Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) Vol. 8, N. 3, p. 469-507, 2009 T. Schmidt: A simple partial regularity proof for minimizers of variational integrals NoDEA, Nonlinear Differ. Equ. Appl. Vol. 16, N. 1, p. 109-129, 2009 T. Schmidt: Regularity of relaxed minimizers of quasiconvex variational integrals with $(p,q)$-growth Arch. Ration. Mech. Anal. Vol. 193, N. 2, p. 311-337, 2009 C. Scheven, T. Schmidt: Asymptotically regular problems I: Higher integrability J. Differ. Equations Vol. 248, N. 4, p. 745-791, 2010 M. Carozza, A. Passarelli di Napoli, T. Schmidt, A. Verde: Local and asymptotic regularity results for quasiconvex and quasimonotone problems Q. J. Math. Vol. 63, N. 2, p. 325-352, 2012 T. Schmidt: ${\rm W}^{2,1+\varepsilon}$ estimates for the Monge-Ampère equation Adv. Math. Vol. 240, p. 672-689, 2013 L. Ambrosio, T. Schmidt: Compactness results for normal currents and the Plateau problem in dual Banach spaces Proc. Lond. Math. Soc. (3) Vol. 106, N. 5, p. 1121-1142, 2013 L. Beck, T. Schmidt: On the Dirichlet problem for variational integrals in $BV$ J. Reine Angew. Math. Vol. 674, p. 113-194, 2013 T. Schmidt: Partial regularity for degenerate variational problems and image restoration models in $\rm BV$ Indiana Univ. Math. J. Vol. 63, N. 1, p. 213-279, 2014 L. Beck, T. Schmidt: Interior gradient regularity for $\rm BV$ minimizers of singular variational problems Nonlinear Anal., Theory Methods Appl. Vol. 120, p. 86-106, 2015 T. Schmidt: Strict interior approximation of sets of finite perimeter and functions of bounded variation Proc. Am. Math. Soc. Vol. 143, N. 5, p. 2069-2084, 2015 L. Beck, T. Schmidt: Convex duality and uniqueness for $\rm BV$-minimizers J. Funct. Anal. Vol. 268, N. 10, p. 3061-3107, 2015 C. Scheven, T. Schmidt: An Anzellotti type pairing for divergence-measure fields and a notion of weakly super-$1$-harmonic functions (Preprint) 2015 T. Schmidt: $\rm BV$ Minimizers of Variational Integrals: Existence, Uniqueness, Regularity (Habilitation Thesis) 2015 C. Scheven, T. Schmidt: BV supersolutions to equations of 1-Laplace and minimal surface type J. Differ. Equations Vol. 261, N. 3, p. 1904-1932, 2016 L. Ambrosio, C. De Lellis, T. Schmidt: Partial regularity for mass-minimizing currents in Hilbert spaces J. Reine Angew. Math. Vol. 734, p. 99-144, 2018 C. Scheven, T. Schmidt: On the dual formulation of obstacle problems for the total variation and the area functional Ann. Inst. Henri Poincaré, Anal. Non Linéaire Vol. 35, p. 1175-1207, 2018 S. Piontek, T. Schmidt: Higher integrability for the gradient of Mumford-Shah almost-minimizers ESAIM, Control Optim. Calc. Var. Vol. 20, 2020 T. Schmidt, J. H. Schütt: The optimal Hölder exponent in Massaris regularity theorem Calc. Var. Partial Differ. Equ. Vol. 62, 2023 E. Ficola, T. Schmidt: Lower semicontinuity and existence results for anisotropic TV functionals with signed measure data (Submitted Paper) 2024 T. Schmidt, J. H. Schütt: Partial regularity for variational integrals with Morrey-Hölder zero-order terms, and the limit exponent in Massari's regularity theorem (Submitted Paper) 2024 T. Schmidt: Isoperimetric conditions, lower semicontinuity, and existence results for perimeter functionals with measure data Math. Ann. (Accepted Paper) 2024