Published Paper
Inserted: 22 feb 2012
Last Updated: 31 may 2012
Journal: Q. J. Math.
Volume: 63
Number: 2
Pages: 325-352
Year: 2012
Links:
Link to the published version
Abstract:
Considering vectorial integrals in the multidimensional calculus of variations and quasilinear elliptic systems of partial differential equations, we prove gradient regularity of minimizers and weak solutions, respectively. In contrast to the classical theory, we impose our assumptions on the structure functions only locally (i.e. near a single point) or asymptotically (i.e. near infinity). In particular, we point out relations between the local and the asymptotic point of view, and we discuss notions of quasiconvexity at infinity and quasimonotonicity at infinity, which arise in this context.
Download: