[novack]

Carnegie Mellon University

**Email:** *mnovack AT andrew.cmu.edu*

**Home-page:** https://sites.google.com/view/mnovack

- M. Novack - L. Bronsard (Preprint)

An Infinite Double Bubble Theorem (2024) - M. Novack (
*Journal of Geometric Analysis*)

On the relaxation of Gauss's capillarity theory under spanning conditions (2024) - M. Novack - I. Topaloglu - R. Venkatraman (
*J. Funct. Anal.*)

Least Wasserstein distance between disjoint shapes with perimeter regularization (2023) - M. Novack (Preprint)

Regularity for Minimizers of a Planar Partitioning Problem with Cusps (2023) - N. Fusco - F. Maggi - M. Morini - M. Novack (Preprint)

Rigidity and large volume residues in exterior isoperimetry for convex sets (2023) - F. Maggi - M. Novack - D. Restrepo (Preprint)

Plateau borders in soap films and Gauss' capillarity theory (2023) - F. Maggi - M. Novack - D. Restrepo (Preprint)

A hierarchy of Plateau problems and the approximation of Plateau's laws via the Allen--Cahn equation (2023) - F. Maggi - M. Novack (Preprint)

Isoperimetric residues and a mesoscale flatness criterion for hypersurfaces with bounded mean curvature (2022) - M. Novack - X. Yan (
*Calculus of Variations and Partial Differential Equations*)

Nonlinear approximation of 3D smectic liquid crystals: sharp lower bound and compactness (2022) - M. Novack - X. Yan (
*Nonlinear Analysis*)

A smectic liquid crystal model in the periodic setting (2022) - D. Golovaty - M. Novack - P. Sternberg (
*Journal of Differential Equations*)

A one-dimensional variational problem for cholesteric liquid crystals with disparate elastic constants (2021) - M. Novack - X. Yan (
*Journal of Nonlinear Science*)

Compactness and sharp lower bound for a 2D smectics model (2021) - D. Golovaty - M. Novack - P. Sternberg (
*European Journal of Applied Mathematics*)

A novel Landau-de Gennes model with quartic elastic terms (2020) - D. Golovaty - Y. K. Kim - O. Lavrentovich - M. Novack - P. Sternberg (
*Mathematical Modelling of Natural Phenomena*)

Phase transitions in nematics: textures with tactoids and disclinations (2020) - D. Golovaty - M. Novack - P. Sternberg - R. Venkatraman (
*Archive for Rational Mechanics and Analysis*)

A model problem for nematic-isotropic phase transitions with highly disparate elastic constants (2020) - M. Novack (
*SIAM Journal on Mathematical Analysis*)

Dimension reduction for the Landau-de Gennes model: the vanishing nematic correlation length limit (2018)