- P. Bonicatto - N. Gusev (
*Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur.*)

Non-uniqueness of signed measure-valued solutions to the continuity equation in presence of a unique flow (2019) - E. Stepanov - D. Trevisan (
*J. Funct. Anal.*)

Three superposition principles: currents, continuity equations and curves of measures (2017) - N. Gigli - B. Han (
*Calculus of Variations and Partial Differential Equations*)

The continuity equation on metric measure spaces (2015) - G. Alberti - S. Bianchini - G. Crippa (
*Journal of the European Mathematical Society (JEMS)*)

A uniqueness result for the continuity equation in two dimensions (2014) - F. Santambrogio (
*chapter in "Optimal Transportation, theory and applications", London Math. Soc.*)

Introduction to Optimal Transport Theory (2014) - G. Alberti - G. Crippa - A. L. Mazzucato (
*Comptes Rendus Mathématique*)

Exponential self-similar mixing and loss of regularity for continuity equations (2014) - G. Buttazzo (Accepted Paper:
*Milan J. Math.*)

Evolution models for mass transportation problems (2012) - G. Crippa (
*Journal of Differential Equations*)

Lagrangian flows and the one dimensional Peano phenomenon for ODEs (2011) - B. Maury - A. Roudneff-Chupin - F. Santambrogio (
*M3AS*)

A macroscopic crowd motion model of gradient flow type (2010) - L. Brasco (Accepted Paper:
*J. Math. Sci.*)

A survey on dynamical transport distances (2010) - L. Brasco - G. Buttazzo - F. Santambrogio (Accepted Paper:
*SIAM J. Math. Anal.*)

A Benamou-Brenier approach to branched transport (2010) - J. Dolbeault - B. Nazaret - G. Savaré (
*Calc. Var. Partial Differential Equations*)

A new class of transport distances between measures (2009) - L. Ambrosio (Submitted Paper)

The flow associated to weakly differentiable vector fields: recent results and open problems (2009) - L. Ambrosio - P. Bernard (Submitted Paper)

Uniqueness of signed measures solving the continuity equation for Osgood vector fields (2008) - L. Ambrosio - C. De Lellis - J. Malý (
*Perspective in nonlinear partial differential equations*)

On the chain rule for the divergence of BV like vector fields: applications, partial results, open problems (2007) - L. Ambrosio (Preprint)

Transport equation and Cauchy problem for non-smooth vector fields (2005)