[maione]

Postdoc, Centre de Recerca Matemàtica - Barcelona

**Email:** *amaione AT crm.cat*

My name is Alberto Maione and I am a Maria de Maetzu Postdoctoral fellow (senior) at the Centre de Recerca Matemàtica (CRM) of Barcelona in the research group of Analysis & PDEs, hosted by Prof. Xavier Cabré. I come from Italy, where in 2020 I received my PhD in Mathematics from the Universities of Trento and Verona. Under the supervision of Prof. Francesco Serra Cassano and Prof. Andrea Pinamonti I wrote a PhD thesis in Calculus of variations and Partial differential equations entitled "Variational convergences for functionals and differential operators depending on vector fields". After the PhD I moved to Freiburg im Breisgau, Germany, where I held a postdoctoral position from January 2021 to September 2023, in the research group of Prof. Patrick Dondl funded by the project SPP 2256 "Variational Methods for Predicting Complex Phenomena in Engineering Structures and Materials" of the Deutsche Forschungsgemeinschaft (DFG).

**Home-page:** https://www.crm.cat/person/219/maione-alberto/

**arxiv id:** maione_a_1

**orcid id:** 0000-0003-1629-6670

- N. Cangiotti - M. Caponi - A. Maione - E. Vitillaro (
*Fractional Calculus and Applied Analysis*)

Schrödinger-Maxwell equations driven by mixed local-nonlocal operators (2024) - P. W. Dondl - A. Maione - S. Wolff-Vorbeck (Accepted Paper:
*ESAIM: Control, Optimisation and Calculus of Variations*)

Phase field model for multi-material shape optimization of inextensible rods (2024) - A. Maione - D. Mugnai - E. Vecchi (
*Fractional Calculus and Applied Analysis*)

Variational methods for nonpositive mixed local-nonlocal operators (2023) - N. Cangiotti - M. Caponi - A. Maione - E. Vitillaro (
*Milan Journal of Mathematics*)

Klein-Gordon-Maxwell equations driven by mixed local-nonlocal operators (2023) - A. Maione - A. M. Salort - E. Vecchi (
*Asymptotic Analysis*)

Maz'ya-Shaposhnikova formula in Magnetic Fractional Orlicz-Sobolev spaces (2022) - A. Maione - A. Pinamonti - F. Serra Cassano (
*SIAM J. Math. Anal.*)

Γ-Convergence for Functionals Depending on Vector Fields. II. Convergence of Minimizers (2022) - A. Maione - F. Paronetto - E. Vecchi (
*ESAIM: Control, Optimisation and Calculus of Variations*)

$G$-convergence of elliptic and parabolic operators depending on vector fields (2022) - M. Capolli - A. Maione - A. M. Salort - E. Vecchi (
*The Journal of Geometric Analysis*)

Asymptotic behaviours in Fractional Orlicz-Sobolev spaces on Carnot groups (2021) - A. Maione (
*Electronic Journal of Differential Equations*)

$H$-convergence for equations depending on monotone operators in Carnot groups (2021) - A. Maione - A. Pinamonti - F. Serra Cassano (
*J. Math. Pures Appl.*)

$\Gamma$-convergence for functionals depending on vector fields I. Integral representation and compactness. (2020) - A. Maione - E. Vecchi (
*Analysis and Geometry in Metric Spaces*)

Integral representation of local left--invariant functionals in Carnot groups (2020) - A. Maione (Ph.D. Thesis)

Variational convergences for functionals and differential operators depending on vector fields (2020)

*6 oct 2021 - 8 oct 2021:*9th GAMM-Seminar on Analysis of partial differential equations