Calculus of Variations and Geometric Measure Theory

C. De Lellis - S. Nardulli - S. Steinbrüchel

An Allard-type boundary regularity theorem for $2d$ minimizing currents at smooth curves with arbitrary multiplicity

created by nardulli on 30 Mar 2022
modified on 26 Feb 2024

[BibTeX]

Published Paper

Inserted: 30 mar 2022
Last Updated: 26 feb 2024

Journal: Publications Mathématiques de l' I.H.É.S.
Pages: 101
Year: 2024
Doi: https://doi.org/10.1007/s10240-024-00144-y

ArXiv: 2111.02991 PDF

Abstract:

We consider integral area-minimizing $2$-dimensional currents $T$ in $U\subset \mathbb R^{2+n}$ with $\partial T = Q[\![\Gamma]\!]$, where $Q\in \mathbb N \setminus \{0\}$ and $\Gamma$ is sufficiently smooth. We prove that, if $q\in \Gamma$ is a point where the density of $T$ is strictly below $\frac{Q+1}{2}$, then the current is regular at $q$. The regularity is understood in the following sense: there is a neighborhood of $q$ in which $T$ consists of a finite number of regular minimal submanifolds meeting transversally at $\Gamma$ (and counted with the appropriate integer multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical theorem of Allard for $Q=1$. As a corollary, if $\Omega\subset \mathbb R^{2+n}$ is a bounded uniformly convex set and $\Gamma\subset \partial \Omega$ a smooth $1$-dimensional closed submanifold, then any area-minimizing current $T$ with $\partial T = Q [\![\Gamma]\!]$ is regular in a neighborhood of $\Gamma$.