*Published Paper*

**Inserted:** 28 feb 2022

**Last Updated:** 15 sep 2023

**Journal:** Bulletin of the London Mathematical Society

**Year:** 2022

**Abstract:**

Given a $C^2$ family of vector fields $X_1,\ldots,X_m$ which induces a continuous Carnot-Carath\'eodory distance, we show that any absolute minimizer of a supremal functional defined by a $C^2$ quasiconvex Hamiltonian $f(x,z,p)$, allowing $z$-variable dependence, is a viscosity solution to the Aronsson equation $-\langle X(f(x,u(x),Xu(x))), D_pf(x,u(x),Xu(x))\rangle=0$

**Download:**