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Abstract. Given a C2 family of vector fields X1, . . . , Xm which induces a continuous Carnot-
Carathéodory distance, we show that any absolute minimizer of a supremal functional defined by
a C2 quasiconvex Hamiltonian f(x, s, p), allowing s-variable dependence, is a viscosity solution
to the Aronsson equation

−
m∑

i=1
Xi(f(x, u(x), Xu(x))) ∂f

∂pi
(x, u(x), Xu(x)) = 0,

1. Introduction

The study of variational problems in L∞ is very often a good starting point to set up problems
coming both from theoretical issues and from real applications. The earliest works in this
direction are due to Aronsson ([A1, A2]). In these seminal papers, the author studied the
connection between Lipschitz extension problems and PDEs, introducing the notion of absolute
minimizing Lipschitz extension (AMLE) and showing that a C2 function is an AMLE if and
only if it satisfies the infinity Laplace equation

−
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0. (1.1)

Aronsson observed ([A3]) that there are examples of AMLE which are not C2, and thus solving
equation (1.1) only in a formal sense. The problem was solved by Jensen in [J], where he
exploited the machinery of viscosity solutions introduced by Crandall and Lions in [CL] (cf.
also [CIL] for an exhaustive account on the topic), and showed that being an AMLE is equivalent
to being a viscosity solution to (1.1). Moreover, he showed that viscosity solutions to problem
(1.1) are unique, provided a Dirichlet boundary datum is assigned.
One step further was made by Barron, Jensen and Wang ([BJW]), who started the study of
L∞ variational functionals F which are usually known as supremal functionals, that is

F (u, V ) := ‖f(x, u(x), Du(x))‖L∞(V ) u ∈ W 1,∞(U), V ∈ A.

where throughout the paper U is an open and connected subset of Rn, A is the class of all
open subsets of U and f is a suitable continuous non-negative function. In particular, they
generalized the notion of AMLE to the one of absolute minimizer of the functional F , that is
a function u ∈ W 1,∞(U) such that

F (u, V ) ≤ F (v, V )

for any V b U and for any v ∈ W 1,∞(V ) with v|∂V = u|∂V . The authors of [BJW] showed
that any absolute minimizer of F is a solution, in the viscosity sense, of the so-called Aronsson
equation

−
n∑
i=1

∂

∂xi
(f(x, u(x), Du(x))) ∂f

∂pi
(x, u(x), Du(x)) = 0,
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provided that, among the other things, f is C2 and p 7→ f(x, s, p) is strictly quasiconvex, where
we call a function g : Rn −→ R (strictly) quasiconvex whenever

g(tp1 + (1− t)p2) ≤ (<) max{g(p1), g(p2)}

for any p1, p2 ∈ Rm with p1 6= p2 and t ∈ (0, 1). This result generalizes the previous ones, in the
sense that, in the particular case in which f(p) = |p|2, the notion of absolute minimizer reduces
to the one of AMLE and the Aronsson equation becomes the infinity Laplace equation. Many
improvements of the results in [BJW] have been achieved by Crandall ([Cr]), both weakening
some assumptions and exploiting a concise and elegant proof, and by Crandall, Wang and Yu
([CYW]), dealing with the more natural assumption of C1 Hamiltonians.
More recently, Bieske and Capogna ([B, BC]) studied the derivation of the Aronsson equation,
and the question of uniqueness of absolute minimizers, in the setting of Carnot groups and
for the case f(p) = |p|2. Later, Wang ([W]) moved the focus on the possibility to extend the
previous results to more general frameworks, and started the study of supremal functionals
defined in the setting of Carnot-Carathéodory spaces. We stress that this point of view is pretty
general and encompasses, among other things, the Euclidean setting and many interesting sub-
Riemannian manifolds. On the other hand its rich analytical structure allows to study many
interesting problems in great generality (see for example [EPV, MSC, MPSC, MPSC2] and
references therein).

In order to better introduce this issue we recall some terminology and some well known facts.
Given a family X = (X1 . . . , Xm) of locally Lipschitz vector fields defined on U , we say that an
absolutely continuous curve γ : [0, δ] −→ U is horizontal when there are measurable functions
a1(t), . . . , am(t) with

γ̇(t) =
m∑
j=1

aj(t)Xj(γ(t)) for a.e. t ∈ [0, δ], (1.2)

and we say that it is subunit whenever it is horizontal with ∑m
j=1 a

2
j(t) ≤ 1 for a.e. t ∈ [0, δ].

Moreover, we define the Carnot-Carathéodory distance on U as

dX(x, y) := inf{T : γ : [0, T ] −→ U is subunit, γ(0) = x and γ(T ) = y}

If dX is a (finite) distance on U , we say that (U, dX) is a Carnot-Carathéodory space. Moreover,
we denote by C(x) the m× n matrix defined by

C(x) := [cj,i(x)] i=1,...,n
j=1,...,m

,

where for each j = 1 . . . ,m we have Xj := ∑n
i=1 cj,i

∂
∂xi

. If u ∈ L1
loc(U), we define the distribu-

tional X-gradient (or horizontal gradient) of u by

〈Xu,ϕ〉 := −
∫
U
u div(ϕ · C(x))dx for any ϕ ∈ C∞c (U,Rm).

Finally, if p ∈ [1,+∞], we define the horizontal Sobolev spaces as

W 1,p
X (U) := {u ∈ Lp(U) : Xu ∈ Lp(U,Rm)}

and
W 1,p
X,loc(U) := {u ∈ Lploc(U) : u|V ∈ W 1,p

X (V ), ∀V b U}.
In [W] the author adapted in the obvious way the notion of absolute minimizer to this frame-
work. He showed, under mild assumptions on the vector fields, that any absolute minimizer of
the supremal functional defined by

F (u, V ) := ‖f(x,Xu(x))‖L∞(V )
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is a viscosity solution to

−
m∑
i=1

Xi(f(x,Xu(x))) ∂f
∂pi

(x,Xu(x)) = 0,

provided that p 7→ f(x, p) is quasiconvex, f is homogeneous of degree α ≥ 1 and Dpf(0, 0) = 0.
Finally, Wang and Yu ([WY]) improved the previous result by requiring only C1 regularity for f
and dropping the assumption that Dpf(0, 0) = 0 (see also [DMV] for some more specific results
for the case f(p) = |p|2). However, neither [W] nor [WY] studied the problem for Hamiltonian
functions f that allow s-variable dependence.

In the present paper we generalize the results in [Cr] and [W], showing that any absolute
minimizer of the functional

F (u, V ) := ‖f(x, u(x), Xu(x))‖L∞(V )

is a viscosity solution to the Aronsson equation

−
m∑
i=1

Xi(f(x, u(x), Xu(x))) ∂f
∂pi

(x, u(x), Xu(x)) = 0,

provided that the following conditions hold.
(X1) dX is a distance on U , and it is continuous with respect to the Euclidean topology.
(X2) Xi is a C2 vector field defined on U , for any i = 1, . . . ,m.
(f1) f ∈ C2(Ω× R× Rm, [0,∞)).
(f2) p 7→ f(x, s, p) is quasiconvex for any x ∈ Ω and for any s ∈ R.

The strategy of our proof, strongly inspired by [Cr], is divided into five steps.
Step 1. Arguing by contradiction, we assume that there is an absolute minimizer which fails

to be a viscosity subsolution to the Aronsson equation. Therefore, without loss of
generality, we assume that there exists a function φ ∈ C2(U), which touches u from
above in 0, such that

−
m∑
i=1

Xi(f(0, φ(0), Xφ(0))) ∂f
∂pi

(0, φ(0), Xφ(0)) > 0.

Step 2. Exploiting ideas from [Cr, W], we build a family (Ψε)ε of classical solutions to the
Hamilton-Jacobi equation

f(x,Ψε(x), XΨε(x)) = f(0, φ(0)− ε,Xφ(0)),
in order to approximate in a suitable way the behavior of φ in 0. We stress that, since
this passage strongly relies on the arguments in [Cr, pages 275-276], the C2 regularity
of f is crucial to guarantee that the Ψε’s are classical C2 solutions.

Step 3. We find and open set Nε which allows to consider Ψε as a competitor in the definition
of absolute minimizer.

Step 4. By an appropriate change of variables we reduce to the case in which s 7→ f(x, s, p) is
non-decreasing in a neighborhood of (0, φ(0), Xφ(0)).

Step 5. We show the solvability of a suitable system of ODEs to get a family of C1 curves
(γε)ε, and we show that there is a choice among such curves which allows to reach a
contradiction.

The previous scheme is formally analogous to the one employed in [Cr]. Nevertheless, our non-
Euclidean framework presents some technical difficulties that required the introduction of some
new tools. In particular, the last step requires some preliminary results about differentiability
in Carnot-Carathéodory spaces which as far as we know are new, and which we tackled, inspired
again by [Cr], by suitably adapting the notion of subdifferential introduced in [Cl]. Moreover,
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differently from [Cr], the aforementioned system of ODEs cannot be solved by means of the
classical Cauchy-Lipschitz existence theorem.

From one hand, our result generalizes [Cr] to the more general setting of Carnot-Carathéodory
spaces. Moreover, differently from [W], we allow also the function dependence of the Hamil-
tonian and we drop the requirement Dpf(0, 0) = 0. Finally, the results in [WY], apart from
not allowing the function dependence of the Hamiltonian, are achieved under the Hörmander
condition, which is known to be stronger than (X1). On the other hand the construction of
(Ψε)ε, according to [Cr, W], strongly relies on the C2 regularity of the Hamiltonian, which, on
the contrary, is weakened in [WY]. We point out that our assumptions are too general to ensure
uniqueness for the associated Dirichlet problem, as shown in [JWY] in the Euclidean setting.
Nevertheless, many uniqueness results are available in particular settings and under suitable
hypotheses on the Hamiltonian (cf. for instance [J, W, JWY]). The paper is organized as
follows. In Section 2, we recall some preliminaries about Carnot Carathéodory spaces, viscosity
solutions, absolute minimizers and quasiconvex functions, we introduce the aforementioned no-
tion of subdifferential and we shows some useful properties of differentiability along horizontal
curves. In Section 3, we state and prove the main result of this paper.

2. Preliminaries

2.1. Notation. Unless otherwise specified, we let m,n ∈ N \ {0} with m ≤ n, we denote by
U an open and connected subset of Rn and by A the class of all open subsets of U . Given two
open sets A and B, we write A b B whenever A ⊆ B. If E ⊆ Rn, we set coE to be the closure
of

coE :=
⋂
{C : C is convex and E ⊆ C}.

It is easy to see that coE is convex and that coE is closed and convex. Moreover we set

Λn := {(λ1, . . . , λn) : 0 ≤ λj ≤ 1,
n∑
j=1

λj = 1}. (2.1)

For any v ∈ Rn, we denote by |v| the Euclidean norm of v. We let Sm be the class of all
m ×m symmetric matrices with real coefficients. Moreover, if A is a p × q matrix and B is a
q×r matrix, we let A ·B be the usual matrix product. If A,B ∈ Sm, we write A ≤ B whenever
p·A·pT ≤ p·B ·pT for any p ∈ Rm. We denote by Ln the restriction to U of the n-th dimensional
Lebesgue measure, and for any set E ⊆ U we write |E| := Ln(E). If |E| = 0, we say that E is
null or Lebesgue-null. Given x ∈ Rn and R > 0 we let BR(x) := {y ∈ Rn : |x− y| < R}. If we
have a function g ∈ L1

loc(U) and x ∈ U is a Lebesgue point of g, when we write g(x) we always
mean that

g(x) = lim
r→0+

∫
Br(0)

g(y)dy.

If f(x, s, p) is a regular function defined on U×R×Rm, we denote by Dxf = (Dx1f, . . . , Dxnf),
Dsf and Dpf = (Dp1f, . . . , Dpmf) the partial gradients of f with respect to the variables x, s
and p respectively. In general we mean gradients as row vectors.

2.2. Carnot-Carathéodory spaces. Assume that we have a family X1, . . . , Xm of locally
Lipschitz vector fields defined on U . Given k ≥ 1, we define Ck

X(U) by
Ck
X(U) := {u ∈ C(U) : ∃Xi1 · · ·Xisu ∈ C(U) for any (i1, . . . , is) ∈ {1, . . . ,m}s and 1 ≤ s ≤ k}.

Therefore, whenever we have a function u ∈ C2
X(U), we can define its horizontal Hessian

X2u ∈ C(U, Sm) as

X2u(x)ij := XiXju(x) +XjXiu(x)
2
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for any x ∈ U and i, j = 1, . . . ,m. When in addition (U, dX) is a Carnot-Carathéodory space,
we can define the Horizontal Lipschitz space as

LipX(U) :=
{
u : U −→ R : sup

x6=y

u(x)− u(y)
dX(x, y) < +∞

}
.

In this paper, unless otherwise specified, we assume that
(X1) dX is a distance on U , and it is continuous with respect to the Euclidean topology.

When (X1) holds, we know from [GN] that
W 1,∞
X,loc(U) = LipX,loc(U). (2.2)

In particular, each function u ∈ W 1,∞
X,loc(U) admits a continuous representative, that is

W 1,∞
X,loc(U) ⊆ C(U). (2.3)

Indeed, if u ∈ W 1,∞
X,loc(U) and x 6= y ∈ K b U , then thanks to (2.2) it holds that

|u(x)− u(y)| = dX(x, y) |u(x)− u(y)|
dX(x, y) ≤ dX(x, y) sup

z 6=w∈K

|u(z)− u(w)|
dΩ(z, w) ,

and the right side goes to zero as x→ y in virtue of (X1). Therefore, in the following we identify
u ∈ W 1,∞

X,loc(U) with its continuous representative. As it is well known, assumption (X1) is quite
mild in this framework, since it includes many relevant situations. Just to mention the most
famous instance, we recall that a familyX1, . . . , Xm satisfies the Hörmander condition whenever
each Xj is a smooth vector field and it holds that

span{Lie(X1(x), . . . , Xm(x))} = Rn for any x ∈ U,
where Lie(X1(x), . . . , Xm(x)) denotes the Lie algebra generated by X1(x), . . . , Xm(x). From
[Ch, NSW, G] we know the following result.

Proposition 2.1. Assume that X satisfies the Hörmander condition. Then the following prop-
erties hold.

(i) (U, dX) is a Carnot-Carathéodory space.
(i) For any compact set K ⊆ U there exists a positive constant CK such that

C−1
K |x− y| ≤ dX(x, y) ≤ CK |x− y|

1
r for any x, y ∈ K,

r being the nilpotency step of Lie(X1, . . . , Xm).

Hence Hörmander vector fields are examples of vector fields satisfying (X1). Nevertheless,
there are relevant classes of vector fields which satisfy (X1) but not the Hörmander condition.
We refer to [CGPV, FL] for some examples.
We stress that, according to (1.2), an absolutely continuous curve γ : [0, δ] −→ R is horizontal
if and only if there exists a measurable function A : [0, δ] −→ Rm with

γ̇(t) = C(γ(t))T · A(t) (2.4)
for a.e. t ∈ [0, δ].

2.3. Subgradient in Carnot-Carathéodory spaces. When u ∈ W 1,∞
X,loc(U) and N ⊆ U is

any Lebesgue-null set which contains all the non-Lebesgue points of Xu, we define the (X,N)-
subgradient of u as

∂X,Nu(x) := co{ lim
n→∞

Xu(yn) : yn → x, yn /∈ N and ∃ lim
n→∞

Xu(yn)}

for any x ∈ U . This notion generalizes the classical subdifferential introduced in [Cl]. Indeed,
let us fix u ∈ W 1,∞

loc (U). Then Morrey’s inequality implies that any Lebesgue point of ∇u is
a point of differentiability of u (cf. [L, Corollary 11.36]). Therefore, when X = (∂1, . . . , ∂n),
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∂X,Nu coincides with Clarke’s subdifferential. We begin by proving some properties of the
(X,N)-subgradient with the help of the two following lemmas, whose proof can be found at
the end of this paper.

Lemma 2.2. Let

S :=
{

lim
n→∞

Xu(yn) : yn → x, yn /∈ N and ∃ lim
n→∞

Xu(yn)
}

and, for any k ≥ 1, let
Ak = {Xu(y) : y ∈ B1/k(x) \N}.

Then it follows that
∞⋂
k=1

Ak ⊆ S.

Lemma 2.3. Let (Ak)k be a decreasing sequence of non-empty bounded subsets of Rm, and let
S be a non-empty, bounded subset of Rm. Assume that

∞⋂
k=1

Ak ⊆ S.

Then it follows that
∞⋂
k=1

co(Ak) ⊆ co(S).

Proposition 2.4. Let u and N be as above. Then the following facts hold.
(i) ∂X,Nu(x) is a non-empty, convex, closed and bounded subset of Rm for any x ∈ U ;

(ii) for any x ∈ U

∂X,Nu(x) =
∞⋂
k=1

co{Xu(y) : y ∈ B1/k(x) \N};

(iii) if u ∈ C1
X(U), then

∂X,Nu(x) = {Xu(x)}
for any x ∈ U .

Proof. We start by proving (i). We fix x ∈ U and show that ∂X,Nu(x) 6= ∅. Let r > 0 be
small enough to have Br(x) b U . Then u ∈ W 1,∞

X (Br(x)). So we set L := ‖Xu‖L∞(Br(x)). Let
(rn)n ⊆ (0, r) with rn ↘ 0. Then, for any n ∈ N, take yn ∈ Brn(x) \N . Then clearly yn tends
to x. Moreover, being yn a Lebesgue point of Xu, it follows that

|Xu(yn)| =
∣∣∣∣∣ lim
s→0+

∫
Bs(yn)

Xu(z)dz
∣∣∣∣∣ ≤ lim

s→0+

∫
Bs(yn)

|Xu(z)|dz ≤ L,

and so (Xu(yn))n is bounded in Rm. Therefore, up to a subsequence, we can assume that its
limit exists, that is ∂X,Nu(x) is non-empty. From the above proof it is easy to see that ∂X,Nu(x)
is bounded, while convexity and closure follows directly from its definition. Let us prove (ii).
We fix x ∈ U and start by proving the left-to-right inclusion. As the right set is convex and
closed, it is sufficient to show that any z of the form

z = lim
n→∞

Xu(yn),

with yn → x and yn /∈ N , belongs to
co{Xu(y) : y ∈ B1/k(x) \N}

for any k ∈ N \ {0}. As yn tends to x we get that yn ∈ B1/k(x) \ N for n sufficiently large.
Therefore, as the conclusion follows for each X(yn) and the right set is closed, we have proved
the desired inclusion. The proof of the converse inclusion follows from Lemma 2.2 and Lemma
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2.3. Now we prove (iii). Let x ∈ U and let (yn)n ⊆ U \ N converges to x. Then from the
continuity of Xu it follows that limn→∞Xu(yn) = Xu(x). Since {Xu(x)} is convex and closed,
this implies that ∂X,Nu(x) ⊆ {Xu(x)}. Conversely, being N null, there exists a sequence
(yn)n ⊆ U \ N which converges to x. Again thanks to the continuity of Xu, the converse
inclusion follows. �

With the following proposition we see that the notion of (X,N)-subgradient, in analogy with
the Euclidean setting, is the right tool to deal with differentiability of X-Lipschitz functions
along horizontal curves.

Proposition 2.5. Assume that X satisfies (X1). Let 1 ≤ p ≤ +∞, let u ∈ W 1,∞
X,loc(U) and let

γ ∈ AC([−β, β], U) be a horizontal curve with

γ̇(t) = C(γ(t))T · A(t)

and A ∈ Lp((−β, β),Rm). Then the curve t 7→ u(γ(t)) belongs to W 1,p(−β, β), and there exists
a function g ∈ L∞((−β, β),Rm) such that

du(γ(t))
dt

= g(t) · A(t)

for a.e. t ∈ (−β, β). Moreover
g(t) ∈ ∂X,Nu(γ(t))

for a.e. t ∈ (−β, β).

Proof. Let (%δ)δ be a sequence of spherically symmetric mollifiers, and let N be any null set
which contains all the non-Lebesgue points of Xu. If δ is sufficiently small and we define uδ and
(Xu)δ to be the standard convolutions, we have that these functions are smooth on a bounded
open set, say V , such that V b U and V contains the support of γ. Moreover, as X satisfies
(X1), from [W] we know that there exists a non-negative and non-decreasing function w(δ)
(depending on the chosen function u) defined in a right neighborhood of 0, such that

lim
δ→0+

w(δ) = 0

and moreover
|X(uδ)(x)− (Xu)δ(x)| ≤ w(δ) (2.5)

for any x ∈ V . As uδ is C1 and γ is absolutely continuous, from standard calculus we have that

uδ(γ(t))− uδ(γ(0)) =
∫ t

0
D(uδ)(γ(s)) · γ̇(s)ds

=
∫ t

0
D(uδ)(γ(s)) · C(γ(s))T · A(s)ds

=
∫ t

0
X(uδ)(γ(s)) · A(s)ds.

(2.6)

Let us consider now the sequence of functions X(u1/n)(γ(·)). It is easy to see that it is
bounded in L∞((−β, β),Rm). Therefore (up to a subsequence) there exists a function g ∈
L∞((−β, β),Rm) such that

X(u1/n)(γ(·)) ⇀∗ g(·) in L∞((−β, β),Rm) (2.7)

as n goes to infinity, and so in particular

X(u1/n)(γ(·)) ⇀ g(·) in L2((−β, β),Rm) (2.8)
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as n goes to infinity. Since u is continuous, then by well known results we have that uδ
converges uniformly to u on V . Therefore, passing to the limit in (2.6), noticing in particular
that A ∈ L1((−β, β),Rm) and exploiting (2.7), we obtain that

u(γ(t))− u(γ(0)) =
∫ t

0
g(s) · A(s)ds.

We are left to show that g(t) ∈ ∂X,Nu(γ(t)) for a.e. t ∈ (−β, β). Let us notice that, since for
any x ∈ V we have that

(Xu)δ(x) =
∫
Bδ(x)\N

%δ(y − x)Xu(y)dy,

it follows that
(Xu)δ(x) ∈ co{Xu(y) : y ∈ Bδ(x) \N} (2.9)

for any x ∈ V . Indeed, recalling that Xu ∈ L∞(Bδ(x) \ N) for δ small enough, setting
m := infBδ(x)\N Xu and M := supBδ(x)\N Xu, it holds that

m = m
∫
Bδ(x)\N

ρδ(x− y)dy ≤ (Xu)δ(x) ≤M
∫
Bδ(x)\N

ρδ(x− y)dy = M,

and so (Xu)δ(x) ∈ [m,M ]. Therefore, noticing that
[m,M ] = co{m,M} ⊆ co{Xu(y) : y ∈ Bδ(x) \N} ⊆ [m,M ],

then (2.9) follows. Thanks to (2.8) and Mazur’s Lemma (cf. e.g. [Br, Corollary 3.9]), for
each m ∈ N there are convex combinations of X(u1/n)(γ(·)) converging strongly to g in
L2((−β, β),Rm), that is

vm(·) :=
Nm∑

n=Mm

am,nX(u1/n)(γ(·)) −→ g(·) in L2((−β, β),Rm),

with Mm < Nm and limm→∞Mm = +∞. Moreover (again up to a subsequence) we can assume
that the above convergence holds pointwise for a.e. t ∈ (−β, β). Let us define now

zm(·) :=
Nm∑

n=Mm

am,n(Xu)1/n(γ(·)).

Then, (2.5) implies that

|zm(t)− g(t)| ≤
Nm∑

n=Mm

am,n|X(u1/n)(γ(t))− (Xu)1/n(γ(t))|+ |vm(t)− g(t)|

≤
Nm∑

n=Mm

am,nw(1/n) + |vm(t)− g(t)|

≤
Nm∑

n=Mm

am,nw(1/Mm) + |vm(t)− g(t)|

= w(1/Mm) + |vm(t)− g(t)|,
which implies that zm converges to g pointwise for a.e. t ∈ (−β, β) as m→∞. Moreover, from
(2.9) and the definition of zm it follows easily that

zm(t) ∈ co{Xu(y) : y ∈ B1/Mm(γ(t)) \N} ⊆ co{Xu(y) : y ∈ B1/k(γ(t)) \N}
for any t ∈ (−β, β) and for any k ≤ Mm. Therefore, thanks to the pointwise convergence as
m→∞, we get that

g(t) ∈
∞⋂
k=1

co{Xu(y) : y ∈ B1/k(γ(t)) \N}.

for a.e. t ∈ (−β, β). Finally, from Proposition 2.4, the thesis follows. �
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As a corollary of the previous proposition we have the following result.

Proposition 2.6. Assume that X satisfies (X1). Let u ∈ C1
X(U) and let γ ∈ C1([−β, β], U)

be a horizontal curve with
γ̇(t) = C(γ(t))T · A(t)

and A ∈ C([−β, β],Rm). Then the curve t 7→ u(γ(t)) belongs to C1(−β, β) and
du(γ(t))

dt
= Xu(γ(t)) · A(t)

for any t ∈ (−β, β).

We conclude this section with a useful property which links subgradients and quasiconvex
functions.

Lemma 2.7. Let f ∈ C(U × R × Rm) be a non-negative function which satisfies (f2). Let
u ∈ W 1,∞

X,loc(U), V ∈ A and K ≥ 0 such that
f(x, u(x), Xu(x)) ≤ K (2.10)

for a.e. x ∈ V . Let N be a Lebesgue-null subset of V containing all the points where (2.10)
fails and all the non-Lebesgue points of Xu. Then it follows that

f(x, u(x), w) ≤ K

for any x ∈ V and for any w ∈ ∂X,Nu(x).

Proof. Let x ∈ V be fixed and let w ∈ ∂X,Nu(x). Then there exists a sequence

(wh)h ⊆ co
{

lim
n→∞

Xu(yn) : yn → x, yn /∈ N and ∃ lim
n→∞

Xu(yn)
}

converging to w in Rm. If we are able to prove the claim for each wh, the thesis follows from
the continuity of f in the third argument. Fix then h. Thanks to Carathéodory Theorem (cf.
[D, Theorem 1.2]) there are (λh1 , . . . , λhn+1) ∈ Λn+1 and wh1 , . . . , whn+1 such that

whj ⊆
{

lim
n→∞

Xu(yn) : yn → x, yn /∈ N and ∃ lim
n→∞

Xu(yn)
}

for any j = 1, . . . , n+ 1 and

wh =
n+1∑
j=1

λhjw
h
j .

Again, if we are able to show the claim for each whj , we are done because of the convexity of
sublevel sets of f . Let us fix j and take a sequence (ys)s ⊆ V \N converging to x and such that
whj = lims→∞X(ys). As the the map (x, η) 7→ f(x, u(x), η) is continuous, and thanks again to
the global continuity of f , we conclude that

f(x, u(x), whj ) = lim
s→∞

f(x, u(x), Xu(ys)) = lim
s→∞

f(ys, u(ys), Xu(ys)) ≤ K.

�

2.4. Supremal functionals, absolute minimizers and Aronsson equation. For sake of
completeness we make explicit the definition of supremal functional and of absolute minimizer
in the framework of Carnot-Carathéodory spaces. Indeed, given a non-negative function f ∈
C(U ×R×Rm), we define its associated supremal functional F : W 1,∞

X (U)×A −→ [0,+∞] as
F (u, V ) := ‖f(x, u,Xu)‖L∞(V )

for any V ∈ A, u ∈ W 1,∞
X (V ), and we say that u ∈ W 1,∞

X (U) is an absolute minimizer of F if
F (u, V ) ≤ F (v, V )
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for any V b U and for any v ∈ W 1,∞
X (V ) with v|∂V = u|∂V . Moreover, according to [W], we

say that a function A ∈ C(U × R× Rm × Sm) is horizontally elliptic if

A(x, s, p, Z) ≤ A(x, s, p, Y )

whenever x ∈ U , s ∈ R, p ∈ Rm and Z, Y ∈ Sm with Y ≤ Z. If f as above belongs to
C1(U × R× Rm), we can define Af : U × R× Rm × Sm −→ R as

Af (x, s, p, Z) := −(Xf(x, s, p) +Dsf(x, s, p)p+Dpf(x, s, p) · Z) ·Dpf(x, s, p)T ,

and we say that
Af [φ](x) := Af (x, φ(x), Xφ(x), X2φ(x)) = 0 (2.11)

is the Aronsson equation associated to F . It is easy to check that Af is continuous and hori-
zontally elliptic. Moreover, for any φ ∈ C2(U) and x ∈ U it holds that

Af [φ](x) = −X(f(x, φ,Xφ)) ·Dpf(x, φ,Xφ)T .

According to [CIL, W] we can now recall the notion of viscosity solution to the Aronsson
equation. Therefore, we say that a function u ∈ C(U) is a viscosity subsolution to the Aronsson
equation if

Af [φ](x0) ≤ 0
for any x0 ∈ U and for any φ ∈ C2(U) such that

0 = φ(x0)− u(x0) ≤ φ(x)− u(x) (2.12)

for any x in a neighbourhood of x0. Moreover we say that u is a viscosity supersolution if −u is
a viscosity subsolution, and finally we say that u is a viscosity solution if it is both a subsolution
and a supersolution.
We end this section with a straightforward property satisfied by quasiconvex function.

Proposition 2.8. Let g ∈ C1(Rm) be a quasiconvex function. Then it holds that

g(p) ≥ g(q) =⇒ Dpg(p) · (q − p) ≤ 0

for any p, q ∈ Rm.

3. The Main Theorem

We are ready to state and prove the main theorem of this paper.

Theorem 3.1. Assume that (X1), (X2), (f1), (f2) hold. Then any absolute minimizer of F is
a viscosity solution to the Aronsson equation.

Proof. We divide the proof into several steps:

Step 1. Let u be an absolute minimizer for F . It suffices to show that u is a viscosity
subsolution to (2.11), the other half of the proof being completely analogous. Arguing by
contradiction, we assume that u fails to be a subsolution, that is there exists x0 ∈ U , R1 > 0
and φ ∈ C2(U) such that (2.12) holds for any x ∈ BR1(x0) and

Af [φ](x0) > 0. (3.1)

Without loss of generality we assume that x0 = 0 ∈ U .

Step 2. We combine ideas form [Cr] and [W] to achieve the following
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Lemma 3.2. There exist 0 < R2 < R1, ε1 > 0, µ > 0 and a continuous function Ψ : [0, ε1] ×
BR2(0) −→ R such that, if we denote Ψ(ε, x) by Ψε(x), it holds that x → Ψε(x) ∈ C2(BR2(0))
for any ε ∈ [0, ε1] and

DΨε is continuous in (x, ε) = (0, 0). (3.2)
Moreover, it holds that

Ψε(0) = φ(0)− ε, DΨε(0) = Dφ(0), D2Ψε(0)−D2φ(0) > 2µIn,
f(x,Ψε(x), XΨε(x)) = f(0, φ(0)− ε,Xφ(0)),

(3.3)

for any x ∈ BR2(0).

Proof of Lemma 3.2. Let us define a new function f on U × R× Rn by
f(x, s, ξ) := f(x, s, C(x) · ξ) (3.4)

for any x ∈ U , s ∈ R and ξ ∈ Rn. Then, since f and X are C2, it follows that f ∈ C2(U ×R×
Rn). Moreover, trivial computations show that

Dξf(x, u, ξ) = Dpf(x, u, C(x) · ξ) · C(x), (3.5)
and that

f(x, ϕ(x), Xϕ(x)) = f(x, ϕ(x), Dϕ(x)) (3.6)
for any x ∈ U and any ϕ ∈ C2(U). Finally, if we let Af ∈ C(U×R×Rn×Sn) be the Euclidean
Aronsson operator associated to f , i.e.

Af (x, s, ξ, Z) := −(Dxf(x, s, ξ) +Dsf(x, s, ξ)ξ +Dξf(x, s, ξ) · Z) ·Dξf(x, s, ξ)T ,
it follows from (3.5) and (3.6) that

Af [ϕ](x) = Dx(f(x, ϕ(x), Dϕ(x))) ·Dξf(x, s,Dϕ)T

= Dx(f(x, ϕ(x), Xϕ(x))) · (Dpf(x, ϕ(x), Xϕ(x)) · C(x))T

= Dx(f(x, ϕ(x), Xϕ(x))) · C(x)T ·Dpf(x, ϕ(x), Xϕ(x))T

= X(f(x, ϕ(x), Xϕ(x))) ·Dpf(x, ϕ(x), Xϕ(x))T = Af [ϕ](x),

whence Af [ϕ](0) > 0. The claim then follows as in [Cr, Theorem 1] and thanks to (3.6). �

Step 3. Now we want to exploit Ψε as a test function in the definition of absolute minimizer
on a suitable neighbourhood of 0. For doing this let us notice that (3.3) implies that

Ψε(x) = Ψε(0) +DΨε(0) · x+ xT ·D2Ψε(0) · x+ o(|x|2)
= φ(0)− ε+Dφ(0) · x+ xT ·D2Ψε(0) · x+ o(|x|2)
> φ(0)− ε+Dφ(0) · x+ xT ·D2φ(0) · x+ 2µ|x|2 + o(|x|2)
= φ(x)− ε+ 2µ|x|2 + o(|x|2)

as x goes to zero. Therefore we have that
Ψε(x) > φ(x)− ε+ µ|x|2 (3.7)

for any x ∈ BR3(0) \ {0}, for any ε ∈ [0, ε1] and for some R3 < R2 sufficiently small. Let now
0 < ε2 < ε1 small enough such that

√
ε
µ
< R3 for any ε ∈ [0, ε2] and define Nε as the connected

component of
{x ∈ BR3(0) : Ψε(x) < u(x)}

containing zero (note that Ψε(0) = u(0) − ε < u(0) if ε > 0). Therefore Nε is an open and
connected neighborhood of 0 for any ε ∈ (0, ε2]. Moreover, since (3.7) implies that

Ψε(x) > φ(x) ≥ u(x) on ∂B√ ε
µ
(0),
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it follows that
Nε ⊆ B√ ε

µ
(0) $ BR3(0), (3.8)

which implies that
u|∂Nε = Ψε|∂Nε .

Being u an absolute minimizer, and recalling (3.3), we conclude that
f(x, u(x), Xu(x)) ≤ F (u,Nε) ≤ F (Ψε,Nε) = f(0, φ(0)− ε,Xφ(0)) = f(x,Ψε(x), XΨε(x))

(3.9)
for a.e. x ∈ Nε and for any ε ∈ [0, ε2].

Step 4. At this point we wish to achieve the situation in which s 7→ f(x, s, p) is non-
decreasing locally in a neighborhood of (0, φ(0), Xφ(0)). Therefore we follow the strategy of
[Cr] and we show that, via a suitable change of variables, this assumption is possible. Let us
define then a new function g by

g(x, s, p) := f(x, u(0) + q · x+G(s), q · C(0)T +G′(s)p)
for any (x, s, p) in a suitable neighborhood of (0, φ(0), Xφ(0)), where q ∈ Rn has to be de-
termined and G ∈ C∞(−δ, δ) is a local increasing diffeomorphism such that G(0) = 0 and
G′(0) > 0. Let us notice that g is C2 and quasiconvex in the third argument. Moreover, if we
define u and φ in a neighborhood of 0 by requiring that

u(x) = u(0) + q · x+G(u(x)),
φ(x) = φ(0) + q · x+G(φ(x)), (3.10)

it is easy to see that (2.12) holds for u and φ and that φ(0) = u(0) = 0. If H is the supremal
functional associated to g it is easy to see that u is an absolute minimizer for H (we stress that
we are working in a suitable neighborhood of 0). Easy computations show that

Dxg = Dxf +Dsfq, Dsg = G′(s)Dsf +G′′(s)Dpf · pT , Dpg = G′(s)Dpf.

Therefore, noticing that
g(x, φ(x), Xφ(x)) = f(x, φ(x), Xφ(x))

for any x in the usual neighborhood of 0, we have that
Ag[φ](x) = −X(g(x, φ(x), Xφ(x))) ·Dpg(x, φ(x), Xφ(x))T

= −X(f(x, φ(x), Xφ(x))) ·Dpg(x, φ(x), Xφ(x))T

= −X(f(x, φ(x), Xφ(x))) · (G′(φ(x))Dpf(x, φ(x), Xφ(x))T ) = G′(φ(x))Af [φ](x),

and so Ag[φ](0) = G′(0)Af [φ](0) > 0. Moreover, (3.10) implies that

Xφ(0) = Xφ(0)− q · C(0)T
G′(0) .

Therefore we have that

Dsg(0, φ(0), Xφ(0)) = G′(0)Dsf(0, φ(0), Xφ(0))+G
′′(0)

G′(0) (Xφ(0)−q·C(0)T )·Dpf(0, φ(0), Xφ(0))T .

Hence, if we choose G as G(s) = s+ β
2 s

2, where β > 0, and we choose q as
q := Dφ(0) +Dxf(0, φ(0), Xφ(0)) +Dsf(0, φ(0), Xφ(0))Dφ(0) +Dpf(0, φ(0), Xφ(0)) ·B,

where B is the m× n matrix defined by

Bij := ∂

∂xj
Xiφ(x)

∣∣∣∣∣
x=0
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for any i = 1, . . . ,m and j = 1, . . . , n, and noticing that

p ·B · C(0)T · pT = p ·X2φ(0) · pT

for any p ∈ Rm, thanks to (3.1) we conclude that

Dsg(0, φ(0), Xφ(0)) = Dsf(0, φ(0), Xφ(0)) + βAf [φ](0) > 0,

provided we choose β sufficiently big. Therefore in this new setting we can assume that s 7→
f(x, s, p) is increasing in a neighborhood of (0, φ(0), Xφ(0)). This fact and (3.9) allow to find
0 < ε3 < ε2 such that

f(x, u(x), Xu(x)) ≤ f(x, u(x), XΨε(x)) (3.11)

for any ε ∈ (0, ε3] and for a.e. x ∈ Nε.
Step 5. We are going to exploit (3.11), together with Proposition 2.8, in a suitable way. For
doing this let us consider the first-order system of ODEs

γ̇(t) = −C(γ(t))T ·Dpf(γ(t), u(γ(t), XΨε(γ(t)))T

γ(0) = 0
(3.12)

and, for any ε ∈ [0, ε3] and a suitable R4 < R3, we define gε : BR4(0) −→ Rn as

gε(x) := −C(x)T ·Dpf(x, u(x), XΨε(x))T .

It is easy to see (recall (2.3)) that gε ∈ C(BR4(0),Rn). If we define

C := max
i,j
{ sup
BR4 (0)

|cij|},

it follows from our assumptions that 0 < C < +∞. Moreover, thanks to (2.3) and (3.2), there
exist 0 < ε4 < ε3 and 0 < R5 < R4 such that

|DΨε(x)−Dφ(0)| ≤ 1
|u(x)− u(0)| ≤ 1

for any x ∈ BR5(0) and ε ∈ [0, ε4]. Therefore, if we let Mε := max{gε(x) : x ∈ BR5(0)}, it
follows that

‖gε(x)‖L∞(BR5 (0)) ≤ C‖Dpf(x, u(x), XΨε(x))‖L∞(BR5 (0))

≤ C‖Dpf(x, s, p)‖L∞(BR5 (0)×B1(u(0))×BC(Dφ(0)) := M

for any ε ∈ [0, ε4]. Since (3.1) implies that Mε > 0, we conclude that 0 < Mε < M for any
ε ∈ [0, ε4]. Therefore, if we let

ε5 := min
{
ε4,

R5

M

}
,

Peano’s Theorem (cf. e.g. [T, Theorem 2.19]) guarantees the existence, for any ε ∈ [0, ε5], of
a curve γε ∈ C1((−ε5, ε5),Rn) which solves (3.12). Moreover, from (2.4) and the first line of
(3.12) it follows that γε is a horizontal curve. Then, Propositions 2.8 and 2.5, together with
Lemma 2.7 and (3.11), imply that

d

dt
(Ψε(γε(t))− u(γε(t))

∣∣∣∣∣∣
t=t0

= Dpf(γε(t0), u(γε(t0)), XΨε(γ(t0))) · (g(t0)−XΨε(γ(t0))) ≤ 0
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for a.e. t0 ∈ (−ε5, ε5) and for any ε ∈ [0, ε5), and where g(t0) is as in Proposition 2.5. Therefore,
if we fix t0 ∈ (0, ε5), the previous inequality implies that

Ψε(γε(t0)) = Ψε(0) +
∫ t0

0

dΨε(γε(t))
dt

dt

≤ u(0)− ε+
∫ t0

0

du(γε(t))
dt

dt

= u(γε(t0))− ε < u(γε(t0)),
hence we conclude that γε(t0) ∈ Nε, which implies, together with (3.8), that

γε(t0) ∈ B√ ε
µ
(0) (3.13)

for any t0 ∈ [0, ε5) and any ε ∈ (0, ε5). On the other hand, the classical Taylor’s formula applied
to γε implies that

γε(t) = −C(0)T · (Dpf(0, φ(0), Xφ(0))T t+ o(t) (3.14)
as t tends to zero and for any ε ∈ (0, ε5). If we let 2K := |C(0)T · (Dpf(0, φ(0), Xφ(0))T |, (3.1)
says that 2K > 0. Therefore, thanks to (3.14), we know that there exists 0 < ε6 < ε5 such that

|γε(t)| ≥ Kt (3.15)
for any for any t, ε ∈ (0, ε6). Let us choose ε ∈ (0, ε6) such that

t0 := 2
K

√
ε

µ
< ε6.

Then (3.15) yelds that |γε(t0)| ≥ 2
√

ε
µ
, which is a clear contradiction with (3.13).

�

4. Appendix

Proof of Lemma 2.2. Let z ∈ Ak for any k ≥ 1. Then for any k ≥ 1 there exists a sequence
(zkh)h ⊆ Ak converging to z as h goes to infinity. Therefore we can select a subsequence
(zk)k ⊆ (zkh)kh which converges to z as k goes to infinity and such that zk ∈ Ak for any k ≥ 1.
Since zk ∈ Ak, then there exists yk ∈ B1/k(x) \ N such that Xu(yk) = zk. It follows that yk
converges to x as k goes to infinity, yk /∈ N and

z = lim
k→∞

zk = lim
k→∞

Xu(yk).

We conclude that z ∈ S. �

Proof of Lemma 2.3. Let z ∈ co(Ak) for any k ≥ 1. Then for any k ≥ 1 there exists a sequence
(zkh)h ⊆ co(Ak) converging to z as h goes to infinity. As in the previous proof, let (zk)k ⊆ (zkh)kh
be a sequence which converges to z as k goes to infinity and such that zk ∈ co(Ak) for any
k ≥ 1. Therefore, for each k ≥ 1, there exist (λk1 . . . , λkm+1) ∈ Λm+1, where Λm+1 is as in (2.1),
and yk1 , . . . , ykm+1 belonging to Ak such that

zk =
m+1∑
j=1

λkjy
k
j .

Up to subsequences, we assume that
λkj → λj as k →∞

and
ykj → yj as k →∞
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for any j = 1, . . . ,m + 1. It is easy to see that (λ1, . . . , λm+1) ∈ Λm+1 and that yj belongs to
Ak for any k ≥ 1. Therefore, thanks to our hypotheses, we have that yhj ∈ S. If we set

x :=
m+1∑
j=1

λjyj,

then x ∈ co(S). Moreover, it holds that

x =
m+1∑
j=1

λjyj =
m+1∑
j=1

lim
k→∞

λkjy
k
j = lim

k→∞

m+1∑
j=1

λkjy
k
j = lim

k→∞
zk = z,

which implies that z ∈ co(S). �
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