Calculus of Variations and Geometric Measure Theory

F. Riva - G. Scilla - F. Solombrino

The notions of Inertial Balanced Viscosity and Inertial Virtual Viscosity solution for rate-independent systems

created by scilla on 03 Sep 2021
modified by riva on 31 May 2022


Published Paper

Inserted: 3 sep 2021
Last Updated: 31 may 2022

Journal: Adv. Calc. Var.
Year: 2022


The notion of Inertial Balanced Viscosity (IBV) solution to rate-independent evolutionary processes is introduced. Such solutions are characterized by an energy balance where a suitable, rate-dependent, dissipation cost is optimized at jump times. The cost is reminiscent of the limit effect of small inertial terms. Therefore, this notion proves to be a suitable one to describe the asymptotic behavior of evolutions of mechanical systems with rate-independent dissipation in the limit of vanishing inertia and viscosity. It is indeed proved, in finite dimension, that these evolutions converge to IBV solutions. If the viscosity operator is neglected, or has a nontrivial kernel, the weaker notion of Inertial Virtual Viscosity (IVV) solutions is introduced, and the analogous convergence result holds. Again in a finite-dimensional context, it is also shown that IBV and IVV solutions can be obtained via a natural extension of the Minimizing Movements algorithm, where the limit effect of inertial terms is taken into account.

Keywords: Variational methods, rate-independent systems, vanishing inertia and viscosity limit, minimizing movements scheme, Inertial Balanced Viscosity solutions, Inertial Virtual Viscosity solutions