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Abstract. The notion of Inertial Balanced Viscosity (IBV) solution to rate-independent evo-
lutionary processes is introduced. Such solutions are characterized by an energy balance where
a suitable, rate-dependent, dissipation cost is optimized at jump times. The cost is reminiscent
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1. Introduction

Rate-independent evolutions frequently occur in physics and mechanics when the problem
under consideration presents such small rate-dependent effects, as inertia or viscosity, that can
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be neglected. Several applications can be (formally) modelled by the doubly nonlinear differential
inclusion {

∂R(u̇(t)) +DxE(t, u(t)) ∋ 0 , in X∗, for a.e. t ∈ [0, T ],

u(0) = u0 ,
(1.1)

whereR is a rate-independent dissipation potential, while E is a time-dependent potential energy.
In this paper we limit ourselves to the case of a finite-dimensional normed space X, although we
plan to extend the whole analysis to the infinite-dimensional context, where several difficulties
concerning weak topologies and nonsmoothness of E naturally arise (we refer to the monograph
[22] for more details, also compare [19] with [18]).

If the driving energy E is nonconvex, continuous solutions to (1.1) are not expected to exist,
and thus in the past decades huge efforts have been spent to develop weak notions of solution
capable of describing the behaviour of the system at jumps. A first attempt can be found in
the notion of Energetic solution [23, 24] based on a global stability condition together with an
energy balance which must hold for every t ∈ [0, T ]:(GS) E(t, u(t)) ≤ E(t, x) +R(x− u(t)), for every x ∈ X,

(EB) E(t, u(t)) + VR(u; 0, t) = E(0, u0) +
∫ t

0
∂tE(r, u(r)) dr.

Condition (GS) actually turns out to be still too restrictive in the nonconvex case, where a local
minimality condition would be preferable. Starting from this consideration, in [18, 19, 21] the
notion of Balanced Viscosity solution has been introduced and analysed. See also the recent
paper [25]. Their idea relies on the fact that physical solutions to (1.1) should arise as the
vanishing-viscosity limit of a richer and more natural viscous problem{

εVu̇ε(t) + ∂R(u̇ε(t)) +DxE(t, uε(t)) ∋ 0, in X∗, for a.e. t ∈ [0, T ],

uε(0) = uε0 ,
(1.2)

as the parameter ε → 0. Here, V denotes a symmetric positive-definite linear operator modelling
viscosity. Actually, in [18, 19] more general viscous potentials are considered. The resulting
evolution, called Balanced Viscosity (BV) solution, turns out to satisfy a local stability condition
together with an augmented energy balance:(LS) −DxE(t, u(t)) ∈ ∂R(0), for a.e. t ∈ [0, T ],

(EBV) E(t, u(t)) + V V
R (u; 0, t) = E(0, u0) +

∫ t

0
∂tE(r, u(r)) dr, for all t ∈ [0, T ].

While in (EB) the classical total variation (actually, R-variation, see Definition 2.3) controls
both the continuous part uco of the evolution and the jump part, as it holds (see also (2.18))

VR(u; 0, t) = VR(uco; 0, t) +
∑

r∈Ju∩[0,t]

(
R(u(r)−u−(r)) +R(u+(r)−u(r))

)
,

in (EBV) the jump part of the “viscous”variation involves a more complicated cost function (a
Finsler distance) which takes into account the original presence of viscosity:

V V
R (u; 0, t) = VR(uco; 0, t) +

∑
r∈Ju∩[0,t]

(
cVr (u

−(r), u(r)) + cVr (u(r), u
+(r))

)
.

At time t ∈ [0, T ], the viscous cost function is obtained as

cVt (u1, u2) :=inf

{∫ 1

0
pV(v̇(r),−DxE(t, v(r))) dr |v ∈ W 1,∞(0, 1;X), v(0) = u1, v(1) = u2

}
, (1.3)
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where pV, called vanishing-viscosity contact potential, is a suitable density arising from both the
viscous and the rate-independent dissipation (see also Definition 3.1).

In [18, 19] it is also shown that BV solutions can be obtained as the limit of time discrete
approximations, solutions to the recursive discrete-in-time variational incremental scheme with
time step τ

ukτ,ε ∈ argmin
x∈X

{ ε

2τ
∥x− uk−1

τ,ε ∥2V +R
(
x− uk−1

τ,ε

)
+ E(tk, x)

}
, k = 1, . . . , T/τ, (1.4)

when sending simultaneously ε and τ to 0 with also τ/ε → 0.
Although the notion of BV solution turned out to be extremely powerful in applications

(see for instance [2, 6, 12, 20]), it still lacks inertial terms, which are however essential in the
description of real world phenomena, as stated by the second principle of dynamics.

In this paper we thus present a novel notion of solution which takes into account this feature.
Our starting point is augmenting (1.2) with an inertial term{

ε2Müε(t) + εVu̇ε(t) + ∂R(u̇ε(t)) +DxE(t, uε(t)) ∋ 0, in X∗, for a.e. t ∈ [0, T ],

uε(0) = uε0, u̇ε(0) = uε1,
(1.5)

and then sending ε → 0, namely performing a vanishing-inertia and viscosity argument. The
symmetric positive-definite linear operator M appearing in (1.5) represents masses. Its presence
allows to consider also the case of null viscosity, i.e. V = 0, or more generally of a positive-
semidefinite linear operator. We point out that such a limit procedure is also known as slow-
loading limit, since (1.5) comes from a dynamic problem with slow data after a reparametrization
of time. We refer the interested reader to [10] or to [22, Chapter 5] for a more detailed explana-
tion.

This approach has already been adopted for concrete models (in infinite dimension) in [7, 8,
14, 15, 17, 26, 29], all in the case of convex, or even quadratic, energies E . An abstract analysis
has been performed in [10], in finite dimension and always under convexity assumptions. Hence,
the results contained in this paper on the one hand represent an extension to nonconvex energies
of the ones presented in [10] (see Remark 2.2), and on the other hand put the basis for an abstract
investigation in infinite dimension, where nonconvex problems are common in applications (we
refer again to [2, 6, 12, 20, 22]).

In our nonconvex setting, the limiting evolution of (1.5) provides the novel notion of Inertial
Balanced Viscosity (IBV) solution (we refer to the discussion in Section 3 for the subtler notion of
Inertial Virtual Viscosity (IVV) solution, arising when the viscosity operator V is not positive-
definite) for the rate-independent system (1.1), namely a function satisfying the same local
stability condition (LS) than BV solutions, together with an energy balance in which the cost
at jump points is sensitive of the presence of inertia:
(LS) −DxE(t, u(t)) ∈ ∂R(0), for a.e. t ∈ [0, T ]

(EBM,V) E(t, u+(t))+VR(uco; s, t) +
∑

r∈Je
u∩[s,t]

cM,V
r (u−(r), u+(r)) = E(s, u−(s))+

∫ t

s
∂tE(r, u(r)) dr,

for every 0 ≤ s ≤ t ≤ T,

where now the cost turns out to be

cM,V
t (u1, u2) := inf

{∫ N

−N
pV(v̇(r),−Mv̈(r)−DxE(t, v(r))) dr | N ∈ N, v ∈ V M,N

u1,u2

}
,
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where

V M,N
u1,u2

:=

{
v ∈ W 2,∞(−N,N ;X) | v(−N)=u1, v(N)=u2, Mv̇(±N)=0, ess sup

r∈[−N,N ]
∥Mv̈(r)∥∗≤C

}
.

Notice that, differently than in the vanishing-viscosity case, the dissipation cost we consider is
no longer invariant under a time-reparametrization, due to the presence of the second-order term
Mv̈(r) inside the integral. This prevents an easy generalisation of the notion of Parametrized
BV solution, again introduced in [18, 19], to the inertial setting: such a notion is indeed build
starting from a suitable viscous-reparametrization of the time variable. Furthermore, the rate-
dependent nature of the cost forces one to consider minimization problems on an asymptotically
infinite time horizon, and take the infimum over them. We also refer to [1, 30] for a similar
analysis with no rate-independent dissipation, namely considering R = 0, where an analogous
notion of solution was developed. As it happened in [30], we prefer to consider a notion of
solution which does not depend on the chosen representative of u in its Lebesgue class, which is
done by considering left and right limits only in the energy balance.

The proposed notion of solution is indeed a suitable one to extend the results of [18, 19] to
a context where the limiting effect of inertial terms is taken in consideration. We show this in
our main result, Theorem 3.10, which fulfills a twofold goal. First, we show convergence of the
solutions uε of (1.5) to an Inertial Balanced Viscosity solution of (1.1), under a quite general
set of assumptions on the energy E , which includes the one considered in [10]. Secondly, we also
prove that IBV solutions can be obtained via a natural extension of the Minimizing Movements
algorithm (1.4), namely

ukτ,ε ∈ argmin
x∈X

{
ε2

2τ2
∥x− 2uk−1

τ,ε + uk−2
τ,ε ∥2M +

ε

2τ
∥x−uk−1

τ,ε ∥2V +R
(
x−uk−1

τ,ε

)
+ E(tk, x)

}
, (1.6)

by sending both τ and ε to 0. Differently from (1.4), for technical reasons we need to strenghten
the rate of convergence requiring τ/ε2 to be bounded. Furthermore, we have to require E to be
Λ-convex (Assumption (E5) in Section 2). Such a condition, which amounts to require that the
sum of E with a suitably large quadratic perturbation is convex, is quite typical in the analysis of
such approximation schemes (see [4]) and complies with many relevant applications. It actually
allows one to have precise estimates on some rest terms in the energy balance, which arise from
the iterative minimization schemes.

1.1. Plan of the paper. In Section 2 we fix the main notation and list the main assump-
tions of the paper. We also recall some basic properties of functions of bounded R-variation
(Section 2.2). In Section 3 we introduce the notions of Inertial Balanced Viscosity and Inertial
Virtual Viscosity solution. We also define the contact potentials (Section 3.1) and the regular-
ized contact potentials (Section 3.2), while in Section 3.3 we introduce the inertial cost function
which will characterize the description of the jumps. Section 4 contains the first characterization
of the IBV and IVV solutions as the slow-loading limit as ε → 0 of dynamical solutions to (1.5).
Finally, with Section 5, we derive these solutions as the limit of the time-discrete incremental
variational scheme (1.6) as τ and ε go simultaneously to 0.

2. Notation and setting

Let (X, ∥ · ∥) be a finite-dimensional normed vector space. We denote by (X∗, ∥ · ∥∗) the
topological dual of X and by ⟨w, v⟩ the duality product between w ∈ X∗ and v ∈ X. For R > 0,
we denote by BR the open ball in X of radius R centered at the origin, and by BR its closure.
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Given any symmetric positive-semidefinite linear operator Q : X → X∗ we introduce the
induced (Hilbertian) seminorm

|x|Q := ⟨Qx, x⟩
1
2 , (2.1)

and we denote with a capital letter Q ≥ 0 a nonnegative constant satisfying

0 ≤ |x|2Q ≤ Q∥x∥2, for every x ∈ X.

We point out that such a constant Q exists since in finite dimension any linear operator is
necessarily continuous. The least Q that may be chosen here is the operator norm of Q, denoted
by ∥Q∥op.

If Q is positive-definite, the induced seminorm is actually a norm, denoted by ∥ · ∥Q, and, up
to possibly enlarging the constant Q, there holds

1

Q
∥x∥2 ≤ ∥x∥2Q ≤ Q∥x∥2, for every x ∈ X. (2.2)

Furthermore the inverse operator Q−1 : X∗ → X induces in X∗ the norm

∥w∥Q−1 :=
〈
w,Q−1w

〉
,

which is dual to ∥ · ∥Q and thus satisfies

| ⟨w, v⟩ | ≤ ∥v∥Q∥w∥Q−1 , for every w ∈ X∗ and v ∈ X. (2.3)

We briefly recall some basic definitions in convex analysis (see for instance [27]). Given a
proper, convex, lower semicontinuous function f : X → (−∞,+∞], its (convex) subdifferential
∂f : X ⇒ X∗ at a point v ∈ X is defined as

∂f(v) = {w ∈ X∗ | f(z) ≥ f(v) + ⟨w, z − v⟩, for every z ∈ X}.
Notice that if f(v) = +∞, then from the very definition it turns out that ∂f(v) = ∅.
The Fenchel conjugate of f is the convex, lower semicontinuous function

f∗ : X∗ → (−∞,+∞], defined as f∗(w) := sup
v∈X

{⟨w, v⟩ − f(v)},

and for every w ∈ X∗ and v ∈ X it satisfies

f∗(w) + f(v) ≥ ⟨w, v⟩ , with equality if and only if w ∈ ∂f(v). (2.4)

Given a subset A ⊂ X, we denote with χA : X → [0,+∞] its characteristic function , defined as

χA(x) :=

{
0, if x ∈ A,

+∞, if x /∈ A.

2.1. Main assumptions. We list below the main assumptions we will use throughout the pa-
per.

In the dynamic problem (1.5) the inertial term is described by a

symmetric positive-definite linear operator M : X → X∗ , (2.5)

which represents a mass distribution.

The possible presence of viscosity is also considered by introducing the

symmetric positive-semidefinite linear operator V : X → X∗. (2.6)

In particular, in our analysis we also include the case V ≡ 0 (for which |x|V ≡ 0), corresponding
to the absence of viscous friction forces.
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Both the rate-independent (1.1) and the dynamic (1.5) problems are damped by a rate-
independent dissipation potential R : X → [0,+∞), which models for instance dry friction. We
make the following assumption:

(R1) the function R is coercive, convex, and positively homogeneous of degree one.

Assumption (R1) implies subadditivity, namely

R(v1 + v2) ≤ R(v1) +R(v2) , for every v1, v2 ∈ X ,

and the existence of two positive constants α∗ ≥ α∗ > 0 for which

α∗ ∥v∥ ≤ R(v) ≤ α∗ ∥v∥ , for every v ∈ X. (2.7)

This means that R fails to be a norm only for the lack of symmetry.
Furthermore, since R is one-homogeneous, for every v ∈ X its subdifferential ∂R(v) can be

characterized by

∂R(v) = {w ∈ ∂R(0) | ⟨w, v⟩ = R(v)} ⊆ ∂R(0) =: K∗. (2.8)

By (2.7) we notice that there holds

K∗ ⊆ Bα∗ . (2.9)

It is also well-known (see, e.g., [27]) that K∗ coincides with the proper domain of the Fenchel
conjugate R∗ of R, indeed it actually holds R∗ = χK∗ .

We finally consider the driving potential energy E : [0, T ] × X → [0,+∞), which we assume
to possess the following properties:

(E1) E(·, u) is absolutely continuous in [0, T ] for every u ∈ X;
(E2) E(t, ·) is differentiable for every t ∈ [0, T ] and the differential DxE is continuous from

[0, T ]×X to X∗;
(E3) for a.e. t ∈ [0, T ] and for every u ∈ X it holds

|∂tE(t, u)| ≤ a(E(t, u))b(t),
where a : [0,+∞) → [0,+∞) is nondecreasing and continuous, while b ∈ L1(0, T ) is
nonnegative;

(E4) for every R > 0 there exists a nonnegative function cR ∈ L1(0, T ) such that for a.e.
t ∈ [0, T ] and for every u1, u2 ∈ BR it holds

|∂tE(t, u2)− ∂tE(t, u1)| ≤ cR(t)∥u2 − u1∥.
We point out that the prototypical example of potential energy

E(t, u) = U(u)− ⟨ℓ(t), u⟩ , (2.10)

with U ∈ C1(X) superlinear and ℓ ∈ W 1,1(0, T ;X∗), fulfils all the previous assumptions.
As noticed in [10], under these hypotheses one can prove that E is a continuous map, and that

t 7→ E(t, u(t)) is absolutely continuous (resp. of bounded variation) if u is absolutely continuous
(resp. of bounded variation).

Remark 2.1. Thanks to (E4), it is easy to see that DxE(·, u) is absolutely continuous in [0, T ]
for every u ∈ X:

∥DxE(t, u)−DxE(s, u)∥∗ = ⟨DxE(t, u)−DxE(s, u), v⟩

= lim
h→0

E(t, u+hv)− E(t, u)− E(s, u+hv) + E(s, u)
h

≤ lim inf
h→0

1

h

∫ t

s
|∂tE(r, u+hv)− ∂tE(r, u)|dr

≤
∫ t

s
cR(r) dr ,
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where v ∈ X is a suitable unit vector at which the dual norm is attained, and R can be chosen
for instance equal to ∥u∥+1. This last property will be used in Proposition 4.5 in order to apply
a chain-rule formula for functions of bounded variation (see [5]).

Remark 2.2. All the applications presented in [10, Section 7], basically regarding masses con-
nected with springs, are described by adding together elastic quadratic energies of the form

E(t, u) = k

2
(u− ℓ(t))2, (2.11)

with k > 0 and ℓ ∈ W 1,1(0, T ;R). This specific form simply is the second order expansion of
the real elastic potential energy of the springs

E(t, u) = k(1− cos(u− ℓ(t))), (2.12)

which is of course nonconvex. It is however straightforward to check that it satisfies (E1)-(E4)
(and actually also (E3’), (E5) below), and thus it can be included within the framework of this
paper.

In Section 5, where we deal with the discrete approximation of IBV and IVV solutions, in
addition to the previous assumptions, we need to require:

(E3’) the energy E fulfils (E3) with the particular choice a(y) = y + a1, for some a1 ≥ 0;

(E5) E(t, ·) is Λ-convex for every t ∈ [0, T ]; i.e., there exists Λ > 0 such that for every t ∈ [0, T ],
u1, u2 ∈ X, and every θ ∈ (0, 1) it holds

E(t, (1− θ)u1 + θu2) ≤ (1− θ)E(t, u1) + θE(t, u2) +
Λ

2
θ(1− θ)∥u1 − u2∥2I ,

for some symmetric positive-definite linear operator I : X → X∗.

We notice that by (E3’) and Gronwall’s lemma we can infer

E(t, u) + a1 ≤ (E(s, u) + a1)e
∫ t
s b(r) dr , for every 0 ≤ s ≤ t ≤ T,

whence

|∂tE(t, u)| ≤ (E(s, u) + a1)b(t)e
∫ t
s b(r) dr , for every 0 ≤ s ≤ t ≤ T. (2.13)

It is also easy to check that (E5) implies

⟨DxE(t, u1), u2−u1⟩ ≤ E(t, u2)−E(t, u1)+
Λ

2
∥u1−u2∥2I , for every t ∈ [0, T ], u1, u2 ∈ X . (2.14)

Indeed, by using the mean value theorem, for some ζ ∈ [0, 1] we have

θ

[
E(t, u2)− E(t, u1) +

Λ

2
(1− θ)∥u1 − u2∥2I

]
≥ E(t, (1− θ)u1 + θu2)− E(t, u1) = θ⟨DxE(t, u1 + ζθ(u1 − u2)), u2 − u1⟩,

whence (2.14) follows up to simplifying θ in both sides and then letting θ → 0.
We finally point out that an energy E as in (2.10) always complies with (E3’), while it fulfils

(E5) if in addition U is Λ-convex.
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2.2. Functions of bounded R-variation. We recall here a suitable generalization of functions
of bounded variation useful to deal with functions satisfying (R1).

Definition 2.3. Given a function f : [a, b] → X, we define the pointwise R-variation of f in
[s, t], with a ≤ s < t ≤ b, as

VR(f ; s, t) := sup

{
n∑

k=1

R(f(tk)− f(tk−1)) | s = t0 < t1 < · · · < tn−1 < tn = t

}
.

We also set VR(f ; t, t) := 0 for every t ∈ [a, b].
We say that f is a function of bounded R-variation in [a, b], and we write f ∈ BVR([a, b];X),

if its R-variation in [a, b] is finite; i.e., VR(f ; a, b) < +∞.

Notice that, by virtue of (2.7), we have f ∈ BVR([a, b];X) if and only if f ∈ BV ([a, b];X) in
the classical sense. In particular, f ∈ BVR([a, b];X) is regulated, i.e., it admits left and right
limits at every t ∈ [a, b]:

f+(t) := lim
tj↘t

f(tj), and f−(t) := lim
tj↗t

f(tj) ,

with the convention f−(a) := f(a) and f+(b) := f(b). Moreover, its pointwise jump set Jf is at
most countable.

It is well known (see, e.g., [3]) that f can be uniquely decomposed as follows:

f = fL + fCa + fJ (2.15)

with fL being an absolutely continuous function, fCa a continuous Cantor-type function, and
fJ a jump function. If we denote by f ′ the distributional derivative of f ∈ BVR([a, b];X), and
recall that f ′ is a Radon vector measure with finite total variation |f ′|, it follows that f ′ can be
decomposed into the sum of the three mutually singular measures

f ′ = f ′
L + f ′

Ca + f ′
J , f ′

L = ḟL1 , f ′
co := f ′

L + f ′
Ca . (2.16)

In (2.16), f ′
L is the absolutely continuous part with respect to the Lebesgue measure L1, whose

Lebesgue density ḟ is the usual pointwise (L1-a.e. defined) derivative, f ′
J is the jump part

concentrated on the essential jump set of f

Je
f := {t ∈ [a, b] | f+(t) ̸= f−(t)} ⊆ Jf ,

and f ′
Ca is the Cantor part, such that f ′

Ca({t}) = 0 for every t ∈ [0, T ]. The measure f ′
co is the

diffuse part of the measure, and does not charge Jf . The functions fL, fCa, and fJ in (2.15) are
exactly the distributional primitives of the measures f ′

L, f
′
Ca, and f ′

J in (2.16). We will use the
notation fco to denote the continuous part of f , that is fco = fL + fCa.

We also remark that, for a ≤ s ≤ t ≤ b, the function VR(f ; s, t) is monotone in both entries,
hence it makes sense to consider the limits VR(f ; s−, t+). The following formula (see for instance
[19, Section 2]) relates VR(f ; s−, t+) with the distributional derivative of f , up to the jump part
which is depending on the pointwise behavior of f . Setting λ = L1 + |f ′

Ca|, it namely holds

VR(f ; s−, t+) =

∫ t

s
R
(

df ′
co

dλ
(r)

)
dλ(r) +

∑
r∈Jf∩[s,t]

(
R(f+(r)−f(r)) +R(f(r)−f−(r))

)
, (2.17)

where df ′
co

dλ is the Radon-Nikodym derivative. Observe that, by the positive one-homogeneity
of R, actually any measure ν such that f ′

co << ν can replace λ in the integral term at the
right-hand side.
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It follows from (2.17) that the continuous part of theR-variation of f agrees with theR-variation
of fco and satisfies

VR(fco; s, t) =

∫ t

s
R
(

df ′
co

dλ
(r)

)
dλ(r). (2.18)

We finally notice that by dropping the pointwise value of f at jump points (by the subadditivity
of R), and only considering the essential jumps, we are led to the so-called essential R-variation

R(f ′)([s, t]) := VR(fco; s, t) +
∑

r∈Je
f∩[s,t]

R(f+(r)− f−(r)) ≤ VR(f ; s−, t+). (2.19)

The term R(f ′) actually defines a Radon measure (see [11]), which generalizes the concept of
total variation |f ′| (corresponding to the particular choice R(·) = ∥ · ∥).

3. Inertial Balanced Viscosity and Inertial Virtual Viscosity solutions

In this section we rigorously introduce the notions of Inertial Balanced Viscosity and Inertial
Virtual Viscosity solution. We also state our main result, see Theorem 3.10, postponing its proof
to the forthcoming sections.

As in the vanishing-viscosity approach of [19], the starting point consists in an alternative
formulation of the dynamic problem (1.5) based on the so–called De Giorgi’s energy-dissipation
principle (see the pioneering work [9] and other applications in [16, 28]). Roughly speaking,
the idea is to keep together all the dissipative terms appearing in the dynamic model, namely
viscosity and rate-independent dissipation; we are thus led to consider the functional

Rε(v) := R(v) +
ε

2
|v|2V . (3.1)

It is then easy to check (see, e.g., [19, p. 47]) that the subdifferential of Rε is explicitly given by

∂Rε(v) = ∂R(v) + εVv ,

so the dynamic problem (1.5) can be rewritten as

∂Rε(u̇
ε(t)) ∋ −ε2Müε(t)−DxE(t, uε(t)) =: wε(t), for a.e. t ∈ [0, T ] . (3.2)

By using (2.4), and exploiting the classical chain-rule formula for E , one obtains that the dynamic
problem (3.2) is actually equivalent to the augmented energy balance

ε2

2
∥u̇ε(t)∥2M + E(t, uε(t)) +

∫ t

s
Rε(u̇

ε(r)) +R∗
ε(w

ε(r)) dr

=
ε2

2
∥u̇ε(s)∥2M + E(s, uε(s)) +

∫ t

s
∂tE(r, uε(r)) dr, for every 0 ≤ s ≤ t ≤ T.

(3.3)

We point out that in our case of additive viscosity (3.1), the Fenchel conjugate R∗
ε can be

explicitly computed by means of the inf-sup convolution formula (see, e.g., [27, §12]) and turns
out to be

R∗
ε(w) =


1

2ε
inf

z∈K∗

w−z∈(kerV)⊥

〈
w − z,V′(w − z)

〉
, if w ∈ K∗ + (kerV)⊥,

+∞, otherwise,

(3.4)

where

(kerV)⊥ = {w ∈ X∗ | ⟨w, v⟩ = 0 for every v ∈ kerV},
is the annihilator of kerV and V′ : (kerV)⊥ → X is the inverse of the operator V restricted to
(the identification of) (kerV)⊥ (in X).
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In particular, in the two extreme situations V = 0 and V positive-definite we get, respectively:

R∗
ε(w) = R∗(w) = χK∗(w), R∗

ε(w) =
1

2ε
dist2V−1(w,K

∗),

where

distV−1(w,K∗) := inf
z∈K∗

∥w − z∥V−1 ,

denotes the distance from K∗, measured with respect to the norm ∥ · ∥V−1 .

3.1. Contact potentials. The energy balance (3.3) naturally leads to the introduction of a so-
called (viscous) contact potential associated to V. In the spirit of [19] and taking into account
(3.4), we thus define:

Definition 3.1. The (viscous) contact potential related to the viscosity operator V is the map
pV : X ×X∗ → [0,+∞] defined as

pV(v, w) := inf
ε>0

(Rε(v) +R∗
ε(w)) =


R(v) + |v|V inf

z∈K∗

w−z∈(kerV)⊥
|w − z|V′ , if w ∈ K∗ + (kerV)⊥,

+∞, otherwise.

In the two extreme situations V = 0 and V positive-definite we get, respectively:

p0(v, w) = R(v) + χK∗(w), pV(v, w) = R(v) + ∥v∥V distV−1(w,K∗). (3.5)

Therefore, in the positive-definite case we retrieve the vanishing-viscosity contact potential de-
fined in [19].
By the explicit formula we easily infer the following properties for the contact potential pV:

(1) pV(·, w) is positively one-homogeneous and convex, for every w ∈ X∗;
(2) pV(v, ·) is convex, for every v ∈ X;
(3) pV(v, w) ≥ max{R(v), ⟨w, v⟩}, for every v ∈ X and w ∈ X∗;
(4) pV(0, w) = χK∗+(kerV)⊥(w), and pV(v, 0) = R(v).

Furthermore we also observe that:

(5) pV(·, w) is symmetric for every w ∈ X∗ if and only if R is symmetric.

At this stage a warning is mandatory: we point out that our potential pV in general can
take the value +∞, due to the semi-definiteness of the viscosity operator V. This feature does
not appear in [19], where indeed a full viscosity is always present and the contact potential
is continuous and finite. This difference will create serious issues in the forthcoming analysis,
leading to the original notion of Inertial Virtual Viscosity; we are thus led to couple pV with a
“regularized” contact potential p, as follows.

Definition 3.2. We say that a continuous map p : X ×X∗ → [0,+∞) is a regularized contact
potential with respect to pV, and we write p ∈ RCPV, if:

(i) p(·, w) is positively one-homogeneous, for every w ∈ X∗;
(ii) p(v, ·) is convex, for every v ∈ X;
(iii) max{R(v), ⟨w, v⟩} ≤ p(v, w) ≤ pV(v, w), for every v ∈ X and w ∈ X∗;
(iv) there exists a positive constant L > 0 such that

|p(v, w1)− p(v, w2)| ≤ L ∥v∥ ∥w1 − w2∥∗ , for every v ∈ X, and w1, w2 ∈ X∗.

Remark 3.3. In the case V positive-definite, the contact potential pV itself belongs to RCPV.
This easily follows by the explicit form (3.5). Observe that in this case pV takes only finite
values.
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Notice that in the above definition we are not requiring the convexity of p with respect to the
variable v. The convexity in the second variable (ii), instead, will be crucial in Proposition 3.11.

We also point out that the main property of regularized contact potentials, missing in general
for pV, is the weighted Lipschitzianity (iv) with respect to the second variable: this will be
heavily used in Proposition 4.6.
We finally observe that by (iii) and (iv) any p ∈ RCPV satisfies

p(v, w) ≤ |p(v, w)− p(v, 0)|+ p(v, 0) ≤ L ∥v∥ ∥w∥∗ + pV(v, 0) = L ∥v∥ ∥w∥∗ +R(v)

≤ (α∗ + L ∥w∥∗) ∥v∥ , (3.6)

where we exploited (2.7). In particular it holds

p(0, w) = 0, for every w ∈ X∗.

3.2. Parametrized families of regularized contact potentials. With the following result,
we show that a whole family of regularized contact potentials can be constructed by means of a
suitable version of the Yosida transform.

For every λ ≥ 1 and every symmetric positive-definite linear operator U : X → X∗, we define

the function pλ,UV : X ×X∗ → [0,+∞) as

pλ,UV (v, w) := inf
η∈X∗

{pV(v, η) + λ ∥v∥U ∥w − η∥U−1} , v ∈ X , w ∈ X∗ . (3.7)

Proposition 3.4. Let λ ≥ 1 and U be a symmetric positive-definite linear operator. Then

pλ,UV ∈ RCPV. Furthermore, for every v ̸= 0, one has

pV(v, w) = sup
λ≥1

pλ,UV (v, w) = lim
λ→+∞

pλ,UV (v, w). (3.8)

If in addition R is symmetric, then for every w ∈ X∗ the function pλ,UV (·, w) is symmetric as
well.

Proof. We first notice that pλ,UV has nonnegative finite values since pV is not identically +∞
and it is nonnegative. Moreover (3.8) is a standard property of Yosida transform (notice that

λ ∥v∥U > 0 if v ̸= 0). Also, if R is symmetric, symmetry of pλ,UV (·, w) is a straightforward
byproduct of (3.7) since in this case pV(·, w) is symmetric.

Now, we have to confirm the properties (i) − (iv) of Definition 3.2. Property (i) follows by
the one-homogeneity of pV(·, η) and of the norm.

Property (ii) follows since the Yosida transform of a convex function is convex, and pV(v, ·)
is convex.

The right inequality in (iii) is obtained by choosing η = w in the definition of pλ,UV , while the
left-one follows from the fact that pV(v, ·) ≥ R(v) combined with the simple inequality

⟨w, v⟩ = ⟨η, v⟩+ ⟨w − η, v⟩ ≤ pV(v, η) + λ ∥v∥U ∥w − η∥U−1 .

Property (iv) is again a straightforward consequence of the Yosida transform: one can choose

L = λ
√

∥U∥op ∥U−1∥op.

We are only left to prove that pλ,UV is continuous. We first observe that thanks to (iv) it is

enough to prove that pλ,UV (·, w) is continuous for every fixed w ∈ X∗. The continuity in v = 0
follows easily by (3.6); if v ̸= 0 we need more work. We make the following claims:
CLAIM 1) There exists a positive constant C1 > 0 such that

pV(v1, w) ≤ pV(v2, w) + C1(1 + ∥w∥∗) ∥v1 − v2∥ , for every v1, v2 ∈ X, and w ∈ X∗. (3.9)
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CLAIM 2) If v ̸= 0, then there exists a positive constant C2 > 0 such that

pλ,UV (v, w) = inf
η∈X∗

∥η∥∗≤C2ρ(∥v∥,∥w∥∗)

{pV(v, η) + λ ∥v∥U ∥w − η∥U−1} ,

where ρ(∥v∥ , ∥w∥∗) := 1 + ∥w∥∗ + 1/ ∥v∥.
CLAIM 3) There exists a positive constant C3 > 0 such that

|pλ,UV (v1, w)− pλ,UV (v2, w)| ≤ C3max{ρ(∥v1∥ , ∥w∥∗), ρ(∥v2∥ , ∥w∥∗)} ∥v1 − v2∥ ,

for every v1, v2 ∈ X \ {0}, and w ∈ X∗.

From CLAIM 3) we easily deduce the continuity of pλ,UV (·, w) in v ̸= 0, thus we only need to
prove its validity.

We start with CLAIM 1), and we observe that it is enough to prove it for w ∈ K∗+(kerV)⊥.
By exploiting the subaddivity of R together with (2.7) and (2.9) we easily obtain

pV(v1, w) = R(v1) + |v1|V inf
z∈K∗

w−z∈(kerV)⊥
|w − z|V′

≤ R(v2) + α∗ ∥v1 − v2∥+
(
|v2|V +

√
V ∥v1 − v2∥

)
inf

z∈K∗

w−z∈(kerV)⊥
|w − z|V′

≤ R(v2) + |v2|V inf
z∈K∗

w−z∈(kerV)⊥
|w − z|V′ +

(
α∗ +

√
V V ′ ∥w∥∗ +

√
V V ′α∗) ∥v1 − v2∥

= pV(v2, w) +
(
α∗ +

√
V V ′ ∥w∥∗ +

√
V V ′α∗) ∥v1 − v2∥ ,

and CLAIM 1) is proved.

To prove CLAIM 2) it is enough to show that an infimizing sequence {ηj}j∈N for pλ,UV (v, w)
is uniformly bounded by ρ(∥v∥ , ∥w∥∗), up to a multiplicative constant. Being an infimizing
sequence, ηj satisfies

1 + pλ,UV (v, w) ≥ pV(v, ηj) + λ ∥v∥U ∥w − ηj∥U−1 ≥ ∥v∥U ∥w − ηj∥U−1 ,

and thus, by using (3.6), we infer

∥ηj∥∗ ≤ ∥w∥∗ + C ∥w − ηj∥U−1 ≤ ∥w∥∗ + C
1 + pλ,UV (v, w)

∥v∥

≤ ∥w∥∗ + C
1 + (α∗ + L ∥w∥∗) ∥v∥

∥v∥
≤ Cρ(∥v∥ , ∥w∥∗).

We now need to prove CLAIM 3). To this aim we take η ∈ X∗ such that ∥η∥∗ ≤ C2ρ(∥v2∥ , ∥w∥∗)
and we estimate exploiting CLAIM 1):

pλ,UV (v1, w) ≤ pV(v1, η) + λ ∥v1∥U ∥w − η∥U−1

≤ pV(v2, η) + C1(1 + ∥w∥∗) ∥v1−v2∥+ λ ∥v2∥U ∥w−η∥U−1 + λ ∥w−η∥U−1 ∥v1−v2∥U
≤ pV(v2, η) + λ ∥v2∥U ∥w−η∥U−1 + C

(
1 + ∥w∥∗ + ∥η∥∗

)
∥v1 − v2∥

≤ pV(v2, η) + λ ∥v2∥U ∥w−η∥U−1 + Cρ(∥v2∥ , ∥w∥∗) ∥v1 − v2∥

By using CLAIM 2), from the above inequality we deduce

pλ,UV (v1, w) ≤ pλ,UV (v2, w) + Cρ(∥v2∥ , ∥w∥∗) ∥v1 − v2∥ .

By interchanging the role of v1 and v2 we thus complete the proof of CLAIM 3) and we conclude.
□
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We notice that in the case V positive-definite, the contact potential pV coincides with its
Yosida approximation, if we choose U = V:

pλ,VV (v, w) = pV(v, w), for every λ ≥ 1, v ∈ X, and w ∈ X∗. (3.10)

Indeed by means of the explicit formula (3.5), it holds

pV(v, w) ≥ pλ,VV (v, w) ≥ p1,VV (v, w) = inf
η∈X∗

{pV(v, η) + ∥v∥V ∥w − η∥V−1}

= inf
η∈X∗

{R(v) + ∥v∥V (distV−1(η,K∗) + ∥w − η∥V−1)}

= R(v) + ∥v∥V inf
η∈X∗

{distV−1(η,K∗) + ∥w − η∥V−1}

≥ R(v) + ∥v∥V distV−1(w,K∗) = pV(v, w),

where the last inequality is a simple byproduct of the triangle inequality. This fact corroborates
Remark 3.3.

In the opposite situation V = 0 it is not difficult to see that the Yosida transform takes a
more explicit form:

pλ,U0 (v, w) = R(v) + λ ∥v∥U distU−1(w,K∗). (3.11)

Compare this last formula with (3.5), the case of V positive-definite.

3.3. The inertial energy-dissipation cost. Once the notion of contact potential has been
developed, we are in a position to rigorously introduce the cost function which will govern the
jump transient of IBV and IVV solutions. The crucial difference with respect to the vanishing-
viscosity cost of BV solutions [19] is its rate-dependent nature, caused by the term Mv̈ inside
the integral which is reminiscent of the original inertial effects.

Definition 3.5. For every t ∈ [0, T ] and u1, u2 ∈ X, we define the inertial energy-dissipation
cost related to p ∈ RCPV ∪ {pV} as

cM,p
t (u1, u2) := inf

{∫ N

−N
p(v̇(r),−Mv̈(r)−DxE(t, v(r))) dr | N ∈ N, v ∈ V M,N

u1,u2

}
, (3.12)

where

V M,N
u1,u2

:=

{
v ∈ W 2,∞(−N,N ;X) | v(−N)=u1, v(N)=u2, Mv̇(±N)=0, ess sup

r∈[−N,N ]
∥Mv̈(r)∥∗≤C

}
,

denotes the class of the admissible curves and C is the constant of Proposition 4.2 and Corol-
lary 5.4 (depending only on the data of the problem).

We also define the inertial cost directly related to the viscosity operator V by taking the supre-
mum among the costs over all the regularized contact potentials:

cM,V
t (u1, u2) := sup

p∈RCPV

cM,p
t (u1, u2). (3.13)

Remark 3.6. We point out that in the case V positive-definite Remark 3.3 yields

cM,V
t (u1, u2) = cM,pV

t (u1, u2). (3.14)

This is consistent with the vanishing-viscosity analysis performed in [19], in which the cost is
(formally) equivalent to (3.14) by taking M ≡ 0 (see (1.3)).

A relevant feature of the inertial cost is that the value cM,p
t (u1, u2) provides an upper bound for

the energy gap E(t, u1)− E(t, u2) for every p ∈ RCPV, as shown with the following proposition.
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Proposition 3.7. For every t ∈ [0, T ] and u1, u2 ∈ X we have

E(t, u1)− E(t, u2) ≤ inf
p∈RCPV

cM,p
t (u1, u2) .

Proof. Fix p ∈ RCPV and let N ∈ N and v ∈ V M,N
u1,u2 . From the fundamental theorem of calculus

and property (iii) of regularized contact potentials we deduce:

E(t, u1)− E(t, u2) = E(t, v(−N))− E(t, v(N)) +
1

2
∥v̇(−N)∥2M − 1

2
∥v̇(N)∥2M

=

∫ N

−N
⟨−Mv̈(r)−DxE(t, v(r)), v̇(r)⟩dr

≤
∫ N

−N
p(v̇(r),−Mv̈(r)−DxE(t, v(r))) dr,

and the assertion follows by the arbitrariness of v, N and p. □

With the notion of inertial energy-dissipation cost at hand we can give the definition of Inertial
Virtual Viscosity and Inertial Balanced Viscosity solutions.

Definition 3.8. We say that a function u ∈ BVR([0, T ];X) is an Inertial Virtual Viscosity
(IVV) solution to the rate-independent system (1.1), related to M and V, if it complies both with
the local stability condition

−DxE(t, u(t)) ∈ K∗, for every t ∈ [0, T ] \ Ju, (3.15)

and the energy balance

E(t, u+(t))+VR(uco; s, t)+
∑

r∈Je
u∩[s,t]

cM,V
r (u−(r), u+(r)) = E(s, u−(s))+

∫ t

s
∂tE(r, u(r)) dr , (3.16)

for every 0 ≤ s ≤ t ≤ T .
If V is positive-definite, in which case (3.16) is satisfied with cM,pV in place of cM,V (see

(3.14)), we say that u is an Inertial Balanced Viscosity (IBV) solution.

Remark 3.9. By Proposition 3.7 we deduce that for any IVV solution there holds

cM,V
t (u−(t), u+(t)) = sup

p∈RCPV

cM,p
t (u−(t), u+(t)) = inf

p∈RCPV
cM,p
t (u−(t), u+(t)), for every t ∈ [0, T ],

and thus in (3.16) we can actually replace cM,V with cM,p for an arbitrary p ∈ RCPV.
It is however not clear whether we can replace it with the cost related to the contact potential

pV itself (i.e. cM,pV) in the case of a generic V semidefinite, despite Proposition 3.4 shows that
pV can be always approximated (except for v = 0) by suitable regularized contact potentials.

The term “virtual” in the definition of IVV solutions is motivated by the presence of the
Yosida-type potentials (3.7) inside the set of regularized contact potentials RCPV. They are
indeed constructed by means of a symmetric positive-definite linear operator U, which plays the
role of a virtual viscosity, since a priori it is not present in the problem under study (see in
particular (3.11)). The term “balanced” for IBV solutions is instead inherited from [19].

The main result of the paper can now be stated as follows.

Theorem 3.10. Let M,V satisfy (2.5), (2.6) and assume (E1)–(E4), and (R1). Let uε0 → u0,
εuε1 → 0. Then the following two assertions hold true:

(I) for every sequence εj → 0 there exists a subsequence (not relabelled) along which the
sequence of dynamic solutions uεj to (1.5) pointwise converges to an Inertial Virtual
Viscosity solution of the rate-independent system (1.1);
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(II) assume in addition (E3’) and (E5); then for every sequence (τj , εj) → (0, 0) satisfying

sup
j∈N

τj
ε2j

< +∞,

there exists a subsequence (not relabelled) along which the sequence of piecewise affine
interpolants ûτj ,εj , defined in (5.10) and coming from the Minimizing Movements scheme
(5.1), pointwise converges to an Inertial Virtual Viscosity solution of the rate-independent
system (1.1).

In both cases, the limit function is an Inertial Balanced Viscosity solution if V is positive-definite.

The proof of part (I) is carried out in Section 4, while part (II) is proved in Section 5. The
rest of this section is devoted to the main properties of the inertial cost.

Proposition 3.11. Fix t ∈ [0, T ], u1, u2 ∈ X and p ∈ RCPV. Then the inertial energy-
dissipation cost related to p can be computed as follows:

cM,p
t (u1, u2) = lim

N→+∞
min

v∈V M,N
u1,u2

∫ N

−N
p(v̇(r),−Mv̈(r)−DxE(t, v(r))) dr. (3.17)

Proof. For a fixed N ∈ N, let {vj}j∈N ⊆ V M,N
u1,u2 be an infimizing sequence for

inf
v∈V M,N

u1,u2

∫ N

−N
p(v̇(r),−Mv̈(r)−DxE(t, v(r))) dr . (3.18)

By the definition of V M,N
u1,u2 , especially from the bound on the second derivative, we deduce

that, up to a not relabelled subsequence, it holds

vj ⇀ v weakly in W 2,2(−N,N ;X), for some v ∈ V M,N
u1,u2

.

Fo the sake of clarity we introduce the following notation:

wj := −Mv̈j −DxE(t, vj), w := −Mv̈ −DxE(t, v),

and we notice that

wj ⇀ w, weakly in L2(−N,N ;X∗).

By (ii) and (iv) of Definition 3.2, we observe that the map w 7→
∫ N
−N p(v̇(r), w(r)) dr is convex

and strongly continuous in L2(−N,N ;X∗), and thus weakly lower semicontinuous. Hence we
get ∫ N

−N
p(v̇(r), w(r)) dr ≤ lim inf

j→+∞

∫ N

−N
p(v̇(r), wj(r)) dr

≤ lim inf
j→+∞

∫ N

−N
p(v̇j(r), wj(r)) dr + lim sup

j→+∞

∫ N

−N
|p(v̇j(r), wj(r))− p(v̇(r), wj(r))| dr.

Since {vj}j∈N is an infimizing sequence, we conclude that the minimum in (3.18) is attained if
we prove that the last term in the above estimate vanishes. To this aim we first notice that
for almost every r ∈ [−N,N ] the sequence (v̇j(r), wj(r)) is contained in a compact subset K of
X ×X∗; then let ω be a modulus of continuity of p in K. We thus obtain

lim sup
j→+∞

∫ N

−N
|p(v̇j(r), wj(r))− p(v̇(r), wj(r))| dr ≤ lim sup

j→+∞

∫ N

−N
ω(∥v̇j(r)− v̇(r)∥) dr,
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which vanishes since v̇j ⇀ v̇ weakly in W 1,2(−N,N ;X), and thus strongly in C0([−N,N ];X).
To obtain formula (3.17) we simply notice that the map

N 7→ min
v∈V M,N

u1,u2

∫ N

−N
p(v̇(r),−Mv̈(r)−DxE(t, v(r))) dr,

is nonincreasing. Indeed if N ≤ M , any minimizer vN in [−N,N ] can be trivially extended

constant to [−M,M ], thus obtaining a competitor in V M,M
u1,u2 (we recall that p(0, w) = 0 for every

w ∈ X∗). Hence (3.17) follows by the very definition of the inertial energy-dissipation cost
(3.12). □

With the following Proposition, we prove that the cost function cM,p
t is a (possibly asymmetric)

distance. We point out that in the vanishing-viscosity setting of [19] this distance is induced by
a Finsler metric F (u, u̇); in our case, the presence of inertia destroys this additional structure.

Proposition 3.12. For every t ∈ [0, T ], u1, u2, u3 ∈ X and p ∈ RCPV we have:

(1) cM,p
t (u1, u2) = 0 if and only if u1 = u2;

(2) cM,p
t (u1, u2) ≤ cM,p

t (u1, u3) + cM,p
t (u3, u2).

If in addition p(·, w) is symmetric for every w ∈ X∗ (see for instance Proposition 3.4), then the
cost is symmetric, i.e.:

(3) cM,p
t (u1, u2) = cM,p

t (u2, u1).

Proof. We start proving (1). If u1 = u2, then the constant function is an admissible competitor.

Thus, cM,p
t (u1, u2) = 0 since p(0, w) = 0. On the other hand, if u1 ̸= u2, then for every N ∈ N

and v ∈ V M,N
u1,u2 by exploiting (iii) in Definition 3.2, Jensen’s inequality and the one-homogeneity

of R we have∫ N

−N
p(v̇(r),−Mv̈(r)−DxE(t, v(r))) dr ≥

∫ N

−N
R(v̇(r)) dr ≥ R

(∫ N

−N
v̇(r) dr

)
= R(u2 − u1) .

Hence we get

cM,p
t (u1, u2) ≥ R(u2 − u1) > 0,

and (1) is proved.

To show the validity of (2) we fix N1, N2 ∈ N and v1 ∈ V M,N1
u1,u3 , v2 ∈ V M,N2

u3,u2 . It is then easy to
see that the concatenation

v3(s) :=

{
v1(s+N2), if s ∈ [−N1 −N2, N1 −N2],

v2(s−N1), if s ∈ (N1 −N2, N1 +N2],

belongs to V M,N1+N2
u1,u2 , and that there holds∫ N1+N2

−N1−N2

p(v̇3(s),−Mv̈3(s)−DxE(t, v3(s))) ds

=

∫ N1

−N1

p(v̇1(r),−Mv̈1(r)−DxE(t, v1(r))) dr +
∫ N2

−N2

p(v̇2(r),−Mv̈2(r)−DxE(t, v2(r))) dr.

This yields (2).
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To prove (3) we fix N ∈ N and v ∈ V M,N
u2,u1 , and we observe that the backward function

v̌(r) := v(−r) belongs to V M,N
u1,u2 . Then, by exploiting the symmetry of p(·, w), we get

cM,p
t (u1, u2) ≤

∫ N

−N
p( ˙̌v(r),−M¨̌v(r)−DxE(t, v̌(r)))dr =

∫ N

−N
p(−v̇(r),−Mv̈(r)−DxE(t, v(r)))dr

=

∫ N

−N
p(v̇(r),−Mv̈(r)−DxE(t, v(r)))dr.

This implies cM,p
t (u1, u2) ≤ cM,p

t (u2, u1), and by interchanging the role of u1 and u2 we conclude.
□

4. Continuous slow-loading limit

The aim of this section is to show that Inertial Balanced (and Virtual) Viscosity solutions can
be obtained as slow-loading limit (i.e. as ε → 0) of dynamical solutions uε to (1.5). Namely, we
prove part (I) of Theorem 3.10. Hence, here we are assuming (E1)-(E4) and (R1).

4.1. Known results. We first briefly recall the known results proved in [10]. In particular, for
the existence of solutions to (1.5) we refer to [10, Theorem 3.8], where the problem is considered
under more general assumptions.

Theorem 4.1. For every pair of initial data (uε0, u
ε
1) ∈ X × X there exists at least a solution

uε ∈ W 2,∞(0, T ;X) to the differential inclusion (1.5). Moreover, the following energy identity
holds:

ε2

2
∥u̇ε(t)∥2M + E(t, uε(t)) +

∫ t

s
R(u̇ε(r)) dr + ε

∫ t

s
|u̇ε(r)|2V dr

=
ε2

2
∥u̇ε(s)∥2M + E(s, uε(s)) +

∫ t

s
∂tE(r, uε(r)) dr,

(4.1)

for every 0 ≤ s ≤ t ≤ T .

Proposition 4.2. Let uε be a solution to problem (1.5), and assume uε0, εu
ε
1 to be uniformly

bounded. Then there exists a positive constant C > 0 such that for every ε > 0 the following a
priori bounds hold:

(a) max
t∈[0,T ]

∥uε(t)∥ ≤ C;

(b) max
t∈[0,T ]

ε∥u̇ε(t)∥M ≤ C;

(c) ess sup
t∈[0,T ]

ε2∥Müε(t)∥∗ ≤ C;

(d)

∫ T

0
R(u̇ε(r)) dr ≤ C.

Proof. See [10, Corollary 3.4] for (a), (b) and (d). Assertion (c) follows by exploiting the
differential inclusion solved by uε together with (2.9). □

With the a priori bounds of Proposition 4.2 at hand, an argument based on Helly’s Selection
Theorem provides the existence of a convergent subsequence of dynamic solutions uε. That is
the content of the following proposition, whose proof is given in [10, Theorem 6.1] and thus is
here omitted.

Proposition 4.3. Let uε0 and εuε1 be uniformly bounded. Then for every sequence εj → 0 there
exists a subsequence (not relabelled) and a function u ∈ BVR([0;T ];X) such that:

(i) uεj (t) → u(t), for every t ∈ [0, T ];
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(ii) VR(u; s, t) ≤ lim inf
j→+∞

∫ t

s
R(u̇εj (r)) dr, for every 0 ≤ s ≤ t ≤ T ;

(iii) εj∥u̇εj (t)∥M → 0 for every t ∈ (0, T ]\Ju, where Ju is the jump set of u.

In addition, arguing as for [10, Propositions 6.2-6.3], it can be proven that the limit evolution
u above complies with the local stability condition (3.15) and a suitable energy inequality. We
highlight that a function fulfilling such properties is usually called an a.e. local solution to the
rate-independent system (1.1) (see for instance [22, Chapter 3]).

Proposition 4.4. Let uε0 and εuε1 be uniformly bounded, and u be as in Proposition 4.3. Then
the inequality ∫ t

s
R(v) + ⟨DxE(r, u(r)), v⟩dr ≥ 0,

holds for every v ∈ X and for every 0 ≤ s ≤ t ≤ T . In particular, the left and right limits of u
are locally stable; i.e., they fulfill the inequalities

R(v) + ⟨DxE(t, u−(t)), v⟩ ≥ 0 , for every v ∈ X and for every t ∈ (0, T ]; (4.2)

R(v) + ⟨DxE(t, u+(t)), v⟩ ≥ 0 , for every v ∈ X and for every t ∈ [0, T ], (4.3)

or equivalently

−DxE(t, u−(t)) ∈ K∗, for every t ∈ (0, T ];

−DxE(t, u+(t)) ∈ K∗, for every t ∈ [0, T ].

Moreover, the energy inequality

E(t, u+(t)) + VR(u; s−, t+) ≤ E(s, u−(s)) +
∫ t

s
∂tE(r, u(r)) dr, (4.4)

holds for every 0 < s ≤ t ≤ T . If in addition εuε1 → 0, then (4.4) holds true also for s = 0.

It is worth mentioning that, under the additional assumption of (uniform) convexity on the
energy E , in [10] the authors were able to deduce that the limit function u is continuous and
that (4.4) is actually an energy equality. They thus obtained in the limit an Energetic solution
of the rate-independent problem.

4.2. Characterization of the energy loss at jumps. In the nonconvex setting continuity
of the limit function is no more reasonable, hence the gap of the energy in (4.4) has to be
characterized. This first proposition shows that, as expected, the peculiar behaviour of the limit
function u is restricted to its (essential) jump set.

Proposition 4.5. Let uε0 → u0, εu
ε
1 → 0, and u be as in Proposition 4.3. Then there exists a

positive Radon measure µ such that for every 0 ≤ s ≤ t ≤ T there holds

E(t, u+(t)) + VR(uco; s, t) +
∑

r∈Je
u∩[s,t]

µ({r}) = E(s, u−(s)) +
∫ t

s
∂tE(r, u(r)) dr.

In particular, E(t, u−(t))− E(t, u+(t)) = µ({t}) ≥ 0 for every t ∈ Je
u.

Proof. By reasoning as in [30, Theorem 5.4] it is easy to see that the map t 7→ E(t, u+(t)) −∫ t
0 ∂tE(r, u(r)) dr is nonincreasing; it essentially follows from the energy balance (4.1) by dropping
the dissipated energy (i.e. the terms with R(·) and |·|V) and controlling the kinetic energy in
the limit ε → 0 by means of (iii) in Proposition 4.3. This implies the existence of a positive
Radon measure µ for which

E(t, u+(t)) + µ([s, t]) = E(s, u−(s)) +
∫ t

s
∂tE(r, u(r)) dr, for every 0 ≤ s ≤ t ≤ T. (4.5)
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This in particular yields that the distributional derivative of t 7→ E(t, u(t)), denoted by E(·, u(·))′,
fulfils the relation

E(·, u(·))′ = −µ+ ∂tE(·, u(·))L1. (4.6)

On the other hand, by the chain-rule formula in BV (see for instance [5, Theorem 4.1], and
recall Remark 2.1), it holds

E(·, u(·))′ = ∂tE(·, u(·))L1 + ⟨DxE(·, u(·)), u̇(·)⟩ L1

+

〈
DxE(·, u(·)),

du′Ca

dλ
(·)
〉
λ+

[
E(·, u+(·))− E(·, u−(·))

]
H0⌞Je

u,
(4.7)

where λ = L1 + |u′Ca| and we recall u′ = u′co + u′J = u̇L1 + u′Ca + u′J (see (2.16)).
By combining (4.6) and (4.7) we obtain

µ = −
〈
DxE(·, u(·)), u̇(·)

dL1

dλ
(·) +

du′Ca

dλ
(·)
〉
λ−

[
E(·, u+(·))− E(·, u−(·))

]
H0⌞Je

u

= −
〈
DxE(·, u(·)),

du′co
dλ

(·)
〉
λ−

[
E(·, u+(·))− E(·, u−(·))

]
H0⌞Je

u.

Last equality yields

dµco

dλ
(t) = −

〈
DxE(t, u(t)),

du′co
dλ

(t)

〉
, for λ−a.e. t ∈ [0, T ], (4.8)

where we define µco := µ+ [E(·, u+(·))− E(·, u−(·))]H0⌞Je
u.

By choosing v = du′
co

dλ (t) in the local stability condition (4.3), and using (4.8) we deduce that

R
(

du′co
dλ

(t)

)
≥ −

〈
DxE(t, u(t)),

du′co
dλ

(t)

〉
=

dµco

dλ
(t), for λ−a.e. t ∈ [0, T ].

By integrating the above inequality in [s, t] ⊆ [0, T ], recalling (2.18), we finally get

VR(uco; s, t) =

∫ t

s
R
(

du′co
dλ

(r)

)
dλ(r) ≥

∫ t

s

dµco

dλ
(r) dλ(r) = µ([s, t] \ Je

u). (4.9)

To obtain the reverse inequality we combine (4.5) and (4.4), and use (2.17) and (2.19) to get

µ([s, t]) = E(s, u−(s))− E(t, u+(t)) +
∫ t

s
∂tE(r, u(r)) dr ≥ VR(u; s−, t+) ≥ R(u′)([s, t]).

Since both µ and R(u′) are Radon measures, the above inequality implies

µ(B) ≥ R(u′)(B), for every Borel set B ⊆ [0, T ].

In particular we deduce

µ([s, t] \ Je
u) ≥ R(u′)([s, t] \ Je

u) =

∫ t

s
R
(

du′co
dλ

(r)

)
dλ(r) = VR(uco; s, t). (4.10)

By joining (4.9) with (4.10) we finally obtain

µ([s, t]) = µ([s, t] \ Je
u) + µ(Je

u ∩ [s, t]) = VR(uco; s, t) +
∑

r∈Je
u∩[s,t]

µ({r}),

and we conclude. □

Thanks to Proposition 3.7 we already know that the inertial cost cM,p
t (u−(t), u+(t)) is an

upper bound bound for µ({t}) for every p ∈ RCPV. We now prove that it is a lower bound as
well, thus concluding the proof of part (I) of Theorem 3.10.
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Proposition 4.6. Let uε0 → u0, εuε1 → 0, and u be as in Proposition 4.3. Then for every
t ∈ [0, T ] it holds

E(t, u−(t))− E(t, u+(t)) ≥ sup
p∈RCPV

cM,p
t (u−(t), u+(t)) . (4.11)

Proof. Let uεj be the subsequence obtained in Proposition 4.3. We restrict to the case t ∈
Je
u, since for any t ∈ [0, T ]\Je

u inequality (4.11) holds as a trivial equality in view of (1) in
Proposition 3.12. If t = 0 we convene that the function uεj is extended to a left neighborhood
of 0 with an affine function of constant slope u

εj
1 . Reasoning as in [30, Proposition 5.8], by a

diagonal argument we can find sequences t−j ↗ t and t+j ↘ t and a (further) subsequence, still
denoted by εj , such that

uεj (t−j ) → u−(t), uεj (t+j ) → u+(t), (4.12)

εj u̇
εj (t−j ) → 0, εj u̇

εj (t+j ) → 0 , (4.13)

as j → +∞.
By exploiting (3.3) and from the definition of the contact potential pV we thus infer:

E(t, u−(t))− E(t, u+(t))

= lim
j→+∞

[
E(t−j , u

εj (t−j ))−E(t+j , u
εj (t+j )) +

ε2j
2
∥u̇εj (t−j )∥

2
M−

ε2j
2
∥u̇εj (t+j )∥

2
M +

∫ t+j

t−j

∂tE(r, uεj (r)) dr

]

= lim
j→+∞

∫ t+j

t−j

Rεj (u̇
εj (r)) +R∗

εj (w
εj (r)) dr ≥ lim sup

j→+∞

∫ t+j

t−j

pV(u̇
εj (r), wεj (r)) dr .

We now take any p ∈ RCPV, and from (iii) in Definition 3.2 we can continue the previous
inequality, getting

E(t, u−(t))− E(t, u+(t)) ≥ lim sup
j→+∞

∫ t+j

t−j

p(u̇εj (r), wεj (r)) dr

= lim sup
j→+∞

∫ t+j

t−j

p(u̇εj (r),−ε2jMüεj (r)−DxE(r, uεj (r))) dr.
(4.14)

Then, by using the Lipschitzianity of p in the second variable (property (iv) in Definition 3.2),
we notice that∫ t+j

t−j

|p(u̇εj (r),−ε2jMüεj (r)−DxE(r, uεj (r)))− p(u̇εj (r),−ε2jMüεj (r)−DxE(t, uεj (r)))| dr

≤ L

∫ t+j

t−j

∥u̇εj (r)∥ ∥DxE(t, uεj (r))−DxE(r, uεj (r))∥∗ dr .

If we denote by ω a modulus of continuity for DxE on [0, T ] × BC , where C is the constant of
Proposition 4.2, we can bound the last term in the above inequality by

Lω(max{|t+j − t|, |t− t−j |})
∫ t+j

t−j

∥u̇εj (r)∥ dr ,
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which vanishes as j → +∞ thanks to the uniform bound (d) in Proposition 4.2.
This means that we can freeze the time t in DxE of (4.14), getting

E(t, u−(t))− E(t, u+(t)) ≥ lim sup
j→+∞

∫ t+j

t−j

p(u̇εj (r),−ε2jMüεj (r)−DxE(t, uεj (r))) dr . (4.15)

Following [30, Proposition 5.8], we now set

vj(τ) := uεj (εjτ + t−j ), for every τ ∈ [0, σj ] , (4.16)

where we denoted by σj the ratio
t+j −t−j

εj
. Then, through the change of variables r = εjτ + t−j

and recalling the one-homogeneity of p with respect to the first variable we obtain∫ t+j

t−j

p(u̇εj (r),−ε2jMüεj (r)−DxE(t, uεj (r))) dr =

∫ σj

0
p(v̇j(τ),−Mv̈j(τ)−DxE(t, vj(τ))) dτ .

We also notice that (4.12)-(4.13) can be re-read for vj as

∥vj(0)− u−(t)∥ → 0 , ∥vj(σj)− u+(t)∥ → 0 ,

∥v̇j(0)∥ → 0 , ∥v̇j(σj)∥ → 0 ,
(4.17)

as j → +∞.
We now introduce the functions

g(x) = 3x2 − 2x3 , h(x) = −x2(1− x) , x ∈ [0, 1] ,

and the competitor

ṽj(τ) =



u−(t), τ ≤ −1 ,

u−(t) + g(τ + 1)(vj(0)− u−(t)) + h(τ + 1)v̇j(0) , τ ∈ [−1, 0] ,

vj(τ), τ ∈ [0, σj ] ,

vj(σj) + g(1 + σj − τ)(u+(t)− vj(σj))− h(1 + σj − τ)v̇j(σj) , τ ∈ [σj , σj + 1] ,

u+(t), τ ≥ σj + 1 .

For the sake of clarity we denote by αj(τ) and βj(τ) the expressions of ṽj in [−1, 0] and [σj , σj+1],
respectively, and we notice that by (4.17) αj and βj are uniformly bounded and there holds

lim
j→+∞

(
max

τ∈[−1,0]
(∥α̇j(τ)∥+ ∥α̈j(τ)∥) + max

τ∈[σj ,σj+1]

(∥∥∥β̇j(τ)∥∥∥+ ∥∥∥β̈j(τ)∥∥∥)) = 0. (4.18)

Fix now an arbitrary Nj ∈ N with 2Nj − 1 > σj +1, and recalling that p(0, w) = 0 observe that∫ 2Nj−1

−1
p( ˙̃vj(τ),−M¨̃vj(τ)−DxE(t, ṽj(τ))) dτ

=

∫ σj

0
p(v̇j(τ),−Mv̈j(τ)−DxE(t, vj(τ))) dτ

+

∫ 0

−1
p(α̇j(τ),−Mα̈j(τ)−DxE(t, αj(τ))) dτ +

∫ σj+1

σj

p(β̇j(τ),−Mβ̈j(τ)−DxE(t, βj(τ))) dτ .

By means of (3.6) and (4.18) it is easy to see that both terms in the last line above vanish as
j → +∞. This allows us to continue (4.15) getting

E(t, u−(t))− E(t, u+(t)) ≥ lim sup
j→+∞

∫ 2Nj−1

−1
p( ˙̃vj(τ),−M¨̃vj(τ)−DxE(t, ṽj(τ))) dτ . (4.19)
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With the time translation v̂j(s) = ṽj(s + Nj − 1), we finally construct a function belonging to

V
M,Nj

u−(t),u+(t)
(indeed notice that the bound on the second derivative follows from (4.18), (4.16)

and (c) in Proposition 4.2). From (4.19) we thus get

E(t, u−(t))− E(t, u+(t)) ≥ lim sup
j→+∞

∫ 2Nj−1

−1
p( ˙̃vj(τ),−M¨̃vj(τ)−DxE(t, ṽj(τ))) dτ

= lim sup
j→+∞

∫ Nj

−Nj

p( ˙̂vj(s),−M¨̂vj(s)−DxE(t, v̂j(s))) ds

≥ cM,p
t (u−(t), u+(t)) ,

and by the arbitrariness of p ∈ RCPV we conclude.
□

5. Incremental minimization scheme

This last section is devoted to the proof of part (II) of Theorem 3.10: we namely show that
IBV and IVV solutions can be also obtained as a limit of time-discrete solutions when ε and the
time step τ vanish simultaneously (with a certain rate). For this, in addition to the assumptions
of previous section, we need to require (E3’) and (E5).

Let T > 0 and τ ∈ (0, 1) be a fixed time step such that T
τ ∈ N. We consider the corre-

sponding induced partition Πτ := {tk}k of the time-interval [0, T ], defined by tk := kτ where
k = 0, 1, . . . , T/τ . For future use we also define t−1 := −τ and we set Kτ := {1, . . . , T/τ} and
K0

τ := Kτ ∪ {0}.
We construct a recursive sequence {ukτ,ε}k∈Kτ by solving the following iterated minimum

problem à la Minimizing Movements:

ukτ,ε ∈ argmin
x∈X

Fτ,ε(t
k, x, uk−1

τ,ε , uk−2
τ,ε ), k ∈ Kτ , (5.1a)

with initial conditions

u0τ,ε := uε0 , u−1
τ,ε := uε0 − τuε1 , (5.1b)

where

Fτ,ε(t
k, x, uk−1

τ,ε , uk−2
τ,ε ) :=

ε2

2τ2
∥x− 2uk−1

τ,ε + uk−2
τ,ε ∥2M +

ε

2τ
|x− uk−1

τ,ε |2V +R
(
x− uk−1

τ,ε

)
+ E(tk, x)

+
ΛV
4
∥x− uk−1

τ,ε ∥2I ,

and

ΛV :=

{
0, if V is positive-definite,

Λ, otherwise.
(5.2)

with Λ and I from (E5).
The addition in the functional Fτ,ε of the last fictitious viscous term, which by definition

(5.2) of ΛV is present only if V is not positive-definite, is needed to deal with the Λ-convexity
assumption (E5). If V is positive-definite and the ratio ε

τ is the large enough (see (5.5)), the
second term will be enough to keep Λ-convexity under control.

We observe that the existence of a minimum in (5.1a) easily follows from the direct method.

Furthermore, if ε2

τ2
is large enough (this is the case under the assumption (5.23) needed to

conclude the whole argument), the minimum is unique by strict convexity of the functional.
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By defining vkτ,ε :=
uk
τ,ε−uk−1

τ,ε

τ , we notice that the Euler Lagrange equation solved by ukτ,ε reads
as

ε2M
vkτ,ε − vk−1

τ,ε

τ
+ εVvkτ,ε + ∂R(vkτ,ε) +DxE(tk, ukτ,ε) +

ΛV
2
τIvkτ,ε ∋ 0. (5.3)

We also observe that by (5.1b) one has v0τ,ε = uε1. Thus, in the limit as τ → 0 with ε fixed, we
formally (but this could be actually made rigorous, see for instance [28]) recover the dynamic
problem (1.5).

In order to enlighten the notation, from now on we will drop the dependence on τ, ε in ukτ,ε
and vkτ,ε, and we will simply write uk, vk.

As in the continuous counterpart developed in Section 4, the first step in the analysis consists
in finding uniform a priori estimates, which usually follows by combining an energy inequality
together with Grönwall’s Lemma. In the discrete setting, we employ the following version of the
discrete Grönwall’s inequality, whose proof can be found for instance in [13, Appendix A].

We want to stress that here and hencefort we adopt the convention that an empty sum is
equal to 0.

Lemma 5.1 (Grönwall). Let {γn}n∈N, {fn}n∈N be two nonnegative sequences, and let c ≥ 0.
If

γn ≤ c+

n−1∑
k=1

fkγk, for every n ∈ N,

then one has

γn ≤ c exp

(
n−1∑
k=1

fk

)
, for every n ∈ N.

Proposition 5.2. For every m,n ∈ K0
τ with m ≤ n the following discrete energy inequality

holds true:

ε2

2
∥vn∥2M + E(tn, un) +

n∑
k=m+1

τR(vk) +
n∑

k=m+1

τ

(
ε|vk|2V − Λ− ΛV

2
τ∥vk∥2I

)

≤ ε2

2
∥vm∥2M + E(tm, um) +

n∑
k=m+1

∫ tk

tk−1

∂tE(r, uk−1) dr .

(5.4)

Furthermore, if uε0 and εuε1 are uniformly bounded and

τ

ε
≤ 2

ΛV I
, if V is positive-definite, (5.5)

then there exists C > 0, independent of ε and τ , such that

ε2

2
∥vn∥2M + E(tn, un) +

n∑
k=1

τR(vk) ≤ C, (5.6)

for every n ∈ K0
τ .

Proof. Testing (5.3) by τvk, from (2.8), (2.14) and from the fact that

∥x∥2M
2

−
∥y∥2M
2

=
∥x− y∥2M

2
− ⟨M(y − x), y⟩ ≥ − ⟨M(y − x), y⟩ ,
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we deduce

τR(vk) =−
〈
ε2M

vk − vk−1

τ
+ εVvk +DxE(tk, uk) +

ΛV
2
Iτvk, τvk

〉
=− ετ |vk|2V − ε2

〈
M(vk − vk−1), vk

〉
+
〈
DxE(tk, uk), uk−1 − uk

〉
− ΛV

2
∥uk − uk−1∥2I

≤− ετ |vk|2V +
ε2

2
∥vk−1∥2M − ε2

2
∥vk∥2M − E(tk, uk) + E(tk, uk−1) +

Λ− ΛV
2

τ2∥vk∥2I .

Subtracting E(tk−1, uk−1) from both sides, rearranging the terms and summing upon k =
m, . . . , n, we obtain (5.4).
We now come to the proof of (5.6). We first notice that, defining

γn :=
ε2

2
∥vn∥2M + E(tn, un) +

n∑
k=1

τR(vk) + a1, if n ∈ Kτ ,

γ0 :=
ε2

2
∥uε1∥

2
M + E(0, uε0) + a1,

where a1 is the constant appearing in (E3’), from (5.5) it holds

γn ≤ γ0 +

n∑
k=1

∫ tk

tk−1

∂tE(r, uk−1) dr, for every n ∈ Kτ . (5.7)

We indeed observe that the term ε|vk|2V − Λ−ΛV
2 τ∥vk∥2I in (5.4) is nonnegative: if V is not

positive-definite, it reduces to ετ |vk|2V; otherwise we exploit (5.5):

ε∥vk∥2V − Λ

2
τ∥vk∥2I ≥

(
ε

V
− Λ

2
Iτ

)
∥vk∥2 ≥ 0.

Thanks to (2.13) we now have∫ tk

tk−1

∂tE(r, uk−1) dr ≤ (E(tk−1, uk−1) + a1)

∫ tk

tk−1

b(r)e
∫ r
tk−1 b(s) ds dr ≤

(
e
∫ tk

tk−1 b(r) dr − 1

)
γk−1,

and thus from (5.7) we infer

γn ≤ γ0e
∫ τ
0 b(r) dr +

n−1∑
k=1

(
e
∫ tk+1

tk
b(r) dr − 1

)
γk, for every n ∈ Kτ .

Hence, by means of Lemma 5.1 we get

γn ≤ γ0e
∫ τ
0 b(r) drexp

(
n−1∑
k=1

(
e
∫ tk+1

tk
b(r) dr − 1

))
, for every n ∈ Kτ . (5.8)

By defining B :=
∫ T
0 b(r) dr and recalling the elementary inequality

ex − 1 ≤ eB − 1

B
x, for every x ∈ [0, B],

from (5.8) we finally obtain

γn ≤ γ0ee
B−1, for every n ∈ Kτ .

Since γ0 is uniformly bounded by assumption we conclude.
□

Corollary 5.3. Assume uε0 and εuε1 are uniformly bounded and (5.5). Then, the following
uniform bounds hold for every n ∈ Kτ :
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(j) ∥un∥ ≤ C;
(jj) ε∥vn∥M ≤ C;

(jjj) ε2
∥∥∥∥Mvn − vn−1

τ

∥∥∥∥
∗
≤ C;

(jjjj)
n∑

k=1

τR(vk) ≤ C.

Proof. The bounds (jj), (jjjj) can be easily inferred from (5.6). We then prove (j). Let n ∈ Kτ

be fixed; then, with (jjjj), (2.7) and the triangle inequality we have

∥un∥ ≤ ∥uε0∥+
n∑

k=1

∥uk − uk−1∥ = ∥uε0∥+
n∑

k=1

τ∥vk∥ ≤ C .

For what concerns (jjj), it can be obtained from the Euler-Lagrange equation (5.3) taking into
account (2.9), (E2) and (jj).

□

5.1. The main interpolants. Once the discrete bounds are obtained, in order to retrieve the
continuous framework we need to introduce suitable interpolants of the discrete-in-time sequence
{uk}k∈K0

τ
. First, we denote by uτ,ε (resp., uτ,ε) the left-continuous (resp., right-continuous)

piecewise constant interpolant of {uk}k∈K0
τ
, defined by

uτ,ε(t) := uk, for t ∈ (tk−1, tk], uτ,ε(t) := uk−1 for t ∈ [tk−1, tk), k ∈ K0
τ , (5.9)

respectively. We denote by ûτ,ε the piecewise affine interpolant of {uk}k∈K0
τ
, defined as

ûτ,ε(t) :=
uk − uk−1

τ
(t−tk−1)+uk−1 = vk(t−tk−1)+uk−1, for t ∈ (tk−1, tk], k ∈ K0

τ . (5.10)

Since in the definition of inertial cost (3.12) a second derivative is present, we also need to keep

track of its discrete counterpart vk−vk−1

τ . This is done by finally introducing the function ũτ,ε
such that ũτ,ε(0) = u0ε and whose first derivative is the piecewise affine interpolant of {vk}k∈K0

τ
;

namely,

ũτ,ε(t) := u0ε +

∫ t

0

˙̃uτ,ε(r) dr, for t ∈ [0, T ], (5.11a)

with

˙̃uτ,ε(t) :=
vk − vk−1

τ
(t− tk−1) + vk−1, for t ∈ (tk−1, tk], k ∈ Kτ . (5.11b)

Notice indeed that ũτ,ε is in W 2,∞(0, T ;X) with

¨̃uτ,ε(t) =
vk − vk−1

τ
, for t ∈ (tk−1, tk), k ∈ Kτ .

Thus, thanks to (jjj) of Corollary 5.3, the function ũτ,ε is the correct “discrete” counterpart of
the continuous dynamic solution uε to (1.5).

For any t ∈ (−τ, T ], we also denote by tτ the least point of partition Πτ which is greater or
equal to t; i.e., it is defined as

tτ := min{r ∈ Πτ : r ≥ t}. (5.12)

Note that tτ ↘ t as τ → 0 (for t ∈ [0, T ]).
We finally define a piecewise constant interpolant of the values E(·, u), setting for every u ∈ X

Eτ (t, u) := E(tk, u), if t ∈ (tk−1, tk], k ∈ K0
τ .
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From assumptions (E1) and (E2) we deduce that, in the limit as τ → 0,

Eτ (t, u) → E(t, u) and DxEτ (t, u) → DxE(t, u) , (5.13)

uniformly with respect to (t, u) ∈ [0, T ]×BR.
In terms of interpolants, the energy inequality (5.4) can be rewritten as

ε2

2
∥ ˙̂uτ,ε(t)∥2M + Eτ (t, uτ,ε(t)) +

∫ tτ

sτ

R( ˙̂uτ,ε(r)) dr +

∫ tτ

sτ

(
ε| ˙̂uτ,ε(r)|2V − Λ− ΛV

2
τ∥ ˙̂uτ,ε(r)∥2I

)
dr

≤ ε2

2
∥ ˙̂uτ,ε(s)∥2M + Eτ (s, uτ,ε(s)) +

∫ tτ

sτ

∂tE(r, uτ,ε(r)) dr,

for every s, t ∈ (−τ, T ]\Πτ with s ≤ t. Furthermore, Proposition 5.2 and the subsequent
Corollary 5.3 can be re-read as follows.

Corollary 5.4. Assume that uε0 and εuε1 are uniformly bounded and (5.5). Then, there exists
C > 0, independent of τ and ε, such that

ε2

2
∥ ˙̂uτ,ε(t)∥2M + Eτ (t, uτ,ε(t)) +

∫ tτ

0
R( ˙̂uτ,ε(r)) dr ≤ C,

for every t ∈ (−τ, T ]\Πτ .
Moreover, up to enlarging the constant C appearing in Proposition 4.2, there holds

(a) max
t∈[0,T ]

∥uτ,ε(t)∥ ≤ C;

(b) max
t∈[0,T ]\Πτ

ε∥ ˙̂uτ,ε(t)∥M ≤ C;

(c) max
t∈[0,T ]\Πτ

ε2∥M¨̃uτ,ε(t)∥∗ ≤ C;

(d)

∫ T

0
R( ˙̂uτ,ε(r)) dr ≤ C.

The next proposition shows that the mismatch between the many interpolants defined above
can be bounded by suitable ratios of the parameters τ and ε.

Proposition 5.5. Assume that uε0 and εuε1 are uniformly bounded and (5.5). Then we have

max
t∈[0,T ]

{
∥uτ,ε(t)− uτ,ε(t)∥+ ∥uτ,ε(t)− ûτ,ε(t)∥+ ∥ũτ,ε(t)− ûτ,ε(t)∥

}
≤ C

τ

ε
. (5.14)

Moreover, it holds

max
t∈[0,T ]\Πτ

∥ ˙̃uτ,ε(t)− ˙̂uτ,ε(t)∥ ≤ C
τ

ε2
. (5.15)

Proof. We first notice that, by virtue of (jj) in Corollary 5.3 and since εuε1 is uniformly bounded,
one has

max
k∈K0

τ

∥uk − uk−1∥ ≤ C
τ

ε
. (5.16)

Thus, let t ∈ (tk−1, tk] for some k ∈ K0
τ . Then there holds

∥uτ,ε(t)− uτ,ε(t)∥ ≤ ∥uk − uk−1∥,

∥uτ,ε(t)− ûτ,ε(t)∥ = ∥uk − uk−1∥τ − (t− tk−1)

τ
≤ ∥uk − uk−1∥ .

In order to deal with the last term in (5.14) we observe that

˙̃uτ,ε(t)− ˙̂uτ,ε(t) =
vk − vk−1

τ

(
t− tk−1 − τ

)
, for t ∈ (tk−1, tk), k ∈ Kτ , (5.17)
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and thus

ũτ,ε(t)− ûτ,ε(t) =

∫ t

0
( ˙̃uτ,ε(r)− ˙̂uτ,ε(r)) dr

=
vk − vk−1

τ

∫ t

tk−1

(
r − tk−1 − τ

)
dr +

k−1∑
i=1

vi − vi−1

τ

∫ ti

ti−1

(
r − ti−1 − τ

)
dr

=
vk − vk−1

2τ
(t− tk−1)

(
t− tk−1 − 2τ

)
− τ

k−1∑
i=1

vi − vi−1

2

=
vk − vk−1

2τ
(t− tk−1)

(
t− tk−1 − 2τ

)
+

τuε1
2

− τvk−1

2

=
vk

2

(
t− tk−1

τ

)(
t− tk−1 − 2τ

)
− vk−1

2

(t− tk−1 − τ)2

τ
+

τuε1
2

.

Since t− tk−1 ∈ (0, τ), we now get

2 ∥ũτ,ε(t)− ûτ,ε(t)∥ ≤ τ

ε
∥εuε1∥+ τ∥vk∥+ τ∥vk−1∥ =

τ

ε
∥εuε1∥+ ∥uk − uk−1∥+ ∥uk−1 − uk−2∥,

and assertion (5.14) follows from (5.16).
From (5.17), the bound (5.15) easily follows by means of (jjj) of Corollary 5.3.

□

We are now in a position to prove the analogous of Propositions 4.3, 4.4 and 4.5 for the
sequence of piecewise affine interpolants ûτ,ε.

Proposition 5.6. Let uε0 and εuε1 be uniformly bounded and assume (5.5). Then for ev-
ery sequence (τj , εj) → (0, 0) there exists a subsequence (not relabelled) and a function u ∈
BVR([0, T ];X) such that

(i) ûτj ,εj (t) → u(t), for every t ∈ [0, T ];

(ii) VR(u; s, t) ≤ lim inf
j→+∞

∫ t

s
R( ˙̂uτj ,εj (r)) dr, for every 0 ≤ s ≤ t ≤ T ;

(iii) εj∥ ˙̂uτj ,εj (t)∥M → 0, for a.e. t ∈ [0, T ].

If in addition
τj
εj

→ 0, then it also holds

(ii’) VR(u; s, t) ≤ lim inf
j→+∞

∫ tτj

sτj

R( ˙̂uτj ,εj (r)) dr, for every 0 ≤ s ≤ t ≤ T ;

(iii’) εj∥ ˙̂uτj ,εj (t)∥M → 0, for every t ∈ (0, T ]\(Ju ∪N), where N =
⋃
j∈N

Πτj .

Proof. We can argue as in [10, Theorem 6.1]. In view of the a priori bounds of Corollary 5.4 and
(2.7), the sequence {ûτj ,εj}j∈N is uniformly equibounded with uniformly equibounded variation.
Then, by virtue of the Helly’s Selection Theorem there exists a subsequence and a function
u ∈ BV ([0, T ];X) complying with (i). Furthermore, with [10, Proposition 4.11 and Lemma 4.12],
we get u ∈ BVR([0, T ];X) and assertion (ii).
By virtue of Corollary 5.4 and (2.7), we also have

lim
j→+∞

εj

∫ T

0
∥ ˙̂uτj ,εj (r)∥ dr = 0 ,
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whence (iii) follows, up to possibly passing to a further subsequence.
To obtain (ii’) it is enough to observe that∫ t

s
R( ˙̂uτj ,εj (r)) dr =

∫ tτj

sτj

R( ˙̂uτj ,εj (r)) dr +

∫ sτj

s
R( ˙̂uτj ,εj (r)) dr −

∫ tτj

t
R( ˙̂uτj ,εj (r)) dr,

and to notice that the last two terms vanish as j → +∞ since∫ sτj

s
R( ˙̂uτj ,εj (r)) dr ≤ C

∫ sτj

s
∥ ˙̂uτj ,εj (r)∥M dr ≤ C

sτj − s

εj
≤ C

τj
εj
,

and the same holds for the other one.
The proof of (iii’) follows exactly as in [10, Theorem 6.1], by using (5.22) and recalling that

thanks to (5.14) we also have uτj ,εj (t) → u(t) for every t ∈ [0, T ].
□

Proposition 5.7. Let uε0 and εuε1 be uniformly bounded, and let u be the limit function obtained
in Proposition 5.6 from a subsequence satisfying

lim
j→+∞

εj = lim
j→+∞

τj
εj

= 0.

Then the inequality ∫ t

s
R(v) + ⟨DxE(r, u(r)), v⟩dr ≥ 0, (5.18)

holds for every v ∈ X and for every 0 ≤ s ≤ t ≤ T . In particular, the left and right limits of u
are locally stable; i.e., they fulfill the inclusions

−DxE(t, u−(t)) ∈ K∗ , for every t ∈ (0, T ] ;

−DxE(t, u+(t)) ∈ K∗, for every t ∈ [0, T ] .

Moreover, if in addition εuε1 → 0, there exists a positive Radon measure µ such that for every
0 ≤ s ≤ t ≤ T there holds

E(t, u+(t)) + VR(uco; s, t) +
∑

r∈Je
u∩[s,t]

µ({r}) = E(s, u−(s)) +
∫ t

s
∂tE(r, u(r)) dr.

In particular, E(t, u−(t))− E(t, u+(t)) = µ({t}) ≥ 0 for every t ∈ Je
u.

Proof. We only prove (5.18), the remaining assertions being as in [10, Propositions 6.2-6.3] and
in Proposition 4.5, exploiting (ii’) and (iii’) of Proposition 5.6. From (5.3) and (2.8), for every
v ∈ X and k ∈ Kτj we have

0 ≤ R(v) +

〈
ε2jM

vk − vk−1

τj
+ εjVvk +DxE(tk, uk) +

ΛV
2
τjIvk, v

〉
.

By multiplying both sides by τj and summing on k, for every m,n ∈ K0
τj with m ≤ n we now

obtain

0 ≤ ε2j ⟨M(vn − vm), v⟩+
n∑

k=m+1

τj

(
R(v) + ⟨DxE(tk, uk), v⟩+ εj⟨Vvk, v⟩+

ΛV
2
τj⟨Ivk, v⟩

)
,
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namely for every 0 ≤ s ≤ t ≤ T it holds

0 ≤ ε2j

〈
M( ˙̃uτj ,εj (tτj )− ˙̃uτj ,εj (sτj )), v

〉
+

∫ tτj

sτj

R(v) +
〈
DxEτj (r, uτj ,εj (r)), v

〉
dr

+ εj

∫ tτj

sτj

〈
V ˙̂uτj ,εj (r), v

〉
dr +

ΛV
2
τj

∫ tτj

sτj

〈
I ˙̂uτj ,εj (r), v

〉
dr.

Passing to the limit as j → +∞, by (ii) in Corollary 5.3 we have that

lim
j→+∞

ε2j

∣∣∣〈M ˙̃uτj ,εj (tτj ), v
〉∣∣∣ = lim

j→+∞
ε2j

∣∣∣〈M ˙̃uτj ,εj (sτj ), v
〉∣∣∣ = 0.

From Corollary 5.4, (2.7) and the Cauchy-Schwarz inequality we also have∣∣∣∣∣εj
∫ tτj

sτj

〈
V ˙̂uτj ,εj (r), v

〉
dr

∣∣∣∣∣ ≤ C∥v∥εj
∫ T

0
∥ ˙̂uτj ,εj (r)∥dr → 0 ,

and a similar argument shows that the last term in the inequality above vanishes as well as
j → +∞.

We conclude observing that (5.13) and (5.14) allow us to use Dominated Convergence Theorem
getting

lim
j→+∞

∫ tτj

sτj

R(v) +
〈
DxEτj (r, uτj ,εj (r)), v

〉
dr =

∫ t

s
R(v) + ⟨DxE(r, u(r)), v⟩ dr.

□

5.2. The convergence result. As already done in the time-continuous setting in (3.3), we now
rephrase the energy inequality (5.4) in terms of the De Giorgi’s principle. For simplicity, we set:

wk := −ε2M
vk − vk−1

τ
−DxE(tk, uk)−

ΛV
2
τIvk , k ∈ Kτ , (5.19)

and, recalling the definitions of interpolants uτ,ε (5.9) and ũτ,ε (5.11), for t ∈ [0, T ]\Πτ we define

wτ,ε(t) := −ε2M¨̃uτ,ε(t)−DxEτ (t, uτ,ε(t))−
ΛV
2
τI ˙̂uτ,ε(t) ,

w̃τ,ε(t) := −ε2M¨̃uτ,ε(t)−DxE(t, ũτ,ε(t)) .

Then, by virtue of Corollary 5.4 and Proposition 5.5, if
τ

ε
is bounded we deduce

max
t∈[0,T ]\Πτ

(∥wτ,ε(t)∥∗ + ∥w̃τ,ε(t)∥∗) ≤ C . (5.20)

Furthermore, thanks to the continuity of DxE , if
τ

ε
→ 0 we also have

lim
(ε,τ)→(0,0)

max
t∈[0,T ]\Πτ

∥wτ,ε(t)− w̃τ,ε(t)∥∗ = 0. (5.21)

From (5.3) and recalling that using (2.4) it holds

Rε(v
k) +R∗

ε(w
k) = ⟨wk, vk⟩ ,

inequality (5.4) can be rewritten, arguing in a similar way, as
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ε2

2
∥vn∥2M + E(tn, un) +

n∑
k=m+1

τ
(
Rε(v

k) +R∗
ε(w

k)
)

≤ ε2

2
∥vm∥2M + E(tm, um) +

n∑
k=m+1

∫ tk

tk−1

∂tE(r, uk−1) dr +
Λ− ΛV

2
τ2

n∑
k=m+1

τ∥vk∥2I ,

and thus, in terms of interpolants, as

ε2

2
∥ ˙̂uτ,ε(t)∥2M + Eτ (t, uτ,ε(t)) +

∫ tτ

sτ

Rε( ˙̂uτ,ε(r)) +R∗
ε(wτ,ε(r)) dr

≤ ε2

2
∥ ˙̂uτ,ε(s)∥2M + Eτ (s, uτ,ε(s)) +

∫ tτ

sτ

∂tE(r, uτ,ε(r)) dr +
Λ− ΛV

2
τ2
∫ tτ

sτ

∥ ˙̂uτ,ε(r)∥2I dr,
(5.22)

for every s, t ∈ (−τ, T ]\Πτ with s ≤ t.
To conclude the proof of part (II) of Theorem 3.10, we only have to confirm the validity of an

analogous of Proposition 4.6 for the function u obtained with Proposition 5.6. For this, we will
need to reinforce the assumption τ

ε → 0 by requiring, in addition, that τ
ε2

is uniformly bounded
(see (5.23) below), in order to exploit (5.15).

Proposition 5.8. Let uε0 → u0, εu
ε
1 → 0, and let u be the limit function obtained in Proposi-

tion 5.6 from a subsequence satisfying

lim
j→+∞

εj = 0, and sup
j∈N

τj
ε2j

< +∞. (5.23)

Then for every t ∈ [0, T ] it holds

E(t, u−(t))− E(t, u+(t)) ≥ sup
p∈RCPV

cM,p
t (u−(t), u+(t)) . (5.24)

Proof. As already remarked in the proof of Proposition 4.6, it will suffice to prove (5.24) in the
case t ∈ Je

u. By arguing as in [31, Proposition 5.9], taking into account Proposition 5.6, by a
diagonal argument we may assume that there are two sequences t−j ↗ t and t+j ↘ t such that

lim
j→+∞

∥ûτj ,εj (t−j )− u−(t)∥+ ∥ûτj ,εj (t+j )− u+(t)∥ = 0 ,

and

lim
j→+∞

εj ˙̂uτj ,εj (t
−
j ) = lim

j→+∞
εj ˙̂uτj ,εj (t

+
j ) = 0 . (5.25)

By exploiting (5.23), Proposition 5.5 yields as a byproduct

lim
j→+∞

∥uτj ,εj (t−j )− u−(t)∥+ ∥uτj ,εj (t+j )− u+(t)∥ = 0 ,

lim
j→+∞

∥ũτj ,εj (t−j )− u−(t)∥+ ∥ũτj ,εj (t+j )− u+(t)∥ = 0 ,
(5.26)

and

lim
j→+∞

εj ˙̃uτj ,εj (t
−
j ) = lim

j→+∞
εj ˙̃uτj ,εj (t

+
j ) = 0 . (5.27)

The continuity of E together with (5.13) and (5.26) now implies that

lim
j→+∞

Eτj (t−j , uτj ,εj (t
−
j ))− Eτj (t+j , uτj ,εj (t

+
j )) = E(t, u−(t))− E(t, u+(t)). (5.28)
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For a lighter exposition, with a little abuse of notation we denote by t−j and t+j the least points

of partition Πτj which are greater or equal to t−j and t+j , respectively (see (5.12)). By exploiting

(5.22), (5.25), (5.28), and from the definition of the contact potential pV we thus infer:

E(t, u−(t))− E(t, u+(t))

= lim
j→+∞

[
ε2j
2

∥∥∥ ˙̂uτj ,εj (t−j )∥∥∥2M + Eτj (t−j , uτj ,εj (t
−
j )) +

∫ t+j

t−j

∂tE(r, uτj ,εj (r)) dr

+
Λ− ΛV

2
τ2
∫ t+j

t−j

∥ ˙̂uτj ,εj (r)∥2I dr −
ε2j
2

∥∥∥ ˙̂uτj ,εj (t+j )∥∥∥2M − Eτj (t+j , uτj ,εj (t
+
j ))

]

≥ lim sup
j→+∞

∫ t+j

t−j

Rεj (
˙̂uτj ,εj (r)) +R∗

εj (wτj ,εj (r)) dr ≥ lim sup
j→+∞

∫ t+j

t−j

pV( ˙̂uτj ,εj (r), wτj ,εj (r)) dr .

Taking into account (3.9), we can continue the above inequality getting

E(t, u−(t))− E(t, u+(t))

≥ lim sup
j→+∞

[∫ t+j

t−j

pV( ˙̃uτj ,εj (r), wτj ,εj (r)) dr − C

∫ t+j

t−j

(1 + ∥wτj ,εj (r))∥∗)∥ ˙̃uτj ,εj (r)− ˙̂uτj ,εj (r)∥ dr

]
.

Thanks to (5.20), (5.15) and the assumption (5.23) we easily obtain∫ t+j

t−j

(1 + ∥wτj ,εj (r))∥∗)∥ ˙̃uτj ,εj (r)− ˙̂uτj ,εj (r)∥ dr ≤ C
τj
ε2j

(t+j − t−j ) ≤ C(t+j − t−j ) → 0, (5.29)

and thus, also taking any p ∈ RCPV, we get

E(t, u−(t))− E(t, u+(t))

≥ lim sup
j→+∞

∫ t+j

t−j

pV( ˙̃uτj ,εj (r), wτj ,εj (r)) dr ≥ lim sup
j→+∞

∫ t+j

t−j

p( ˙̃uτj ,εj (r), wτj ,εj (r)) dr.

By exploiting property (iv) of Definition 3.2 and using (5.21) and (d) in Corollary 5.4 we deduce∫ t+j

t−j

|p( ˙̃uτj ,εj (r), wτj ,εj (r))− p( ˙̃uτj ,εj (r), w̃τj ,εj (r))| dr

≤ L max
r∈[0,T ]\Πτ

∥wτj ,εj (r)− w̃τj ,εj (r)∥∗
∫ t+j

t−j

∥ ˙̃uτj ,εj (r)∥dr

≤ L max
r∈[0,T ]\Πτ

∥wτj ,εj (r)− w̃τj ,εj (r)∥∗

(∫ t+j

t−j

∥ ˙̃uτj ,εj (r)− ˙̂uτj ,εj (r)∥ dr +
∫ T

0
∥ ˙̂uτj ,εj (r)∥ dr

)
→ 0 .

We indeed notice that the first term within the brackets is bounded (actually vanishes) by
arguing as in (5.29).
Therefore, we finally obtain

E(t, u−(t))− E(t, u+(t)) ≥ lim sup
j→+∞

∫ t+j

t−j

p( ˙̃uτj ,εj (r), w̃τj ,εj (r)) dr

= lim sup
j→+∞

∫ t+j

t−j

p( ˙̃uτj ,εj (r),−ε2jM¨̃uτj ,εj (r)−DxE(r, ũτj ,εj (r))) dr .
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The rest of the proof follows closely the argument of Proposition 4.6 from (4.14) on, with ũτj ,εj
in place of uεj , by exploiting (5.26) and (5.27). We then omit the details. □

5.3. An enhanced version of the scheme. We conclude by proposing a slightly modified
discrete algorithm which allows to get rid of the assumption

τ

ε2
bounded,

needed for Proposition 5.8. To describe it, we consider an additional parameter δ ∈ [0, 1) and in

(5.1a) we replace ε by
√
ε2 + δ, and we carefully adjust the initial velocity; namely we consider

the following incremental variational scheme:ukτ,ε,δ ∈ argmin
x∈X

Fτ,
√
ε2+δ(t

k, x, uk−1
τ,ε,δ, u

k−2
τ,ε,δ), k ∈ Kτ ,

u0τ,ε,δ := uε0 , u−1
τ,ε,δ := uε0 − τ ε√

ε2+δ
uε1 .

(5.30)

For δ = 0 we easily recover the original scheme (5.1).

Since the only change with respect to previous sections is the replacement of ε by
√
ε2 + δ,

all the results still hold true if in the statements one performs the same replacement (without
touching the initial data uε0, u

ε
1). In particular part (II) of Theorem 3.10 can be rewritten as

follows:

Theorem 5.9. Let M,V satisfy (2.5), (2.6) and assume (E1)–(E5), (E3’), and (R1). Let
uε0 → u0, εu

ε
1 → 0. Then for every sequence (τj , εj , δj) → (0, 0, 0) satisfying

sup
j∈N

τj
ε2j + δj

< +∞, (5.31)

there exists a subsequence (not relabelled) along which the sequence of piecewise affine in-
terpolants ûτj ,εj ,δj pointwise converges to an Inertial Virtual Viscosity solution of the rate-
independent system (1.1).

Furthermore, the limit function is an Inertial Balanced Viscosity solution if V is positive-
definite.

The advantage of condition (5.31) is that it is automatically satisfied by any sequence δj for
which

sup
j∈N

τj
δj

< +∞, (5.32)

and thus it permits to separate the vanishing rates of τj and εj , which can be completely
unrelated.

We finally notice that the simplest choice of δ = τ in (5.30) trivially fulfils (5.32) along any
subsequence, and thus allows to obtain Theorem 5.9 without really adding a further parameter.
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