Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

M. Goldman - B. Merlet

Non-convex functionals penalizing simultaneous oscillations along independent directions: rigidity estimates

created by goldman on 20 May 2019
modified on 26 May 2020


Accepted Paper

Inserted: 20 may 2019
Last Updated: 26 may 2020

Journal: Annali della SNS
Year: 2020


We study a family of non-convex functionals $\{\mathcal{E}\}$ on the space of measurable functions $u:\Omega_1\times\Omega_2\subset\mathbb{R}^{n_1}\times\mathbb{R}^{n_2}\to\mathbb{R}$. These functionals vanish on the non-convex subset $S(\Omega_1\times\Omega_2)$ formed by functions of the form $u(x_1,x_2)=u_1(x_1)$ or $u(x_1,x_2)=u_2(x_2)$. We investigate under which conditions the converse implication ''$\mathcal{E}(u)=0 \Rightarrow u\in S(\Omega_1\times\Omega_2)$'' holds. In particular, we show that the answer depends strongly on the smoothness of $u$. We also obtain quantitative versions of this implication by proving that (at least for some parameters) $\mathcal{E}(u)$ controls in a strong sense the distance of $u$ to $S(\Omega_1\times\Omega_2)$.


Credits | Cookie policy | HTML 5 | CSS 2.1