*Accepted Paper*

**Inserted:** 25 sep 2018

**Last Updated:** 6 jul 2021

**Journal:** To apper in Memoirs of the American Mathematical Society

**Year:** 2018

**Abstract:**

Let $\Sigma$ be a smooth Riemannian manifold, $\Gamma \subset \Sigma$ a smooth closed oriented submanifold of codimension higher than $2$ and $T$ an integral area-minimizing current in $\Sigma$ which bounds $\Gamma$. We prove that the set of regular points of $T$ at the boundary is dense in $\Gamma$. Prior to our theorem the existence of any regular point was not known, except for some special choice of $\Sigma$ and $\Gamma$. As a corollary we answer to a question of Almgren about the connectivity of minimizers.

**Download:**