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Abstract

Let ¥ be a smooth Riemannian manifold, I' C ¥ a smooth closed
oriented submanifold of codimension higher than 2 and 7" an integral
area-minimizing current in > which bounds I'. We prove that the set
of regular points of T" at the boundary is dense in I'. Prior to our
theorem the existence of any regular point was not known, except for
some special choice of ¥ and I'. As a corollary of our theorem

e we answer to a question of Almgren (cf. [5]) showing that, if
I' is connected, then T has at least one point p of multiplicity
%, namely there is a neighborhood of the point p where T" is a
classical submanifold with boundary I’

e we generalize Almgren’s connectivity theorem showing that
the support of T' is always connected if I' is connected;

e we conclude a structural result on 7" when I' consists of more
than one connected component, generalizing a previous theo-
rem proved by Hardt and Simon in [27] when ¥ = R™"! and
T is m-dimensional.






CHAPTER 1

Introduction

Consider a smooth complete Riemannian manifold ¥ of dimension
m + n and a smooth closed oriented submanifold I' C ¥ of dimension
m — 1 which is a boundary in integral homology. Since the work of
Federer and Fleming (cf. [24]) we know that I" bounds an integer
rectifiable current 7" in ¥ which is mass minimizing.

Starting with the pioneering work of De Giorgi (see [9]) and thanks
to the efforts of several mathematicians in the sixties and the seventies
(see |25, 10} 4, B7]), it is known that, if 3 is of class C*? for some a >
0, in codimension 1 (i.e., when n = 1) and away from the boundary T,
T is a smooth submanifold except for a relatively closed set of Hausdorft
dimension at most m — 7. Such set, which from now on we will call
interior singular set, is indeed (m — 7)-rectifiable (cf. [36]) and it has
been recently proved that it must have locally finite Hausdorff (m —7)-
dimensional measure (see [33]).

In higher codimension, namely when n > 2, Almgren proved in
a monumental work (known as Almgren’s Big regularity paper [5])
that, if ¥ is of class C®, then the interior singular set has Hausdorff
dimension at most m — 2. Subsequently Chang proved in [8] that such
set is indeed discrete when m = 2. In fact Chang’s paper is missing
one substantial step of the proof, which was completed only recently by
the first author in a series of joint works with Emanuele Spadaro and
Luca Spolaor, cf. [20] 21, 19, [18]. The latter papers are based on a
revisitation of Almgren’s theory, due to the first author and Emanuele
Spadaro (cf. [13l, 15l 14, 16}, 17]), which simplifies Almgren’s proof
introducing several new ideas. The latter works are indeed one of the
starting points of this paper.

Both in codimension one and in higher codimension the interior
regularity theory described above is, in terms of dimensional bounds
for the singular set, optimal:

e The celebrated paper by Bombieri, De Giorgi and Giusti [6]
(see [22] for a very short proof) shows that Simons’ cone {z% +
ri+ai+a? = 22+ a2+ 22+ 22} is an area-minimizing current
of dimension 7 in R® with an isolated singularity.

9



10 1. INTRODUCTION

e Federer’s calibration theorem shows that any holomorphic sub-
variety of a Kahler manifold induces an area-minimizing cur-
rent: in particular the holomorphic curve {(z,w) € C?: 2% =
w3} is a 2-dimensional area-minimizing current in R* with an
isolated singularity.

The main purpose of this paper is to study the regularity of the
minimizers at the boundary. In the rest of the note we will always
assume that such boundary is the integer rectifiable current naturally
induced by some oriented submanifold I' and we will use the notation
[] for it. As it is customary in the literature, we take advantage of
Nash’s isometric embedding theorem and we consider Y as a subman-
ifold of some Euclidean space R™*". In particular we can regard any
integer rectifiable current 7' in ¥ as an integer rectifiable current in
the Euclidean space whose support spt(7’) is contained in %: hence T
minimizes the mass among all currents S which are supported in ¥ and
such that 05 = [I'].

DEFINITION 1.1. A point = € T' is a boundary reqular point for
T if there exist a neighborhood U > z and a regular m-dimensional
submanifold = C U N X as in Definition (without boundary in U)
such that spt(7) N U C Z. The set of such points will be denoted by
Reg,(T) and its complement in I' will be denoted by Singy, (7).
Analogously, the set of interior regular points and interior singular
points will be denoted by Reg;(7") and Sing;(T").
We further subdvide Singy,(7) into two categories. We will say that
x € Singy,(T') is of crossing type if there is a neighborhood U of z and
two currents 7} and 75 in U with the properties that:
® T1—|—T2:Tand 8T1 :0,
o = € Regy(Th).
If € Sing,(T') is not of crossing type, we will then say that x is a
genuine boundary singularity of T

REMARK 1.2. Notice that Singy,(7") is closed in I". Moreover, the
Constancy Lemma has the following simple consequence. Let p € T’
be a regular point and =. Assume the neighborhood U is sufficiently
small, so that U N = is diffeomorphic to an m-dimensional disk. Then
the following holds:

e ['NU is necessarily contained in = and divides it in two disjoint
regular submanifolds =t and =~ of U with boundaries +T;
e there is a positive @) € N such that

TLU=Q[E"]+(@-1)[=7].
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We define the density of such points p in ' N U as Q) — % and we
denote it by ©(T,p) = Q — % Later (in Definition we will define,
as customary, the density at every boundary point p as the limit, as
r J 0, of the ratio between the mass of the current in a ball of radius
r (denoted by ||T||(B.(p))) and the m-dimensional volume of an m-
dimensional disk of radius r (denoted by w,,r™). The two definitions

clearly agree on regular points.

Of particular interest are those regular points where () = 1: at such
points there is a neighborhood U where the current 7" is a classical
submanifold with multiplicity 1 and with boundary I'MU. Such points
will be called in the rest of the note density % points or one-sided points.
In contrast, the regular points where ) > 1 will be called two-sided.
Note that, when p is a one-sided point only = N U is determined
(and coincides, in fact, with the support of the current in U): =2~ NU
can be chosen to be any “smooth continuation” of Z* N U across the
boundary I'MU. On the other hand when p is two-sided then the whole
submanifold =N U is determined by the current 7" and coincides with
its support in U.

The first boundary regularity result is due to Allard who, in his
Ph.D. thesis (cf. [1]), proved that, if ¥ = R™™" and T" is lying on the
boundary of a uniformly convex set, then every point p € I' is regular
and has multiplicity % In his later paper [3] Allard developed a more
general boundary regularity theory from which he concluded the above
result as a simpler corollary. In particular Allard’s theory establishes,
among other things, the following two facts:

(a) if p € T is a point where the density ©(T,p), defined as

lim, o %, equals %, then p belongs to Regy,(T);

(b) if there is some wedge W of opening angle smaller than m whose
tip contains p and such that spt(7") C W then ©(T, p) = 3 and
thus p € Regy (7). []

In contrast to (b), a boundary point p € I with density @ + % for some
@ € N\ {0} is not necessarily a regular point.

Suitable generalizations of (a) and (b) can be proved in more general
ambient manifolds 3 and they imply full boundary regularity under
geometrically interesting assumptions: a simple example is given when
' lies on the boundary of a geodesic ball of sufficiently small radius.
However, even when ¥ = R™™" Allard’s theory implies the existence

1A wedge W C R™t" with opening angle ¥ is a set which can be mapped via
a suitable rigid motion to {(z,y) € R™ x R™ : |y| < z1 tan 5 }; the tip of W is the

set {(x,y) : |y| = =1 = 0}.



12 1. INTRODUCTION

of relatively few boundary regular points for general submanifolds T’;
in particular (b) above can be guaranteed for an appropriate subset of
those points where I' coincides with its convex envelope, for the proof
see [28].

In the codimension one case Hardt and Simon proved later in [27]
that the set of boundary singular points is empty, hence solving the
boundary regularity problem when 2 = 1 (although the paper [27] deals
only with the case ¥ = R™" its extension to a general Riemannian
ambient manifold should not cause real issues). A major problem that
Hardt and Simon have to face compared to Allard is that under their
assumption two-sided boundary points may occur, as it is witnessed by
the following example.

EXAMPLE 1.3. Let I' be the union of two concentric circles I'y and
I’y contained in a given 2-dimensional plane 7y C R**” and having the
same orientation. Then the area-minimizing current T in R**™ which
bounds I" is unique and it is the sum of the two disks bounded by I';
and 'y in my. In particular 7" has density % at every point p which
belongs to the inner circle, see Figurdl]

FIGURE 1. p is a two-sided point while ¢ is a one-sided point.

Nonetheless, an outcome of the Hardt-Simon boundary regularity
theorem is that, if I' contains a two-sided point p, then the connected
component I which contains p arises from a situation like the one
described in Example [1.3] Therefore the presence of regular two-sided
points is very rare: for instance, when 3 = R™*! we can immediately
exclude it if we know that no connected component of I' can be included
in the interior of a real analytic hypersurface.

According to the results described so far, in higher codimension and
for a general ambient manifold > we cannot even exclude that the set
of boundary regular points is empty. In particular, in the last remark
of the last section of his Big regularity paper, cf. [5 Section 5.23, p.
835], Almgren states the following open problem:
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QUESTION 1.4 (Almgren). “I do not know if it is possible that the
set of density % points 1s empty when I' 1s connected.”

We will see in the next chapter that such question is equivalent to
ask the existence of at least one regular boundary point.

The interest of Almgren in Question [I.4]is motivated by an impor-
tant geometric conclusion: in [5, Section 5.23] he shows that, if there
is at least one density % point and I' is connected, then spt(7) is as
well connected and the current 7" has (therefore) multiplicity 1 almost
everywhere, in other words the mass of T' coincides with the Hausdorff
m-~dimensional measure of its interior regular set.

In this note we fill the aforementioned gap in the literature, proving
the first general boundary regularity theorem without any restrictions
on the codimension, on the ambient manifold ¥ or on the geometry of
I'. Since it will be used repeatedly throughout the paper, we isolate
the assumptions of our main theorem for further reference.

AsSUMPTION 1.5. Let ay €]0,1]. Consider a C®% complete Rie-
mannian submanifold ¥ € R™™ with dimension m +7 and I' C X
a C*% oriented submanifold without boundary. Let T be an inte-
gral m-dimensional area-minimizing current in B, N Y with boundary

0T By = [I' N By], namely such that

(AM) M(T") > M(T) for every integer rectifiable current 7" with
I(T —T").By=0and spt(T —T") C ¥ N B,.

THEOREM 1.6. Let T, %, T be as in[1.5. Then Regy(T) is dense in
I'nB,.

Of course by rescaling and translating, the ball of radius 2 centered
at 0 can be replaced by any ball B,.(p).

It can be easily shown that boundary singular points can occur when
[ is a C* curve in R* for any k, cf. [42]. Such examples are isolated
and can be both of crossing type or genuine boundary singularities. A
typical construction of the latter goes as follows. We identify R* with
C?, we take a holomorphic subvariety with a singularity, as for instance
A= {(z,w) € C? : w? = 231} and then we consider a suitable C*
closed (real) curve I' lying in A and passing through the singularity of
A. In the specific case {(z,w) € C? : w3 = 231} a T of interest is
defined so that:

e its projection on the plane 7 = {w = 0} contains an open
segment 0 = {w =0,Imz =0,—r < Rez < r};
e it bounds a disk D C A;
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e the intersection of D with the cylinder {|z| < r} covers once
the half disk {w = 0,Im 2z < 0, |z| < r} and twice the half disk
{w=0,Im >0,|z| <r}.

T := [D] is then the unique area-minimizing current which bounds
[T'], while 0 is an isolated genuine boundary singular point.

Below we will show examples where Singy,(7") has the same (Haus-
dorff) dimension of the boundary. Nonetheless the theorem above does
not seem optimal from at least two points of view: first of all our
example leaves open the possibility that Sing,(7") has zero (m — 1)-
dimensional measure; secondly the singularities of the example are
all of crossing type. Indeed it is tempting to advance the following
conjecture, which in view of the examples known so far seems rather
reasonable.

CONJECTURE 1.7. Let T, X, T be as in|1.5. The Hausdorff dimen-
sion of the set of genuine singular points is at most m — 2.

When m = 2 we cannot however expect that genuine singular points
are isolated.

THEOREM 1.8. There are:

(a) A smooth closed simple curve I' C R* and a mass minimiz-
ing current T in R* such that OT = [I'] and Singy,(T) has a
genuine boundary singularity which is an accumulation point.

(b) A smooth 1-dimensional closed submanifold Ty C R* (con-
sisting of two disjoint simple curves) and a mass minimizing
current Ty in R* such that 9T, = [T'1] and Singy,(T}) has Haus-
dorff dimension 1.

Moreover the proof of (a) can be easily modified to provide an ex-
ample of a two dimensional mass minimizing current for which there
exists a sequence of interior singular points accumulating towards the
boundary. This shows that the (interior) regularity results for two di-
mensional mass minimizing currents in [8, A3, A5, 14, 16l 17] are
actually optimal, see Remark The proof of (b) is essentially con-
tained in [30].

The example of Theorem is related to a previous one of Gul-
liverf given in [26]. In both examples there is a boundary branch point
where the surface has an infinite order of contact with a plane. In
view of Gulliver’s surface, White in [42] stated that “Proving partial

2Gulliver’s example is a minimal immersed disk in the 3-dimensional space.
It is obviously not a minimizer as a current, but it is not known whether it is a
solution of the Douglas-Radé problem.
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regularity for integral currents at C'*°-boundaries seems to be much
harder”. In the case of real analytic curves White proved in [42] that
there is no branching boundary point for any solution of the Douglas-
Radé problem. In view of this he conjectured that the topology of any
area minimizing 2-dimensional integral current is finite if its boundary
is a real analytic curve: combined with his result, White’s conjecture
would then imply that for real analytic curves both the boundary sin-
gular points and the interior singular points are isolated and that the
boundary singular points can only be of “crossing” type, i.e. there is
no genuine boundary singularity.

Even though at the moment we cannot progress further in a finer
analysis of the singularities, as a corollary of Theorem[I.6 we can reduce
it to the analysis of one-sided boundaries.

THEOREM 1.9. Let ¥ and ' be as in Assumption|[1.5 Assume T is
closed and T is an area-minimizing integral current in 3 with 0T = [I'].
Let T C T be a connected component of I'. If I'" N Regy(T') contains a
point p with multiplicity (T, p) > %, then

(a) the Hausdorff dimension of Singy,(T') NIV is at most m — 2;
(b) if m = 2, then Singy,(T) NI consists of finitely many points.

Theorem [1.9] is a consequence of a suitable decomposition of the
current 7', which will be stated in the next chapter (cf. Theorem [2.1)).
One consequence of the latter result is that the two-sided components
of I are, in a suitable sense, “internal to the current”, as in Example
So, even if Theorem|[I.6]is not a full regularity statement as the one
in [27], it is still powerful enough to yield a similar description of the
current T in a neighborhood of the two-sided connected components
of I'. Moreover, the decomposition Theorem leads easily to a full
answer to Question[l.4]and in particular we can show the connectedness
of the support of any minimizer 7" whose boundary I' is connected.

COROLLARY 1.10. Let 3, T and T be as in Theorem|[I.9 and assume
in addition that T is connected and that both T and spt(T') are compactly
contained contained in By. Then,

(a) Regy(T)) coincides with the set of density § points;

(b) the set of interior reqular points Regi(T) is connected;

(¢) ©(T,p) =1 for all p € Regi(T") and M(T) = H"™(Regi(T)) =
H™ (spt(T)).

While Theorem [2.1, Theorem and Corollary are rather
straightforward consequences of Theorem [1.6] and of the interior regu-
larity theory via well-established techniques in geometric measure the-
ory, the proof of Theorem is very long and will occupy essentially
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all the rest of the note. In a nutshell we will develop a suitable counter-
part of Almgren’s interior regularity theory at the boundary in order
to prove it. Such task poses many additional difficulties and in order
to overcome them we introduce several new ideas and tools, some of
which might be useful even for the interior regularity theory.

Our work would have not been possible without the new insight
provided by the papers [13], 15|, 14}, 16, 17] and by the Ph.D. thesis
of the third author, cf. [29], [B0]. In particular the latter contains two
fundamental starting points: a suitable boundary regularity theory for
Dir-minimizing multiple valued map and a fruitful discussion on how
the frequency function estimate of Almgren might fail at the boundary.
Such discussion has been essential to identify the key “estimate” which
underlies the present work.

In Section we will give a road map to the proof of Theorem [L.6]
we will discuss the most important ideas which enter into it and we
will point out their relations with Almgren’s big regularity paper [5],
with the works [13], 15}, 14, 16, 17] and with [29].
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CHAPTER 2

Corollaries, open problems and plan of the paper

2.1. Indecomposable components of T’

We start this chapter by stating and proving our main structure
theorem as corollary of Theorem [1.6

THEOREM 2.1. Let 3,I',T be as in Assumption and assume
in addition that T and spt(T') are compactly contained in Bo. Let us
denote by I'y, ..., U'n the connected components of I'. Then there exist a
natural number N € N, integer multiplicities Q; € N\ {0} and currents
T; such that

N
T = Z Q]TJ ) (2'1)
j=1

where:
(a) For every j = 1,...,N, Tj is an integral current with OT; =
Zﬁ\;l Oij [[F,L]] and Oij € {—1, 0, 1}
(b) For every j=1,... N, T; is an area-minimizing current and
T; = H™LA;, where Ay, ..., Ay are the connected components
of spt(T') \ (I' U Sing;(T")) = Reg,(T).
(¢) Each T is
— either one-sided, which means that there is one indez o(i)
such that ooz = 1 and 035 = 0 Vj # o(i);
— or two-sided, which means that:
* there is one j = p(i) such that o6 = 1,
* there is one j = n(i) such that o) = —1,
* all other o;; equal 0.
(d) If T'; is one-sided, then Qi) =1 and all points in T'; N Reg,T
have multiplicity %
(e) IfT; is two-sided, then Qnuy = Qpuy—1, all points in T';NReg, T
have multiplicity Qp) — % and Ty + Ty 18 area minimizing.
PROOF. Let A be a connected component of spt(7")\ (I'USing, (7)) =
Reg;(T"). Since A is smooth and connected, by the Constancy The-

orem the multiplicity of T is a constant @ € N\ {0} on A. Let
S = Q[ANReg,(T)], where we orient A so that S = T in every

17



18 2. COROLLARIES, OPEN PROBLEMS AND PLAN OF THE PAPER

sufficiently small neighborhood of every point p € A. Observe that
spt(9S) € TUSing,(T'). Since H™*(Sing,(T)) = 0, from [23] Theorem
4.1.20] we then conclude that S = 0 on R™*"\ T". Thus spt(9S) C T.
Let now I'; be a connected component of I' and let p be a retraction
of a neighborhood U of I'; onto I';. Since 0S is a flat chain supported
in I';, Federer’s flatness theorem, cf. [23] Section 4.1.15], implies that
R :=py(0SLU) =0SLU. On the other hand, since 9(0SLU) = 0, we
also have OR = 0 and we conclude from the Constancy theorem, cf. [23]
Section 4.1.7], that R = ¢[I';] for some ¢ € R. Thus 9 = Y., ¢ [I].

From Theorem [1.6] there is at least one point p € Reg,(T)NT;. Ina
sufficiently small neighborhood V' of p, the set spt(7) \ I'; consists of at
most two connected components which are regular submanifolds and
which we call Z* and =7, consistently with the notation of Definition
and Remark [I.2] Since A is connected, we have the following three
alternatives:

(i) p & A;
(i) A contains only one of the two components =%;

(iii) A contains both =t and =~.
However, by the Constancy Lemma, the density of T on A must be
constant, whereas, according to Remark [1.2] it differs on the two sur-
faces = and =—. For this reason we can exclude the alternative (iii)
and in particular,

e cither 0SL.V =0,

e or ISLV = (O(p,T) + 3) [I]LV =Q[I]LV,

e or OSLV = —(O(T,p) — 3) [TV = -Q[I,]LV.
If we consider the (at most countable) connected components of Reg,(T')
we obtain a decomposition as in ({2.1) with property (a), except that
we have not yet shown that the number of connected components is
finite. First observe that

M(T) = Q;M(Ty), (2.2)

j>1

and hence we easily see that each T; must be area-minimizing. Next
observe that each connected component A; must contain a point at a
fixed positive distance from I' (otherwise we could retract 7 on I'). By
the monotonicity formula the mass of each T can be bounded from
below with a constant independent of j. Thus from (2.2]) we conclude
that the number of T}’s must be finite.

We now prove (c), (d) and (e): fix I'; and fix a regular point p €
Regy,(T) NT;. If ©(T,p) = %, then in a suitable neighborhood V' of
p the set (spt(T) \ I') NV coincides with Reg;(T") NV and consists
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of only one connected component, so there is one and only one o;; #
0. Moreover, for that particular j =: o(i), Qo = 1. In particular,
Regy,(T) NI Nspt(T;) = 0 for every j # o(i), which proves (d) and the
first part of (c).

Analogously, if O(T,p) > 3, then V Nspt(T) \ T consists of exactly
two connected components with two different multiplicities in the cur-
rent 7', namely there must be exactly Aj+ and A;- from which the two
connected components of spt(7) \ I' NV = Reg,(T") NV arise. More-
over the difference of the two multiplicities @)+ — @), must necessarily
be 1. As above, since all other o;; are equal to 0, at any other point
q € I'i N Regy,(T) there is a neighborhood V' which intersects only A+
and A;-. On the other hand it must intersect at least one of them
(otherwise T LV = 0) and therefore it must intersect both of them
(otherwise either OT'LV = Q;+ [I;NV] or OTLV = —Q;- [I'; N V],
which is not possible because @Q;+ > 2 and ;- > 1). This completes
the proof of (¢) and shows the first part of (e).

In order to complete the proof of (e), consider a I'; which is two-
sided. Denote by S the current T},; + T},(;y. Notice that

M(T) = QuyM(S) + M(Tyi)) + Y Q;M(T)).
n(i)£i7#p(i)

From this it follows easily that S must be area-minimizing. U

2.2. Almgren’s question and proof of Theorem (1.9

We can now use Theorem [2.1] to prove Corollary and Theorem
LI

PRrOOF OF COROLLARY [1.10l When T is connected the decompo-
sition in ({2.1)) consists necessarily of at most two currents because of
Theorem [2.1|(c), depending on whether I is one-sided or two-sided. On
the other hand, if I' were two-sided, the decomposition would
consist of two currents 77 and 75 with @ = Q2 +1 > 2. Thus T}
would have boundary [I'] and strictly less mass than T, contradicting
the minimality of T 0

Proor oF THEOREM [1.9. Consider IV and p as in the statement
and apply Theorem Without loss of generality assume IV = I';.
By point (d) of Theorem I'y is necessarily two-sided, therefore
S = T,y + Ty(1) is area-minimizing. Since all points of I'; are interior
points of S, we know from the interior regularity theory that S is
regular at p in I';, except for a set of points of dimension m — 2 (which
is finite if m = 2). At any point p where S is regular, the boundary
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regularity of T},1y and T},(;) follows easily from the Constancy Theorem
[23, Section 4.1.7]. O

REMARK 2.2. It is clear from the proof of Theorem [2.1] and of
Corollary that the requirement that I' and spt(7) are compactly
contained in By can be somehow relaxed, and that suitably local ver-
sions of these results are true. Since however the proof will follow the
same arguments described above, we leave these generalizations to the
interested reader.

2.3. Proof of Theorem [1.8§

First of all consider the complex halfplane H := {z € C: Rez > 0}
over which we fix the following determination of the complex logarithm:

, Im =
Log z = log |z| + i arctan — .
Re z

(where arctan : R — (=7, 7) is the usual inverse trigonometric function

on the real axis). Correspondingly we define (again on H) the functions
2% = exp(—alog z) for a € (0,1) and

3—2k
fr(z) = exp(—2z"%)sin (Logz + 5 m’) for k=0,1,2,3.

Observe that:

(i) BEach f;, can be extended smoothly to a C*° function on H.
Indeed, observe first that there is an holomorphic extension of
frto C\ {z € R:Imz = 0,Rez < 0}, which, with a slight
abuse of notation, we keep denoting by fr. Such extension is
thus defined on H \ {0}. Hence, in order to prove our claim
it suffices to show that any partial derivative (of any order) of
fr can be extended continuously from H \ {0} to the origin.
We claim in particular that such extension can be achieved
by setting it 0 at the origin. Since dsfx = 0 (on H \ {0}), it
suffices to show our claim for any partial derivative 0°f. For
the latter we easily have the inequality

10 Fu(2)] < Cla, D]z N@NeRe=" < C(a, €)]2]~MED el

(2.3)
where N(a, ), C(a, /) and c(a) = cos(af) are positive con-
stants.

(ii) Since exp(—2z~%) does not vanish on H \ {0}, the zero set Zj
of fi in H \ {0} is given by

@

— k
Zk:{zeH:Logz+ WiE?TZ},
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namely by

2k —
Zy = {exp (mr +1 5 37?) 'n € Z} . (2.4)

Consider next the function

9(z) = [[ 2).

We then conclude that ¢ is holomorphic on H, it is C* on H and its
zero set, which we denote by Z, is given by

zZ={0yulJ 2.

Define now the map G : H — C? by G(z) = (2%, g(z)). We consider
a smooth simple curve v C H which contains a nontrivial segment

o= [—Ti,Ti] (2.5)

on the imaginary axis and we let D C H be the open disk bounded by
7. The current T := Gy [D] is integer rectifiable and

oT = G, [D] = G, ] -

Observe that G(D) is an holomorphic curve of C?, which carries a natu-
ral orientation. If [G(D)] denotes the corresponding integer rectifiable
current, we then have 7' = © [G(D)], where © is the integer-valued
function which at H™-a.e. point p € G(D) counts the number of
preimages in D, namely O(p) = #{z € D : G(z) = p} (indeed our argu-
ment below will show that © equals 1 except for a countable number
of points). It follows from a classical result of Federer (cf. [23]) that T
is an area-minimizing current.
We then claim that

(a) for an appropriate choice of v, Gy [v] = [G(v)] and G(v) C
C? = R* is a smooth embedded curve;
(b) o NG(Z) is contained in Singy, (7).

Since
G(Z) = {0y u | G(Z) = {0} U {(£ie*™,0) € C* =R* : n € Z},

we conclude from (b) that Singy,(7") has an accumulation point at the
origin. Thus, because of (a), I' = G() is a closed curve which satisfies
the claims of the theorem.
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In order to show (a) and (b) consider first that the map G is a
local smooth embedding at every point z € H which is not the origin,
because the differential of z — 22 has full rank everywhere except at
the origin. We next claim that

(¢) There is a discrete subset W C ﬁL\ {0} such that the map G
is injective when restricted onto H \ (W U {0}).

In order to show (c) consider first that, if G(z) = G(w), then 2* =
w3. Thus our claim reduces to showing that the map \(z) := g(z) —

g(e*™/3%) has a discrete set of zeros on the domain
Ai={z#0:2€H and ezm/SZGE} .

By the holomorphicity of A and the connectedness of A, it suffices to
show that A does not vanish identically on A. On the other hand, if
it were A = 0, then we could extend g holomorphically to a function
g on C?\ {0} with the property that §(z) = §(e**/3z) for every z.
From the discussion above it follows easily that such a map ¢ could be
extended continuously at the origin and it would thus be holomorphic
on the entire complex plane. On the other hand ¢ has a sequence of
zeros which accumulate to the origin and thus it would be forced to
vanish identically. In particular we would conclude that g vanishes
identically and that one of the fi.’s must vanish identically too. By the
very definition of f; this is obviously false.

Having proved (c) we now show the existence of v as in (a). First
we show that 7 can be chosen so that G|, is injective. As a preliminary
remark, the only point of H which G’ maps to the origin (0,0) of C?
is the origin 0 of C, so we just need to show the injectivity of G on
v\ {0}. Observe that, by (c), we can assume that both G(7i) and
G(—7i) have exactly one preimage in H. Since G is an immersion
on H \ {0}, we can choose 7 so that there are two neighborhoods U,
and U, of, respectively, the endpoints 7¢ and —7i of the segment o
with the property that G(z) has exactly one counterimage in H for
every z € (U; UUy) NH. Moreover, a generic v will avoid the set W,
which is discrete, and thus we have shown that G is injective on 7 \ o.
Furthermore, we can ensure that all points z in v \ ¢ have modulus
strictly larger than 7. Since G(z) = G(w) implies 2% = w* and hence
|z| = |wl|, such a choice enforces that G(v\o)NG(c) = 0. It remains to
show that G is injective on o, but this is easy because, if z, w € o, then
both z and w are purely imaginary and the equation z* = w?® implies
z=w.

We next wish to show that G(v) is a smooth curve. As already
observed, G is an immersion when restricted to H \ {0}. Thus we
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only have to show that G() is smooth in a neighborhood of (0,0) =
G(0). Observe that, in such a neighborhood G(7) is given by the points
{(—is? g(is)) : s €] — 6,8[}, which we can rewrite as {(—is, g(is3)) :
s €] — 0%,6%[}. We thus have to show that the map

R > s+ h(s) = g(is?) € C

is smooth in a neighborhood of the origin and we will then conclude
that G(v) is indeed a smooth embedded curve. In fact the map h
is certainly smooth on (—1,0) U (0,1). Computing its derivatives we
conclude easily that

KO(s)] < C(O)]s|NO 3 [DFg(ist)| < C(€, )|s| N Oeelellsl ™

0<k<t

where we have used the estimate (2.3). In particular
lim A (s) = 0
s—0

for every ¢ € N. This shows the smoothness of g in 0.

We finally come to (b). We just have to show that every point
p € G(Z) is singular: since the origin is an accumulation point of G(Z)
and Singy,(7) is closed, the origin will be a singular point as well. Let
p be in G(Z)\ {0}, then p = (£ie3"™,0) for some n € Z. Let us assume
that p = (ie3"™,0) (the other case being analogous) and note that p
has exactly two preimages in H through G, namely

— _;¥ _ T\ omi/3

zlfexp<n7r z2> zgfexp<n7r+z6>fe 21.
Since, as already observed, dG,, has full rank for ¢ = 1,2, there are
small neighborhoods U; and Us of z; and zy such that G|y, and G|y,
are embeddings. Since we have already shown that the set {z : g(z) =
g(e*™/32)} is discrete in H \ {0}, up to making the neighborhoods
smaller we have that G(U;) NG(Usz) = {p}. This shows that around p,
G(D) is an immersed surface with boundary and with a “double point”
at p. Thus p belongs to Singy,(T').

REMARK 2.3. Note that the curve « in the above Theorem can be
slightly modified in order to have that G(v) is still a smooth curve
and that v bounds a smooth connected open disk D with 0 € 9D and
o = (—7i,7i) \ {0} € D. In particular there is a sequence of points
in Z which are in the interior of D and that accumulates towards {0}.
G(Z) now consist of interior singular points for 7' := G4[D] which
accumulate towards the boundary.
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REMARK 2.4. It is not difficult to see that, in the example above,
at any singular point p € G(Z) the tangent cone consists of one two-
dimensional plane [7(p)] and a two-dimensional half-plane [77(p)],
which intersect only at the origin. By slightly modifying the example,
namely by considering the map G(z) = (2%, (g(2))?), we can easily
ensure that the tangent cone at every p € G(Z) is contained in a
single two-dimensional plane 7(p). In particular the tangent line to
the boundary curve splits such planes in two halves 7~ (p) and 7" (p):
the tangent cone is then 2 [77(p)] + [ (p)]. On the other hand we
do not know whether it is possible to have a sequence of boundary
branching singularities which accumulate somewhere.

2.3.1. Proof of Statement (b). We now turn to the proof of
statement (b) in Theorem [1.§ The starting point is the following fact,
proved by the third author in [30], where we keep using the notation

H={ze€C:Rez >0}
for the complex halfplane.

LEMMA 2.5 ([80, Lemma 0.1]). There exists a holomorphic function
g : H — C which extends to a smooth function F € C*®(H) and such
that the set
E:={F=0}n0oH
is contained in the segment o := OHN {Imz € [—3, 3|} and has Haus-
dorff dimension dimy(E) equal to 1.
Let now 7 be a smooth curve contained in H N {|z| < 1} such that
(a) o C;
(b) yNn{z e H:g(z) =0} =0.
Note that this is possible since {g = 0} N H is at most countable. We
denote by D, C H the disk bounded by 7. We let
G(z) = (2, F(2))

and S = Gy [D4]. Note that G(v) is a smooth curve. Arguing as in
the proof of Statement (a), we get

05 = Gyl =[G
We furthermore let D = {|z| < 1} be the unit disk and R = ¢ [D],
1:C — C?, 1(2) = (2,0). Note that

sptdS NsptoR = ().

Now the current 77 = R + S satisfies the conclusion of the first of the
claim. Indeed

o1y = [I'1] with Iy =G(y) U{(z,w): |z| =1,w =0}
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and, since the latter union is disjoint, I'; is a smooth 1-dimensional
manifold. Furthermore, since both R and S are calibrated by the
Kéhler form, so is T}, implying that it is the only mass minimizing
current spanned by [I';]. Finally

Singy(T1) D £ x {0},
from which we conclude that dimy (Sing,(77)) = 1.

REMARK 2.6. In fact it is easy to see that Sing,(7y) = E x {0},
therefore, even though the latter set has Hausdorff dimension 1, it
is a H!-null set. Note also that around points in E, the current S
can be represented by a smooth graph, and thus these are crossing
singularities.

Eventually we remark that by the F. and M. Riesz” Theorem, [34],
the conclusion of [30] is optimal, meaning that the set F in Lemma
cannot have positive measure. Hence the above construction can-
not give an example of a 2-dimensional mass minimizing current which
bounds a smooth submanifold and has a boundary singular set of pos-
itive H!-measure.

2.4. Plan of the proof of Theorem [1.6

In this section we outline the long road which will take us finally to
the proof of Theorem[I.6] We fix therefore ¥, T" and T" as in Assumption
11.0]

Reduction to collapsed points. We start in Chapter [3| by re-
calling Allard’s monotonicity formula at the boundary. First of all,
combining it with a suitable variant of Almgren’s stratification theo-
rem, we conclude that, except for a set of Hausdorff dimension at most
m — 2, at any boundary point p there is a tangent cone which is “flat”,
namely which is contained in an m-dimensional plane 7 D TyI'. Sec-
ondly, using a classical upper semicontinuity argument, we will focus
our attention on “ collapsed points”, cf. Definition [3.7; additionally
to the existence of a flat tangent cone, at such points p we know that
there is a sufficiently small neighborhood U where ©(T,q) > O(T,p)
for all ¢ € ' N U. In particular we will reduce the proof of Theorem
to proving that any collapsed point is regular, cf. Theorem and
Theorem [3.9]

The “linear” theory. Assume next that 0 € I' is a collapsed
point and let Q) — % be its density. Note that by Allard’s regularity
theory we know a priori that 0 is a regular point if ) = 1 and thus we
can assume, without loss of generality, that ) > 2. Fix a flat tangent
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cone S to T" at 0 and assume, up to rotations, that it is supported in
the plane mp = R™ x {0} and that ToI' = {x; = 0} N 1. Denote by
75 the two half-planes 75 := {#z; > 0} N mp, with the assumption
that S = (Q — 1) [rg] + Q [rg]. It is reasonable to expect that,
at suitably chosen small scales, the current 7T is formed by ) sheets
over mg and @ — 1 sheets over m,, respectively. Taken all together
such sheets form the current 7' and have boundary [I']. Moreover,
by a simple linearization argument such sheets can be expected to be
almost harmonic.

Having this picture in mind, it is natural to develop a theory of
(Q — %)—Valued functions minimizing the Dirichlet energy. Their do-
main of definition is an open subset {2 of R™ which is divided into
two halves QF by some smooth (m — 1)-dimensional surface v C €.
A (Q — %)—Valued map consists then of a pair (f*, f7) where f~ is a
(Q — 1)-valued map over 2~ (in the sense of Almgren, cf. [13]) and
fT is a Q-valued map over Q*. Such pairs are required to satisfy an
additional assumption: the trace of f* over 7 is obtained from that
of f~ by adding a classical single valued map ¢, which is called the
“interface”, cf. Definition for the precise statement. The relevant
problem is then that of minimizing the sum of the Dirichlet energies of
the two maps subject to the constraint that their boundary values on
0 and the interface ¢ are both kept fixed. In Chapter [4 we develop a
suitable existence theory for such objects, cf. Theorem Concerning
their interior structure, we can apply all the conclusions of Almgren’s
theory (indeed in this paper we will take advantage of the point of view
developed in [13]).

The correct counterpart of the collapsed situation in Theorem
must assume, however, that all the 2()—1 sheets meet at the interface ¢;
under such assumption we say that the (Q — %) Dir-minimizer collapses
at the interface, cf. Definition 4.3} The core of Chapter [4]is a suitable
regularity theory for minimizers which collapse at the interface. First
of all their Holder continuity follows directly from the Ph.D. thesis of
the third author, cf. [29]. Secondly, the most important conclusion
of our analysis is that a minimizer collapses at the interface only if
it consists of a single harmonic sheet “passing through” the interface,
counted therefore with multiplicity () on one side and with multiplicity
@ — 1 on the other side, ¢f. Theorem [4.5]

Theorem is ultimately the deus ex machina of the entire argu-
ment leading to Theorem [I.6] The underlying reason for its validity
is that a monotonicity formula for a suitable variant of Almgren’s fre-

quency function holds, cf. Theorem [4.15] Given the discussion of [30],



2.4. PLAN OF THE PROOF OF THEOREM [L.d 27

such monotonicity can only be hoped in the collapsed situation and,
remarkably, this suffices to carry on our program.

The validity of the monotonicity formula is clear when the collapsed
interface is flat. When we have a curved boundary a subtle yet impor-
tant point becomes crucial: we cannot hope in general for the exact
first variation identities which led Almgren to his monotonicity for-
mula, but we can replace them with suitable inequalities. However the
latter can be achieved only if we adapt the frequency function by inte-
grating a suitable weight, cf. Definition [4.13] The idea of “smoothing”
Almgren’s frequency function with a suitable weight is indeed already
present in [I7] and in this paper we need to push it much further,
distorting substantially the geometry of the domain.

First Lipschitz approximation. In Chapter [5| we use the linear
theory for approximating the current with the graph of a Lipschitz

(Q — %)—Valued map and we then show that such approximation is

close to be Dir-minimizing, cf. Theorem and Theorem The
approximation algorithm is a suitable adaptation of the one developed
in [14] for interior points. In particular, after adding an “artificial
sheet”, we can directly use the Jerrard-Soner modified BV estimates of
[14] to give a rather accurate Lipschitz approximation: the subtle point
is to engineer the approximation so that it collapses at the interface.

Height bound and excess decay. In Chapter [0] we use the Lip-
schitz approximation of Chapter [5| together with the regularity theory
of Chapter [4] to establish a power-law decay of the excess d la De Giorgi
in a neighborhood of a collapsed point, cf. Theorem [6.3] The effect
of such theorem is that the tangent cone is flat and unique at every
point p € T' in a suitable neighborhood of a collapsed point 0 € T
Correspondingly, the plane m(p) which contains such tangent cone is
Holder continuous in the variable p € I" and the current is contained in
a suitable horned neighborhood of the union of such 7(p), cf. Corollary
6.4

An important ingredient of our argument is an accurate height
bound in a neighborhood of any collapsed point in terms of the spher-
ical excess, cf. Theorem [6.5 The argument follows an important idea
of Hardt and Simon in [27] and takes advantage of an appropriate vari-
ant of Moser’s iteration on varifolds, due to Allard, combined with a
crucial use of the remainder in the monotonicity formula. The same
argument has been also used by Spolaor in a similar context in [39],
where he combines it with the decay of the energy for Dir-minimizers,
cf. [39 Proposition 5.1 & Lemma 5.2].
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Second Lipschitz approximation. The decay of the excess
proved in Chapter [] is used in Chapter [7] to improve the accuracy
of the Lipschitz approximation of Theorem [5.6] cf. Theorem [7.4 In
particular, by suitably decomposing the domain of the approximating
map in a Whitney-type cubical decomposition which refines towards
the boundary, we can take advantage of the interior approximation
theorem of [14] on each cube and then patch the corresponding graphs
together.

As in the case of the interior regularity, this new Lipschitz approx-
imation is of key importance since it coincides with the current up to
an error which is superlinear in the excess.

Left and right center manifolds. In Chapter [§] we use the
approximation Theorem [7.4] and a careful smoothing and patching ar-
gument to construct a “left” and a “right” center manifold M™ and
M=, cf. Theorem [8.13, The M* are C** submanifolds of ¥ with
boundary I' and they provide a good approximation of the “average
of the sheets” on both sides of I" in a neighborhood of the collapsed
point 0 € I'. They can be glued together to form a C*! submanifold
M which “passes through I'”: each portion has C®* estimates up to
the boundary, but we only know that the tangent spaces at the bound-
ary coincide, whereas we have a priori no information on the higher
derivatives (it must be noted though that, at the end of the argument
for Theorem [I.6], we will conclude that the center manifolds and the
current coincide and that the latter is regular: a posteriori we will
then conclude that M is indeed C**). The construction algorithm fol-
lows closely that of [16] for the interior, but some estimates must be
carefully adapted in order to ensure the needed boundary regularity.

The center manifolds are coupled with two suitable approximating
maps N*, cf. Theorem [8.19] The latter take values on the normal
bundles of M¥* and provide an accurate approximation of the current
T. Their construction is a minor variant of the one in [16].

Monotonicity of the frequency function. In Chapter [9 we use
a suitable Taylor expansion of the area functional to show that the
monotonicity of the frequency function holds for the approximating
maps N* as well, cf. Theorem [9.3] In particular we use the first
variations of the current along suitably chosen vector fields in order
to derive the same inequalities which allow to prove Theorem [£.15]
Such inequalities contain however several additional error terms which
must be estimated with high accuracy: our proof follows crucially some
ideas of [17]. Moreover, the “adapted” frequency function introduced
in Chapter [4] plays a central role in the estimate of Theorem [9.3]
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Final blow-up argument. In Chapter 10| we then complete the
proof of Theorem in particular we show that, if 0 were a singu-
lar collapsed point, suitable rescalings of the approximating maps N*
would produce, in the limit, a (Q — %) Dir-minimizer violating the reg-
ularity Theorem [4.5] On the one hand the estimate on the frequency
function of Chapter [3| plays a primary role in showing that the limit-
ing map is nontrivial. On the other hand the properties of the center
manifolds M* enter in a fundamental way in showing that the average

1

of the sheets of the limiting (Q — 5) map is zero on both sides.

2.5. Open problems

Clearly, since the size of the boundary singular set in all known
examples is much smaller than what proved in Theorem the most
central open question is whether one can improve the “generic bound-
ary regularity” proved in this paper. As already mentioned in the in-
troduction, the most daring conjecture compatible with the examples
known so far is the following:

CONJECTURE 2.7. Let T, 3, T" be as in Assumption (1.5 The Haus-
dorff dimension of the set of genuine boundary singularities is at most
m — 2.

A somewhat milder statement, which would still give a substantial
improvement of Theorem [1.6]is instead

CONJECTURE 2.8. Let T, X, I" be as in Assumption [1.5. Then
Hmfl(Singb(T)) = 0.

The “linearized problem” discussed in Chapter [4|enjoys a regularity
theorem which is analogous to Theorem

DEFINITION 2.9. Let (g%, ¢7) be a (Q — 1)-valued function with
interface (v, ) as defined in Chapter A point p € v is regular if
there are a ball B,(p), @ — 1 functions uy, ..., uq : B.(p) — R" and a

function uy : B (p) — R™ such that

(i) g% =22, [w] on Bf (p) and g~ = 32, [u] on B (p);
(i) For any pair ¢, j > 2 either the graphs of u; and u; are disjoint
or they coincide;
(iii) For any ¢ > 2 either the graphs of u; and w; are disjoint or the
graph of u; is contained in that of u;.
The complement of the regular points in + is called the set of boundary

singular points. If at a boundary singular point there are maps u;’s
which satisfy (i) and (ii) (but not (iii)), then the singular point will be
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called of crossing type. Singular points which are not of crossing type
will be called genuine boundary singularities.

A point p € Q\ v is regularif it is an interior regular point for either
the Q-valued map f or the (Q—1)-valued map f~ (cf. the introduction
of [13] for the precise definition). The complement, in Q \ v, is the set
of interior singular points. The union of interior singular points and
boundary singular points will be called the singular set.

THEOREM 2.10. Let (g7, g7) be a (Q — %)-valued function with C3
interface (v, ) defined over a domain Q0 and assume that it minimizes
the Dirichlet energy in 0 C R™. Then the set of boundary singular
points 1s meager.

We do not give a proof of Theorem[2.10} using the tools developed in
Chapter[d], the argument is a simple adaptation of the interior regularity
theory for Q-valued maps, cf. [13]. The conjectures corresponding to

and [2.§ are then open in the linearized case as well:

CONJECTURE 2.11. Let (g7, g™) be as in Theorem|2.1(]. The Haus-
dorff dimension of the set of genuine singularities is then at most m—2.

CONJECTURE 2.12. Let (g7, g™) be as in Theorem|2.1(, The bound-
ary singular set is then a H™ '-null set and the set of genuine bound-
ary singularities is at most of Hausdorff dimension m — 2.

Recently, in [32] the first author, together with Z. Zhao, proved
that for m = 2 and real analytic boundary data, the set of boundary
singularities is discrete. Even more they were able to show that sin-
gularities are all of crossing type. In particular there are no genuine
boundary singularities. Their proof relies on complex analysis tools and
the Cauchy-Kovalevskaya theorem.

The examples (a) and (b) of Theorem combined with a routine
adjustment of the arguments given in [38], see also [30} Corollary 3.5],
to the (Q — %)—valued setting, gives a ¢ which is not real analytic for
which the above conclusions are indeed false.

THEOREM 2.13. There is a real cmalytz’ﬂ v C By C R? passing
through the origin, a C* function ¢ : v — R? and a 2-map (g7, 9")
with interface (v, v) which is Dir-minimizing on By and whose singular
set has Hausdorff dimension 1.

Conjecture 2.7 is widely open also for real analytic boundary data.
As we already mentioned, the “linear” 2-dimensional case of the conjec-
ture is addressed in [32]. On the other hand, the 2-dimensional “fully

n fact ~ is a segment, in our example.
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non-linear” counterpart of [32] is a well-known conjecture of White, cf.
[42]:

CONJECTURE 2.14. Let T, %, T be as in[1.5, let m = 2 and assume
> and I' are real analytic. Then the union of the boundary and of the
interior singular sets is discrete.

Again such conjecture is widely open and in [11] the first three
authors have shown that the conclusion of the conjecture is false when
Y and I are just C'™°. A first step in the positive direction is given in
the paper [31] where the third author and Marini prove the uniqueness
of tangent cones at any point p € I' when the latter is merely C1<.

Coming back to the case of C*° boundaries I', the example (a) in
Theorem [I.§ shows that Conjecture 2.7 must be taken with a grain of
salt. One reason why Conjecture[2.7]might still be correct is that, while
the accumulation singular point in the example of Theorem [L.8|(b) is
a boundary branch point, the singularities accumulating to it are of
“crossing type”, namely points where the minimizer is in fact an im-
mersed surface. If it were possible to produce an example with an
accumulating sequence of branch points, one could conceive to modify
the construction to produce a Cantor-like set of genuine boundary sin-
gularities, possibly disproving Conjecture 2.7 The following question
seems thus a very relevant one:

QUESTION 2.15. Is it possible to produce an example as in Theo-
rem with a boundary singular point which is an accumulation of
boundary branch points?






CHAPTER 3

Stratification and reduction to collapsed points

3.1. First variation and monotonicity formula

Here and in the sequel we will denote by Ay and Ar the second
fundamental forms of ¥ and I' and we will assume that 7" is as in
Assumption [1.5]

As usual, given a vector field X € C}(B,) we let By xR 3 (z,t) —
®,(x) be the flow generated by X, namely each curve 7,(t) := ®;(z)
satisfies the ODE 7,(t) = X(n.(t)) subject to the initial condition
n:(0) = x. We then define the first variation of 7" along X as

T(X) = 2

= =] M((@)T).

0

If the vector field X is tangent to spt(07) = I' and is tangent to the
manifold X, we then know that 67(X) = 0. Moreover, it is well known
that if X vanishes on spt(97) but it is not tangent to 3, then

0T(X)=— | X-Hp(z)d||T|(x)

B2

where the mean curvature vector Hy can be explicitly computed from
the second fundamental form Ay. More precisely, if T'(z) = viA. .. Avy,
and v; are orthonormal, then

m

Hy(x) = As(vi,v;) (3.1)

=1

(see for instance [35]). In this section we derive a similar formula
for variations along general vector fields X, namely not necessarily
vanishing on the boundary. As a consequence we also get Allard’s
monotonicity formula at the boundary, with precise error terms. We
summarize all these conclusions in the next theorem. These are in
fact classical facts, under our assumption. Since however it is not
easy to pin-point precise references for our statements in the literature,
we include a short derivation from similar (more general) statements
proved in other articles.

33
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DEFINITION 3.1. For every point p € Bs, the density of T" at p is
defined as 1718, (p))
T|(B,(p
o(T,p) .= lim ————=
(Tp) = lim — =2
whenever the latter limit exists.

Y

We then consider the functions

Oi(T,p,r) := exp (Co||As]|or) W : (3.2)
0T, 1) = exp Coll sl + rlo)r) TIED - g3

where Cy = Cy(m, n,n) is a suitably large constant.

THEOREM 3.2. Let T' be as in Assumption [1.5,

(a) If p € Bo\ T, then r — Oi(T, p,r) is monotone on the interval

(0, min{dist(p, I'),2 — |p[})
(b) if p € BoNT, then r+— O (T, p,r) is monotone on (0,2 — |p|).
Thus the density exists at every point. Moreover, the restrictions of the

map p — O(T,p) to T'NBy and to Bo\T' are both upper semicontinuous.
If X € C}(By,R"™), then we have

ST(X)=— [ X-Hp(x)d|T|(z /X ii(x) dH™ N (z)  (3.4)

B2

where Hy is the vector field in and 1 1s a Borel unit vector field
orthogonal to T'.

Moreover, if p € T' and 0 < s < r < 2 — |p|, we then have the
following precise monotonicity identity

T — T B — [ . %dmm

P)\Bs(p) ]a: -

= /ST p [/Bp(p)(:l: —p)+ - Hy(2)d||T)|(x)

+ /me(p)(:c —p) - i(x) dH™ Hx) | dp, (3.5)

where Y(x) denotes the component of the vector Y (x) orthogonal to
the tangent plane of T at x (which is oriented by T (x)).

In this chapter we in fact only need (a) and (b), which are proved
in [2] and [3], and some consequences of the monotonicity formula for
which less precise versions are sufficient: in particular many of the
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statements needed can be easily derived from [3] and for this reason
we postpone the proof of Theorem to the last section.

Note that at any p € Regy,(T) the density equals @ — %, where the
positive integer @ is as in Remark[1.2] Moreover we recall the following

THEOREM 3.3 (cf. [3, Theorem 3.5 (2)]). ©(T,p) > 3 for every
pel.

DEFINITION 3.4. Fix a point p € spt(7’) and define

Lpr(q) = q;p Vr>0.

We denote by T,,, the currents

T, = (1p, )T Y7 >0.

We recall the following consequence of the Allard’s monotonicity
formula, cf. [3]. From now on, given any smooth oriented submanifold
of R™*™ like I' and 3, we will use the notation 7,I" and T, for the
tangent space to the manifold at the point p (which will be always
identified with a linear oriented subspace of R™*™).

THEOREM 3.5. Take p € spt(T) and any sequence r, | 0. Up to
subsequences T}, ,, is converging locally to an area-minimizing integral
current Ty supported in T, such that

(a) Ty is a cone with vertex 0 and ||T||(B1(0)) = w,O(T, p);
(b) if p € spt (T')\ T, then 0Ty = 0;
(¢) if pe ', then 0Ty = [T,I].

Moreover ||T,,,, || converges, in the sense of measures, to ||To||.

DEFINITION 3.6. Any cone Tj as in Theorem will be called a
tangent cone to T at p. A tangent cone Ty will be called flat if spt(7Tp)
is contained in an m-dimensional plane.

Note that a flat tangent cone at a point p € spt(T) \ T' is neces-
sarily a positive integer multiple of [7] for some m-dimensional plane
7 contained in 7},%: this is a consequence of the Constancy Theorem
and of (b) above. For p € I" a flat tangent cone has instead the form
Qr*] + (Q — 1) [~ ], where @ > 1 is an integer, 7 = 7 U7~ is an
m-dimensional plane contained in 7, and 0 [7 7] = [T,I'] = =0 [~ ].
The latter is again a consequence of the Constancy Theorem taking
into account that, by (b), 07y = [T,I].

DEFINITION 3.7. A point p € I" will be called a collapsed point if

(i) there exists a flat tangent cone to T at p;
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(ii) there exists a neighborhood U of p such that ©(T', q) > O(T, p)
at every g e I'NU.

The first main point of this chapter is to show how standard regu-
larity theory implies that

THEOREM 3.8. If Regy(T') is not dense in I' then there exists a
collapsed singular point.

The proof of Theorem will then be reduced to the following
statement:

THEOREM 3.9. A collapsed point is always a regular point.

All the remaining chapters will in fact be devoted to prove it.

Observe that at collapsed points the density O(T, p) equals @) — %
for some positive integer (). The case () = 1 of the above theorem
is indeed a consequence of Allard’s boundary regularity theorem for
varifolds. Moreover, if p is a point where O(T', p) = %, then by Theorem
assumption (ii) in Definition is automatically satisfied and in
fact the theory of [3] shows that even (i) holds necessarily. Therefore,
multiplicity % points are always regular:

THEOREM 3.10 (Allard’s boundary regularity theorem). All points

p €T with ©(T,p) = % are reqular points.

Finally, it is worth noticing the following two consequences of our
analysis, which we will also prove in the last section of this chapter:

COROLLARY 3.11. For every a > 0 at H™ **®-a.e. p € T there is
a flat tangent cone, and hence QQ = ©(T, p) —|—% is a positive integer. At
H™ 1a.e. p €T any flat tangent cone takes the form Q7 1] + (Q —
1) [7~], where the plane 7 is the unique plane containing T,I" and the
vector 1(x) appearing in (with the natural orientation).

Finally, by the very same arguments of [35 Theorem 35.3 (1)] and
a simple analysis of two dimensional tangent cones at the boundary,
one of the conclusions of the above corollary can be strengthened as
follows.

COROLLARY 3.12. For every o > 0 and H™ 3*%-a.a. p € T,
O(T,p) + 5 is a positive integer.
3.2. Stratification

DEeFINITION 3.13. Let p € ' and T be a tangent cone at p. The
spine Spine(Tp) is the set of vectors v € T,I' such that (7,);To = Ty,
where 7,(q) := q + v.
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We recall that the following conclusions are simple consequences of
the monotonicity formula, cf. for instance [43, Sections 3 & 5].

LEMMA 3.14. Spine(T}) is a vector space and we have the following
characterizations:

(a) v € Spine(Ty) if and only if ©(Ty,0) = O(Ty,v);
(b) v € Spine(Ty) if and only if (1, )sTo = T for every r > 0.
DEFINITION 3.15. Given a point p € I, an area-minimizing current
T with boundary 0T = I" and a tangent cone Tj of T" at p, the building
dimension Bdim(Tp) is the dimension of Spine(7p). We stratify the
boundary I' according to the maximum of the building dimension of
the tangent cones at the given point:

Z(T,T) :=={p el Bdim(7Ty) < j for every tangent cone Tj at p} .

The following stratification result holds, cf. [43, Theorem 5| (note
that by definition Spine(7p) C T,I).

THEOREM 3.16. (T, T") is at most countable, the Hausdorff di-
mension of each stratum (T, T") is at most j and

ST D) cAMTT)C...C Sma(T,T)=T.

We close this section proving the following elementary but useful
lemma.

LEMMA 3.17. If Bdim(Tp) = m — 1 then Ty is flat.

ProoF. Fix a tangent cone Tj to T" at p of maximal building dimen-
sion m — 1 and observe that Spine(7y) = 7,I". By a well-known result
of Federer (cf. [23, Section 5.4.8]) there exists a one-dimensional area-
minimizing current S in (7,I')* such that T, = [T, F]] x S. Note in par-
ticular that 05 = [0] and there exist £7,..., 65,04 and £7,..., {5,
oriented half lines with endpoint at 0 such that

ae] ==+00] .
Q Q-1
S = Z [er] + Z [¢] (3.6)
and o o1
ISt =2 I+ > NTETI (37)
cf. Figure [3.2]

In partlcular [[W]] + [[E ]] is an area-minimizing current without
boundary for every ¢, 7. But then we conclude the existence of a single
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=14

FiGURE 1. An example of current S and oriented lines
Kji when () = 4: the arrows represent the oriented tan-
gent to the lines. Note that pairs of lines £, ¢ and
(5,0} might coincide: in the example we have £ = (3
and {7 = (5. However the support of any line £ can
intersect the support of any line ¢, only at the origin,
otherwise (3.7) would be violated.

one-dimensional vector space {;; such that spt([¢/] + [¢;]) = €.
Since this has to be valid for any choice of (4, 7), we then also conclude
that the ¢;; coincide all with a single line ¢. Hence spt(1y) C T,I" + ¢,
which shows the flatness of Ty, O

3.3. Proof of Theorem [3.8

Fix an area minimizing current 7' with boundary 07 = [I'] and
assume that Singy,(7') has nonempty interior, which we denote by G.
Define

C; = {pEF: o(T,p) Zi—%}ﬂG.
Recall that, by upper semicontinuity of the density, C; is relatively
closed in G. Let D; be the interior of C; and E; := D; \ Cyyq. If p is
not in J;>, E;, then fix the natural number i > 1 such that

i—1<O(Tp) <i+}

and observe that therefore p € C;\ D;. The latter is a relatively closed
meager subset of G and thus we conclude that G \ |, £; is the union
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of countably many closed meager subsets of G. By the Baire Category
Theorem | J,-, E; cannot be empty.

This means that at least one E; is not empty and, being relatively
open in I', by the stratification Theorem |3.16| we conclude that FE;
contains a point p ¢ %, 2. By the Lemma there is at least
one flat tangent cone Ty at p, which in turn implies the existence of
a positive integer ) such that ©(Ty,p) = Q — % Observe that p €
E; C C;\ Ciy1 and, hence, @ = i. Being E; relatively open in T
there is a neighborhood U of p such that U NT" C E; C C;. Therefore
O(T,q) > O(T, p) for every g € UNT. Thus p is a collapsed point. On
the other hand p € GG, namely it is a singular point. O

3.4. Proofs of Theorem [3.2] and Corollaries [3.11] and [3.12]

Statement (a) is the classical monotonicity formula, which in fact
holds in a much more general situation, see for instance [2, Theorem
5.1(1)]. Statement (b) follows from Allard’s monotonicity formula at
the boundary for varifolds, see [3, Theorem 3.4(2)[] The upper semi-
continuity of the restriction of the density on the two sets I' and By \ T’
is then a standard consequence, see for instance [35], Corollary 17.8].

Since T is stationary with respect to variations which vanish on I'
and are tangential to >, we have the usual identity

ST(X)=— [ X-Hp(z)d|T||(z) forall X € C}B,\T),
Bo

cf. for instance |35, Lemma 9.6]. Thus we can apply [3, Lemma 3.1]
to the integer rectifiable varifold naturally induced by T to conclude
0T = FIT||T|| + 0T, where 0T is a singular Radon measure supported
in I'. By the Radon-Nikodym decomposition, if we denote by ||d7%|| the
total variation of 67 we conclude the existence of a unit Borel vector
field 7 such that

() = = [ X Fr@dITI@) + [ X-@) dldTl@) 69
B
for all X € C1(B,). Note next that, by the explicit formula for Hy in

(1), Hy(z) is orthogonal to T,% and in particular it is orthogonal to
the tangent plane to T" at x. Thus in the first integral of the right hand
side of (3.8) we can certainly substitute X with X*.

IFor an alternative approach, similar to the one used for proving Theoremm
we refer the reader to [12] Section 4]
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Moreover, according to [3], Section 3.1], ||6T|| satisfies the following
upper bound for any positive ¢ € C.(By):

o1
[odior < pim s | Y@)IT) ().
r —0 {z:dist(z,I')<h}

Hence it follows easily from the existence and boundedness of the den-
sity Oy (T, p) that ||07,]| = 6H™ LT for a locally bounded Borel func-
tion 0 with 0 < 6(p) < C(m)Oy (T, p)

Now, we know from the previous sections that at H™ !-a.e. p there
exists a flat tangent cone S, = Q [ ]+ (Q — 1) [7~], where 7 contains
T,I". On the other hand we know from the convergence of the currents
together with the convergence of the respective total variations that
the varifolds induced by (t,,)s1" converge to the varifold induced by
Sp. Thus, by continuity of the first variation, we conclude that

35,(X) = lim 8(1,, )T (X)
On the one hand simple computations lead to the identity

55,,()():/ v XdH™ !,
T,

P
where v is the unique unit vector contained in 7 which is orthogonal
to T,I" and is compatible with the orientations of = and 7,I'. On the
other hand, by a simple rescaling argument

ti 3(0,, ) T(X) = [ 0()i(p) - X (3.9

at H™ '-a.e. p. We thus conclude 7i(p) = v, and § = 1. This argument
proves the identity (3.4]), but it shows as well the validity of the last con-
clusion of Corollary [3.11} if we fix a point p where holds, we have
actually shown that, for any flat tangent cone Q [# 7]+ (Q —1) [#~] at
that point, the vector 7i(p) must belong to 7~, which uniquely deter-
mines the pair (77, 77). Since @ is uniquely determined as O(T, p) + %,
we conclude that any flat tangent cone at p is determined by 7(p). The
identity of is then a consequence of [7, Eq. (31)]. Finally, the
first assertion of Corollary is a consequence of Theorem [3.16] and
of Lemma 3.17

To prove Corollary by Theorem [3.16] it suffices to show that
the density is a half integer at every point p € .7, (T, T"): the latter
claim follows if we can show that every boundary area-minimizing cone
Ty with building dimension m — 2 satisfies the property that ©(7p,0)
is a half-integer. The latter property is in effect of the following char-
acterization.
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LEMMA 3.18 (Characterization of 2 dimensional area minimizing
cones with boundary). Let Ty be an integral 2-dimensional locally area-
minimizing current in R*™* with (10,)sTo = Ty for every r > 0 and
Ty = [[o], where Ty = {(x,y) € R x R* : 2y = |y| = 0}, Then

To =[] + Z 0; [i]

where

(a) m is a closed oriented half-plane;

(b) the m;’s are all oriented 2-dimensional planes which can only
meet at the origin;

(c) the coefficients 0;’s are all natural numbers;

(d) if 7t N # {0}, then 7% C m; and they have the same orien-
tation.

PROOF. Let |-|: R*** — R* be the Lipschitz map (z,y) — |(z,y)]
and consider the 1-dimensional integral current S := (Tp, ||, 1). Recall
that, since T} is a cone,

T()LBl — SX( [[0]] 9
Ty = }}rg(ﬂ),r)ﬁ (S% [[O]D )

Note moreover that, by the usual formula on the boundary of slices,
0S = (0Ty, |- |,1) = [e1] — [—ed] , (3.10)
where e; = (1,0,...,0). By [23] 4.2.25] we have
N
S = Z ej [[7]]] )
=0
where 7, is a simple Lipschitz curve, ; € N and v; # ~; for i # j and
N N
M(S) =Y o;M([y]), M(@S) =) ;M@ []). (3.11)
=0 =0
From the second identity in (3.11)) and from (3.10) we conclude that
there is precisely one i for which £0 [v;] = [e1] — [—e1], whereas all

the other curves v;’s are closed. Without loss of generality we assume
that such 7 is 0 and note that 6y = 1, so that we can write

S =Tl + >0l (312)
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Consider now the currents Z; = lim,1o0(t0,)4(6; [7;] % [0]) and ob-
serve that:
N N
To=Zo+Y  Zi, M(T)LBg) = M(ZLBg)+> M(ZLBg) VR
i=1 i=1
(3.13)
In addition Sing,(7) must be empty, otherwise it would have dimension
at least 1. Thus all the v;’s are disjoint great circles for j =1,..., N
and 7y is half of a great circle. This gives (a), (b) and (c), where we let
7t be the half-plane containing 7y and 7; be the plane containing ;.
Note next that if 77 N 7; contains one point p besides the origin, then

o If p ¢ T, then 7" must be a subset of 7; because otherwise p
would be an interior singular point of T;

o If p € I'y, then Sy + 5 is, by , an area minimizing 2-dim.
cone with boundary [I'y] and it has building dimension 1; thus
by Lemma we have again 7+ C ;.

We thus conclude that 7t C m;. The fact that both have the same
orientation follows finally from the second identity in . O

> 0.



CHAPTER 4
Regularity for (Q — 1) Dir-minimizers

As explained in the introduction the second important step in the
proof of Theorem is the understanding of its “linearized” version.
This requires the study of the boundary regularity of Dir-minimizers
(-valued map subject to a particular type of boundary condition, see
Definition [£.1] and Remark [4.33] below.

We assume the reader to be familiar with the theory of ) valued
maps as it is presented in [13, A5, 29]. We just recall here that a
()-valued map is a map v : Q@ C R™ — Ap(R") where

=1

Ag(R™) == {Z[[P]] PeR" Vi=1,. Q}

can be thought as the set of @-tuples of unordered points in R™.
Ag(R™) can be easily given the structure of a metric space via the
following definition: given Fy, Fy € Ag(R"™) with F; = ), [P] and
Fy =", [Si] we define their distance as

G(Fy, F3) :== min Z‘P Se(i

o€ @Q

where & denotes the group of permutations of () items.

Throughout all the chapter we will consider an open set 2 C R™
together with a hypersurface v dividing € in two disjoint open sets Q%
and Q.

DEFINITION 4.1. Let ¢ € Hz(v,R") be given. A (Q — 1)-valued
function with interface (v, ) consists of a pair (f*, f7) with the fol-
lowing properties:

(i) f+eWh(QF, Ag(R")) and f~ € WH3(Q~, Ag_1(R"));
(i) oy =171+ [e]-
Its Dirichlet energy is defined to be the sum of the Dirichlet energies
of fT and f~.
43
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Such a pair will be called Dir-minimizing if any other (Q — %)-

valued function with interface (v, ¢) which agrees with (f*, f~) outside
of a compact set K C €2 has bigger or equal Dirichlet energy.

FIGURE 1. A 2-valued function with interface (7, ¢): the
function f* is the 2-valued map [[ff]] + [[f;]] and f~
coincides with the (classical) single-valued f; .

Although the definition makes sense also for () = 1, notice that,
in that case, the pair (fT, f7) consists of a single-valued function f+
and its Dir-minimality is equivalent to the harmonicity of f*. In this
chapter we will focus on the nontrivial case () > 2.

The first result of this chapter is a “soft” existence theorem for

(Q — %)—valued Dir-minimizers.

THEOREM 4.2. Given a (Q — 3)-valued function (g*,g~) with in-
terface (7, ) on a bounded Lipschitz domain 2, there exists a (Q — %)
Dir-minimizer (f*, f~) with interface (vy,¢) such that f© = g= on

O\ vy and f~ =g on 90\ .

A particular class of (Q — %)—Valued functions with interface (7, ¢)
are the ones with collapsed interface.

DEFINITION 4.3. A (Q — $)-valued function with interface (v, ¢)
is said to collapse at the interface if fT|, = Q [¢].

REMARK 4.4. Observe that (f*, f~) collapses at the interface if
and only if f~|, = (Q — 1) [¥].

The main theorem of this chapter is the following:

THEOREM 4.5. Let ¢ : v — R™ be of class C**, v be of class C3,

Q>2and (ff,f7) bea (Q — %)-Ualued Dir-minimizer with interface
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FIGURE 2. A %—Valued function which collapses at the
interface (7, ).

(v,). If (fF,f7) collapses at the interface, then there is a single-
valued harmonic function h : Q — R™ such that fT = Q[h|o+] and

f7=(Q—1)[hlo-].

Note that the above theorem is the “linearized” version of Theorem
Note also that we are requiring C® regularity of ~, this seems
to be due to our method of proof more then to a serious technical
obstruction, see Section below. However Theorem [4.5] is enough
for our purposes because the boundary data I' is assumed to be of class

C%% in Assumption [L.5]

4.1. Preliminaries and proof of Theorem

In this Section we prove existence of Dir-minimizing (Q — 3)-valued
functions.

PROOF OF THEOREM [£.2] Take a minimizing sequence (f;", ;)
with interface (v,¢) and fi¥ = g% on 90 \ v. It is simple to see
that f,;t enjoy a uniform bound in L?(QF). For instance, consider the
bi-Lipschitz embeddings

sQ : AQ(R”) R RN(Q,H)’ €Q—1 . AQ—l(Rn) — RN(Q_LTL)

of [13] Theorem 2.1]. Then it suffices to bound the L? norm of &go f;,
€o-10f, and the latter bounds are a simple consequence of the classical
Poincaré inequality using the uniform H 2-bound for the restriction of
€o fif to 00T\ 4.

By [13l Proposition 2.11] we can extract a subsequence (not rela-
beled) such that f," and f, converge strongly in L? to W'? functions
fT and f~, respectively. By continuity of the trace operator (cf. [13]
Proposition 2.10]) the pair (fT, f7) has interface (7, ¢) and coincides
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with (¢%,¢7) on the boundary of Q. By lower semicontinuity of the
Dirichlet energy (cf. [13 Section 2.3.2]),
Dir(f*, Q") + Dir(f~,Q7) < lliminf (Dir(f;7, Q") + Dir(f,,Q7)) .

—+00

This obviously implies that (fT, f7) is one of the sought minimizers.
O

Next we record the following continuity property for (Q — %) Dir-
minimizers which collapse at the interface. The property is a direct
consequence of the main result in [29]. Note that, from now on, for
every metric space (X,d) and any map f : Q@ — X we will use the
notation [f]g x for the Holder seminorm of the restriction of f to the
subset K C (), more precisely

[f]ﬁ,Ki: sup M

z,yeK,x#y |.T - y|ﬁ

THEOREM 4.6. If v is of class C* and ¢ of class C*F, with § > 1,
then there exist a positive constant C' = C(m,n,v,Q) and a positive
constant o = a(m,n,Q, ) with the following property. Consider a
(Q — %) Dir-minimizer which collapses at the interface (v, ). Then
the following estimates hold for every x € QF Uy, respectively x €
Q™ U~, and every 0 < 2p < dist(x,00Q):

n . 1
[fi]ava(x)in < Cpl_i_a (Dll‘(f:t, B2P(x> N Qi)) ’
+ Clolgia[gp]B:’Yﬂng(z) .

An outcome of the proof of Theorem [4.6] in [29] is the following
compactness statement:

LEMMA 4.7. Let (f;7, fi) be a sequence of (Q — %) Dir-minimizers
in  which collapse at the interfaces (v, r) and satisfy the following
assumptions:

(i) limsup,_, ., (Dir(f;) + Dir(f;)) < oo;
(ii) & is converging in C' to a hyperplane v;
(iil) ¢y is convergmgﬂ in C%% to a constant function ¢ for some
B> 1
Then there ezists a subsequence (not relabeled) and a (Q — %) -valued
function (f, f~) with interface (v, ) such that

(a) ff¥ — f* in L*(K) for every compact set K C QF.

1By this we mean that for every k there is a C%? extension @y, of wk‘w to the

whole R™ such that the sequence {@} converges to a constant function
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(b) Dir(f*,Q* N Q') = limy, Dir(f, Q% N Q') for every & cC Q,
where Q,f denote the two open domains in which ) is subdi-
vided by i;

(¢) fT is Dir-minimizing in Q" and f~ is Dir-minimizing in Q.

In turn we can take advantage of a standard blow-up argument to
upgrade Lemma to the following more general statement, where
the convergence in (c) is to a general hypersurface v and we conclude
additionally that the limiting (f*, f7) is Dir-minimizing as a (Q — %)
map.

THEOREM 4.8. Let Q be bounded and let (f,", f,) be a sequence of
(Q — %) Dir-minimizers in § which collapse at the interfaces (vx, px)
and satisfy the following assumptions:

(i) limsupy_, . (Dir(f;5) + Dir(f,)) < oo;
(ii) & is converging in C to a hypersurface ~;
(iii) ¢ is converging in C%? to a function ¢ for some 3 > %

Then there ezist a subsequence (not relabeled) and a (Q = %) -valued

function (f*, f7) with interface (v, ) such that the conclusions (a)
and (b) of Lemma apply. Moreover (f*,f7) is a (Q— %) Dir-

mainimizer which collapses at the interface.

Before coming to the proof of the latter theorem we need two im-
portant technical ingredients.

4.1.1. Interpolation lemma. The following technical lemma al-
lows to “glue” together two different functions and will be instrumental
to several proofs:

LEMMA 4.9 (Interpolation). Let U C R™ be a domain with smooth
boundary OU and let v C R™ be a smooth interface that intersects OU
transversally and divides U into two subdomains UT. Then for every
compact subset K C U there exist constants C; A\g > 0 depending on

L m7 Q? K?

o the C? reqularity of U and 7,

e and min{|T,0U — T,y : x € yNOU},
such that the following holds.

Let (f*,f7),(g7,97) be two (Q— %)—Ualued maps in U with in-
terface (7, pl|,) for some o € WH3(U). Additionally we assume that
(fT,f7) collapses at the interface. Then for every 0 < A < X\ there
exist open sets K C V\ C W, C U and a (Q — %)—valued map (Ct,(7)
in Wy \ Vi with the following properties:
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_JF@), ifeeowy
(a) ¢F(2) = gt (z), ifzeavE’

) ¢
(b) ¢ has interface (7, ¢l|y);
(c) the following estimate holds

/ IDCH? < O / (IDF*P +|Dg*P + QDo)
Wi\ U+\K

+§ G(f*,9%)% (4.1)
U\ K

If in addition f and g are Lipschitz then C can be chosen to satisfy

Lip(¢*) < C (Lip(fi) + Lip(g%) + + sup G(fi,gi)(:v)> . (42)
A zeU\K
REMARK 4.10. If U = B; C R™, we can take any Ay < 1 and we
may assume that Vy = B,_y and W, = B, for some s 6]1 — Ao, 1],
while the constant C' in the estimates depends only on m,n, Q. Fur-
thermore, with an obvious scaling and translation argument, we can
get a corresponding statement for U = B,.(x).

Proor. We divide the proof in some steps:
Step 1: Choice of "cylindrical” coordinates around OU: We may

assume that there is a smooth function d such that:

o U={d>0}
e 0 is a regular value of d.

In particular there is 7 > 0 such that
|Vd(z)| >n in a neighborhood of U’ of 9U. (4.3)

As it will be customary in the sequel, we will use the symbol p, to
denote the orthogonal projection onto a plane w. By assumption -y
intersects QU transversally: hence, possibly choosing n > 0 and U’
smaller, we can also assume

pr,,(Vd(2))] > 1 VeeynU' . (4.4)

In order to simplify our notation from now on we will set (Vd(z))T =

The inequalities above imply that we can define a smooth vectorfield
X in a neighborhood V' of OU with the following properties:

(A) |X|=1and (Vd(z),X(x)) > 2 forall z € V;

(B) X = 2 for all 2 € V N 7.
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Let ¢ : V x [—tg, to] = R™ be the flow generated by X. Hence the map
(y,1) € OU x [—to, o] = p(y,1)

gives a parametrization of a neighborhood V' of U with the additional
property that

P(y,t) € v for all (y,t) € yNOU x [0, to). (4.5)
Possibly decreasing ¢y, we may assume that (90U x]0,to[) C U \ K.

Step 2: Reduction to ¢ = 0. Instead of considering f, g directly, we
look first at the two functions

=X U=l g =) Lo -]
Note that they satisfy the same assumptions of f and g but with in-
terface (7,0). Furthermore, one readily checks that

IDFFP(x) < 2D f* () +2Q| Dy (x) (4.6)
and similarly for g. Additionally we have that
G([*.55) =G(f*,9).

Step 3: Choice of Vs C Wi and definition of C for f,§. Define next

FEy.t) = [F(W(y,1)
75(y,t) == §=(¢(y,t)) and
o(y,t) == p(¥(y,1).

Set now \g := tg, let A be a positive number smaller than A\g and select

the natural number N such that NA <ty < (N+1)A. For our purposes,

by making ty slightly smaller, from now on we can assume A\ = tﬁo

Consider the disjoint intervals I; := [(j — 1)%, j%[ for j = 1,...,N.

Then there must be at least one j € {1,..., N — 1} such that

/ IDF*P + |Dg*P < 8 / IDF*? 4 [Dg*[?
(BU)* X1, (8U)* x[0,t0]

/ G(F*,5%)? < 8) / G(F*. %)
(BU)Ex1;

(8U)E x[0,t0]

If ¢ # 0 we require additionally that

/ Dgl? < 8) / Dgf?. (4.7)
(OU)*: xI; (8U)*x[0,t0]
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Fix such a 7 and define
V= UN6(0U < [0,jto/N]) Wy = U\ (U x [0, = Dto/N]),
so that

Wi\ Vs = w<8U><](j - 1)to/N,jt0/N]).

We consider the Almgren embedding &g : Ag(R") — RN©@") (resp.
€01 Ag1(R™) — RN@-1n) and the retraction pg : RVN@M —
€0(Ag(R™)) (resp. pg-1) as in [13, Theorem 2.1]. We then define the

functions ¢ as

) = €50 oo (2 kol + Lol ).

and analogously for (~. Finally, we set ((z) := ((»"'(z)). The esti-
mates (4.1) and (4.2)) are then routine calculations for the case ¢ = 0.
Hence, it remains to check that ((*,(~) has interface (v, 0) , namely
that

CHy,t) = (y,t) + [0] whenever x = 1(y,t) € 7.
Fix thus (y,t) € OUx](j — 1)\, jA] such that x = ¢(y,t) € v and
observe that, since f*(y,t) = f+(37) = QI[ol, f~(y.t) = f‘(:r;) =
(Q — 1) [0], and &o(Q [0]) = 0, we have

) =&t o pa (U e 00

and the same for (. Note next that &o(Ag(R™)) is a cone and in fact

& (Z umﬂ) = &0 (- I7) -

i

We therefore conclude

o =30 | S 0]

and the same for (7 (y,t). Since g*(y,t) = g~ (y,t) + [0] we conclude

as well that (*(y,t) = (~(y,t) + [0].
Step 4: The general case. To conclude the proof we finally define

H(z) =Y |G @) +e@)]
One readily checks that ( satisfies the claimed boundary values and
has interface (7, ). Using once again (4.6)) for ¢ and exploiting also
(4.7), we obtain the estimates (4.1)) and (4.2]). O
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4.1.2. A simple measure theoretical lemma. The second tech-
nical ingredient is the following simple measure theoretic fact.

LEMMA 4.11. Let p be a Radon measure supported in a C k-
dimensional submanifold M of some Euclidean space. Set

B,
A= {:1: € spt(u): liminfM—W > O}
r—0 r
and

B = {x € spt(p): liril_%lp% > 2_k} :

Then u(M\ A) = 0= u(M\ B).
PROOF. Since the statements can be easily localized, by a C! change

of variable we can assume that M = R*. By Radon-Nikodym Theorem
we can decompose [ as

pa + ps = fdx + pi

where dx is the k-dimensional Lebesgue measure, f is a nonnegative
L' function and p, is a singular measure with respect to Lebesgue.
Moreover, for us-a.e. x we have

o u(B)
r—0 wkrk
and for p,-a.e. x we have
B (1))
71}3(1) o = f(xz) > 0.

Combining the above facts one immediately gets that p(A°) = 0.
To prove the second claim assume by contradiction that there exists
g9 > 0 such that the set

B — {:1: € spt(u): limsup %

has positive measure. Since for all zy € B there exists ry such that

1(Br(z0)) < 27F(1 — e0) pu(Bay(20)) for all r € (0, 7],

<27F(1 - 250)}

one easily get that, for all j > 1

By, (20 (B (0
Mo (1ol

Hence, letting j — oo, B® C A, a contradiction with pu(B%) > 0. O
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REMARK 4.12. Note that, as a consequence of the above Lemma,
for p-a.e. x there exists a vanishing sequence {r;} such that

. PJ(BTJ- (7)) —k
P By )~

Recall moreover that p(0Bs(y)) # 0 for only countably many radii s.
Since

lim p(Bs(z)) = p(Br(x)),

str
we can choose s; < r; so close to r; to ensure
1(Bs, (2)) (B, (x))

lim = lim > 927k,

5=00 (1 Bas, (7)) 5700 1 Bay, ()
and at the same time enforce the additional property (9B, (7)) =
0 = p(0B,,(z)).

4.1.3. Proof of Theorem Compactness. : Let (f;f, f,)
be a sequence of (Q — %)— Dir-minimizers satisfying the assumption
of the theorem. As in the proof of Theorem 4.2 we can extract a
subsequence such that fi converges strongly in L? to a W? function
f* with Dir(f*, Q%) < liminf), Dir(f;, QF). It remains to prove that,
when Q' C ) we actually have

Dir(f£, QN Q) = Jim Dir(fE, QN ).

The argument is the same for f* and f~ and for simplicity we focus
on ft.

Possibly passing to a further subsequence, we may assume that the
sequence of Radon measures py, defined by pu(A) := Dir(f,F, AN Q)
converges, weakly* in the sense of measures, to some p. By lower semi-
continuity of the Dirichlet energy there is then a nonnegative “defect
measure v such that

pu(A) = Dir(fH,ANQT) +v(A) for all Borel A CC €.

The goal is to show that ¥ = 0 and we therefore assume, by contra-
diction, that v > 0. Observe that ¥ must be supported in =, because
in the interior of QO we can appeal to [13] Proposition 3.20]. We can
then apply Lemma (with M = ~) and the Remark to find
that at v-a.e. point zy € spt(v) there is a sequence r; | 0 such that:
v(B,. (z
lim inf —( ](mo_)l) >a>0, v(B,(z0) < (2" 4 0(1))v(B,, (),
l—o0 wm_lrl
v(0B,,(10)) = 0 = v(9B,, j2(0)).
(4.8)
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Moreover, since v is singular with respect to the Lebesgue m-dimensional
measure, we also have

(B, (o))

=1 1
v(B,, (zo +ol)
for v-a.e. x.

We thus fix an zy and a sequence r; with the properties above
and also assume, after applying a suitable rotation, that the blow up
Lzo.r; (77) converges to the hyperplane vy = {z,, = 0}. We next consider
the sequenced]

[Tz +1j2) f;j(ﬂ(xo +rjx)
(T?_QV(BTJ. (xo)) (7’;”_2V(BTJ. (ZEO))
where we have chosen k(7) sufficient large such that

max{ () (Br(x0)) = p(Br(w0))|: 7= rj,7;/2} < 27072 w(By, (0))

g(f;j(l)v f+)2 < 27170;'7%2V(Brj (o)) -

gj(x) = and  hj(z) =

Y

[N
D=

/Brj (mo)ﬁQz(j)ﬁS%L

Furthermore the choice of k(j) ensures that

/ Glg; hy)? <27
Blﬁ{l’m>0}

Note that h; and g; are (Q - %) Dir minimizers which collapse at
their interfaces (7;, %;) and (95, ¢;), respectively, where 5; 1= 14, (7),
Vi 1= taor; (Ve()) and
_ o(xo + ;1) . ok (zo + 7;7)
3i(x) = = and yle) = —

j a —
(r;”_Qy(Brj(xo)) 2 (r;” 21/(B,ﬂj (.CIZO))
Note that, as | = 00, 3;,%; — 70 in C*. Moreover ¢;, ¢; — ¢(zo) in
C?, since, thanks to (4.g)),

and

=

B
71j [@k(l)]ﬁﬁk(Z)ﬁBrj(xo) < Tf

(T‘m_2V(BT]. (xo))) 3 ar

J

~

[@ilp4nB1 =

[k annB:, @)

S ol

and 3 > 1 (and similarly for @).

°In order to simplify our formulas, we will use the following abuse of notation:
if f=73",[fi] is a multivalued map and X is a classical real valued function, we
will denote by Af the map z +— >, [Afi(z)].
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We are therefore in the situation of Lemma and thus we can
find functions h and g such that, passing to a subsequence, h; — h and
g; — g. Furthermore, by condition (B) above, h = g.

Let us show that this is a contradiction and thus conclude the proof.
Indeed, on the one hand,

Dir(f*, B,,(x0))
v(By, (20))
and, on the other hand, due to the conclusions of Lemma [4.7]

Dir(h, By N {zy > 0}) = li]m Dir(f;, By N oo, (45))

(B, B,
~ lim fir(i) (Br, 2(0)) — lim By, j2(0)) > 9~ (m=1)
j—00 I/(Brj (.To)) J—00 V<B7"j (LU(]))

=0

Dir(g, By N {z,, > 0}) < lilm inf
— 00

4.1.4. Proof of Theorem Minimality. We now come to
the second part of the theorem, namely to the claim that (f*, f7)
is a (Q — %) Dir-minimizer. This requires a suitable modification of
the same argument given in [13] Proposition 3.20]. We assume by
contradiction that (f*, f7) is not a minimizer and let (¢*,¢~) be a
suitable competitor, which coincides with (f*, f~) outside of a compact
set K. First of all we notice that we may assume that, by Sard Lemma,
we can find an open set U C () that contains K and intersects
transversally.

Thus we have that (¢%,¢7) = (fT, f7) on OU, that ¢*|, = [¢] +
g~ |, and that

Dir(g*) + Dir(g~) < Dir(f*) + Dir(f~) — 4c

for some positive ¢. For each k we let ¢, be a diffeomorphism which
maps U onto itself and v, N U onto y N U. Clearly this can be done
so that ||® — ®||c1 — 0, where @ is the identity map. Thus, from the
convergence in energy of (f,, fi) to (f, /) we conclude that, for a
sufficiently large k,

Dir(g" o @) 4+ Dir(g~ o @) < Dir(f,") + Dir(f, ) — 3c.

Observe that each pair (g7 o @5, g~ o @) has interface (g, o @),
where || o @ — pi||cos — 0.

In particular, since § > 1, we can fix first ¢ € W'2(U) such that
¢ly = . Furthermore, since [|¢ o @4 — @ilg1/2(,,) — 0, there is a

sequence of classical W12 functions s, on U such that

® s, = pody — ¢ on Y,
o |5|lwiz — 0.
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This implies that [, |D(@¢o®;—5¢)|? is uniformly bounded. We consider

the maps
hf ¢:Z[[gii°‘bk—%k]] :

Observe that (h,h;) have interfaces (y,¢r), that G(fF, hF) — 0
strongly in L*(U* \ K) and that, for k large enough,

Dir(h;") + Dir(h; ) < Dir(f;") + Dir(f;,) — 2c.
Let us apply the interpolation Lemmato the maps (f;", fr), (b, hy)
and the set K C U. We obtain, for each A > 0, interpolation maps

(C,j, ¢, ) defined on K C VA'“ - Wf C U. We can now define competi-
tors to (fi, f) on W§ by

uE = C}it on (W§)*\ Vi
b hE on (V'

Using (4.1)) one readily checks that, for k sufficiently large and A > 0
sufficiently small,

Dir(u;) + Dir(u;, ) < Dir(h}) + Dir(h ) + Dir(¢") + Dir(¢),)
< Dir(f,F) + Dir(f, ) — 2¢ + Dir(¢;") + Dir(¢,)
< Dir(f;") + Dir(f;,) —
This contradicts the minimality of (f;", f, )

4.2. The main frequency function estimate

We start this section by introducing the frequency function and
deriving the main analytical estimate of the entire chapter.

DEFINITION 4.13. Consider f € W,2(92, Ag(R")) and fix any cut-
off ¢ : [0, 00[— [0, 00[ which equals 1 in a neighborhood of 0, it is non
increasing and equals 0 on [1,00[. We next fix a function d : R™ — R*
which is C? on the punctured space R™\ {0} and satisfies the following
properties:

(i) d(x) = |z] + O(|[*);

(i) Vd(z) = 2 + O(Jal);
(iii) D?d = |z|7'(Id — |z| 2z @ z) + O(1).
We define the following quantities:

Dya(f,r) = /qu(@) |Df*(z) dx

Hoatrr) = = [ o (22) waop L0 o,
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The frequency function is then the ratio

rD r
Loa(fir) = —Hjj((f’r)) :

H obviously makes sense when ¢ is Lipschitz. When ¢’ is just a
measure we understand H as an integral with respect to the measure ¢’
in the variable d(x)/r and this also makes sense because the integrand is
bounded and continuous on the support of ¢’. Of particular interest is
the case when ¢ is the indicator function of [0, 1] and d(x) = |z|: then
D(r) is the Dirichlet energy on B,(0), H(r) is the integral [, |f|?
and [ is the usual frequency function defined by Almgren. In the
sequel, if we do not specify ¢ and d, we then drop the subscripts and
understand that the claims hold for all cut-off functions ¢ and all d as
in Definition If instead we require some more assumptions on ¢
or d (for instance a certain regularity) we then leave the cut-off ¢ or
the function d in the subscripts.

REMARK 4.14. Note that if a function d satisfies (i), (ii) and (iii)
in Definition 4.13| with certain implicit constants, than the function
d,(x) = d(rx)/r satisfies the same assumptions with the same constants
(actually smaller). Moreover d,.(z) — |z| in CZ_(R™\ {0}) N CY (R™).

loc loc

FIGURE 3. The domain €. f in Theorem collapses
to @ [0] on OS2

THEOREM 4.15. Let Q C R™ be an open set of class C3, with
0 € 0. Then there is a function d satisfying the requirements of
Definition [{.15 such that the following holds for every ¢ as in the same
definition.
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If f € WH2(Q N By, Ag(R™)) satisfies
(i) floons, = Q[0];
(ii) Dir(f) < Dir(g) for every g € WH*(QN By, Ag(R™)) such that
9loanny) = flonsy);
then, either f = Q [0] in a neighborhood of 0, or the limit lim,. o 1 4(f,7r) <
+o00 exists and it is a positive finite number.

REMARK 4.16. In fact the conclusion of Theorem .15 holds for
every d which, additionally to the requirements of Definition [£.13] has
the property that Vd is tangent to 0€). The existence of such a d is
then guaranteed by a simple geometric lemma, cf. Lemma [4.25]

REMARK 4.17. Note that if (f, f7) is a (Q — $)-function which
collapses at its interface (02N By, 0), then fT satisfies the assumptions
of Theorem [£.15]

4.2.1. H' and D’. In this section we compute H' and D’. Since
there is no possibility of misunderstanding, we omit to specify the de-
pendence of D, H, I on f.

PROPOSITION 4.18. Let ¢ and d be as in Definition assume

in addition that ¢ is Lipschitz and let € be as in Theorem |/.15. If
[ € WH(Q N By, Ag(R™)) satisfies condition (i) of Theorem
then the following identities hold for every r €]0,1[:

= [o () s o (4.9

H'(r) = (m — 4 0<1)> H(r) + 2E(r), (4.10)

r

where

:__/¢ ( )Zf (Dfi(x)-Vd(z))dz  (4.11)

and the constant O(1) appearing in - depends on the function d
but not on ¢.

REMARK 4.19. It is possible to make sense of the identities above
even when ¢ is not Lipschitz. In that case, using the coarea formula
appropriately, it is possible to see that the right hand sides of the
two identities and are in fact well-defined for a.e. r and
that both D and H are absolutely continuous. Hence, if formulated
appropriately, the proposition is valid for every d and ¢ as in Definition
[4.13] without any additional regularity requirement on ¢. This will,
however, not be needed in the sequel.
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PROOF. The identity (4.9)) is an obvious computation. In order to
compute H' we first use the coarea formula to write

o)== [ [ o7t (B) INd@sP an )

- _/OOO@ /{d }|Vd(a:)Hf|2<x> dH"™ N (z) do. (4.12)

-~

=:h(ro)

In order to compute A'(t) we note that v(z) = éj—gg‘ is orthogonal to

the level sets of d and we use the divergence theorem to obtain

h(t+5)—h(t):/

{d=t+e}

]f|2Vd-1/d’H,m_1—/{ }|f\2Vd-yd”H,m‘1
d=t

_ / div (|f[2Vd(z)) dz (4.13)
{t<d<t+e}

- /{t<d<t+ }2Zfz(x) (Dfi(x) - Vd(x)) dx

i

+ / |fIPAd(z) dx
{t<d<t+e}

Dividing by ¢, taking the limit (and using again the coarea formula)
we conclude

B(t) = /{ " Vd|™! (2 > Ji- (D V) + | f|2Ad) dH™ !

(4.14)
By the properties of d, we have that
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Differentiating (4.12)) in r, inserting (4.14)) and using that if ¢(d/r) # 0
then d = O(r) we conclude

H'(r)

> / 1 2 m—1
_—/ <Z5(<7)/dw}v—d| (22fi‘(Dfi‘vd) + [/ Ad) dH™ " do

)= o (M) 1 ade)as
()
:2E(r)+( (1 >> Hr). 0

REMARK 4.20. Observe that the assumption f = @ [0] on 02 has
been used only in deriving (4.13)): without that condition we would
have the additional term

-/ f2Vd-n
oN{t<d<t+e}

where n is the outward unit normal to 9€2. Note in particular that we
could drop the assumption f = @ [0] and add instead the requirement
that Vd is tangent to 0.

4.2.2. Lower bound on H.

LEMMA 4.21. Assume ¢ is identically 1 on some interval [0, pl.
Under the assumption of Theorem there exist constants Cy and
ro, depending only on the Cl-reqularity of Q, on p and on d (but not
on ¢), such that

H(r) < CorD(r) for all r <. (4.16)

PRrOOF. If we introduce the usual scaling f,.(z) := f(rx) and d,.(z) =
r~td(rx), then

H¢7dr<f7'7 1) = TmilH@d(f? T) and D¢>,dr (fr, 1) = TmiQD%d(f? T) :

Observe also that for 7 < 1 the C! regularity of the boundary of 0, :=
{z/r: x € Q} improves compared to that of Q2 and d, satisfies the same
properties of d with better bounds on the errors, see Remark [£.14] By
taking rq sufficiently small we can assume that

By C {d, < 0} C Bayr for all r < rg and o < 1. (4.17)
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Let us assume without loss of generality that ro = 1. If we define the
“distorted balls”

B} = {z:d(r) < p},

the inclusions above imply that they are comparable to the Euclidean
ones up and thus we can transfer most estimates of the last sections
to these new balls. Let us now extend f to be identically 0 outside on
Q\ B} so that we can consider the integrals in the definitions of H (1)
and D(1) as taken over the whole Bj.

By a standard approximation procedure we can assume that ¢ is
smooth. Let 0 < p < 1 be such that ¢ is identically 1 on [0, p]. Then,
as a particular case of Theorem [4.6| we have

[f]a,Bng < CDir(f, BZp N Q)% < C'D(l)%,

where o = a(m,n, Q) and C = C(m,n,Q, p) and in the last inequality
we have also used (4.17)). Of course the same estimate extends trivially
to B; \ €, where the function vanishes identically. Thus

/ V()| fP(x) dz = / Vd(@)|G(f(x), £(0)* < CD(1).
833 (?B;f

(4.18)
On the other hand, using the coarea formula
1 /
¢'(r) ¢
A I I
5 {d=r}
(4. 19)

where h > 0 is as in (4.12)). Integrating by parts we get
1
HO <0 [ 1P [ o6 ) —r )
OB 5
/
<oD(1 / o)) 4
,

¢(d(z)) 2 2
= CD(1)+C/BT\B; e (IDfI> +|f]?) < CD(1)

+C o(d(x))|f*(x) dz . (4.20)

Bf\Bp’i

where the constants depend only on p and d, but not on ¢. The proof
will be concluded if we can show that

[, o < eoa) N



4.2. THE MAIN FREQUENCY FUNCTION ESTIMATE 61

To this end note that for p < r <1 the function | f|2 vanishes on a non
trivial part of B} (namely B!\ €2). Hence by the (m — 1)-dimensional
Poincaré inequality on 0B}

[ oae<c [ pipi<c [ inips,
2B; oB; aB;
Hence, the function A’ defined in (4.14]) satisfies:

wol<c [ s

Since ¢(t) > ¢(r) for p <t <r < 1, using again the coarea formula we
can now estimate

¢mmm§¢mmm+wm/UMMﬁ
gcmn+/bmwwMt

gcmn+c/ o(d(2))|f1|D ) () d.

Bi\B;

Integrating in r and using Young’s inequality we obtain

[ AP ds

gcnuw+c/“ o(d(2))| f1|Df| () da

BI\B;

sCDﬂ%+gDO)+C§éﬂm¢w@DVF@ﬁm-

Choosing ¢ appropriately we get (4.21]) and thus we conclude the proof.
O

COROLLARY 4.22. Assume ¢ is identically 1 on some interval [0, p|.
Unless f = Q[0] in a neighborhood of 0, the following lower bound for
the frequency function holds:

lim&)nf[(r) >Cp >0,

where Cy depends only on the C* regularity of Q, on p and on d.

4.2.3. Outer variations. We now derive the first interesting iden-
tity relating D and E, which is proved variationally using a perturba-
tion of the map in the target.
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LEMMA 4.23 (Outer variation). Let Q and f € W'(QNB;, Ag(R™))

be as in Theorem |).15. Then D(r) = E(r) for every 0 < r < 1, where
E(r) is defined in (4.11)

ProOOF. We first assume ¢ to be Lipschitz. Consider the family

0:(2) = Y [ fila) +20 (42) fila)]

and observe that on 02 we have f(z) = @ [0] and so g.(z) = Q[0].

Therefore each g. is a competitor and we conclude

d
/ Dg.l? = 0.
e=0 QNB1

e
0= [o(") ipse i

+ 1/¢’ (@) Z (Dfi(x) : Vd(z) ® fi(x)) dx

r

Hence

)

= D(r)— E(r).

For a general ¢ it suffices to use a standard approximation argument.
O

4.2.4. Inner variations. We now derive the second key identity,
which uses perturbations of the domain. To this end consider a com-
pactly supported vector field Y which is tangent to 92 (i.e. such that
such that Y (z) - v(xz) = 0 for all x € 9, where v denotes the outward
unit normal to 0€2). Let ®; the one-parameter family of diffeomor-
phisms generated by Y, namely ®;(x) = ®(x,t) where

0 ®(x,t) =Y (P(x,1))
O(2,0) =x.

Obviously ®, maps € into itself and, more importantly, maps 0f2 into
itself. In particular we have the following lemma.

LEMMA 4.24 (Inner variation). Consider a modified distance func-
tion d as in Definition such that Vd(x) - v(x) = 0 for every
x € 00N By, where v denotes the outward unit normal to Q and fix a
Lipschitz ¢ as in the same same definition. Let

_ (d(z) d(z)Vd(x)
W”( r ) Vd@)P
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and let ®; be the flow generated by Y . Then

IV = % t:O/\D(f(CDt(x))F ~0. (4.22)

In particular, if we define

_ 1 , (d(x) d(x) () A de
60y == [ ¢ () rtae = IPte) - VG i,

we conclude
D'(r) — ( — O(l)) D(r) —2G(r)

where the constant O(1) depends on d and Q2 but not on ¢. In particular
the latter identity holds even for a general ¢ as in Definition[4.13.

PRrROOF. (4.22)) is obvious by the minimality of f, because ®,(0€2) =
0. We thus just need to prove the identity between the left hand side
of (4.23) and InV in (£.22)). Note that, by standard computations (cf.
[3])

m =2 v

r

0 4.23
- L)

InV:2/ZDfi : DfiDY—/\Df\zdivY. (4.24)

Hence, by the properties of d, we compute

DY = ¢ (g) Uvavae vi+ o (g) D (|Vd|-2dvd)
— ¢ (g) gyw\?w ®Vd+ ¢ (g) (Id + O(d))
= ¢ (g) C;Z|Vd|‘2Vd ®Vd+ ¢ (g) (Id+O(r)),
and
awy = (1) $6 (4) m+00).
T T r

Plugging the latter identities in (4.24) and recalling the formula (4.9))
for D', we conclude the proof. 0

4.2.5. A good function d. In this section, relying on the C? reg-
ularity of 0€2 we construct a modified distance function whose gradient
is tangent to 0€2. We believe that the same result can be achieved
with less regularity of 92, namely C?, however since we will not need
this in the sequel, we stick to C® regularity, where the proof is rather
straightforward.
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LEMMA 4.25. Let Q be a C? domain such that 0 € Q and Ty00Q =
{x,, = 0}. Then there is a continuous function d : Q — R* which
belongs to C*(Q2\ {0}) and such that

(a) 9sd(x) = ds)z| + O(|z|*~ V) for every multiindex J with |J| <
9
(b) Vd is tangent to OS).

ProoOF. Consider normal coordinates on a sufficiently small tubu-
lar neighborhood Uy of 0€2 and construct a diffeomorphism between Uy
and a tubular neighborhood Vj of a suitable subset of R™~1 x {0} with
the properties that:

e & cC? ®0)=0and DP|, = Id;

o (0N) Cc R™ ! x {0};

e For every p € 02 and every vector v normal to 02 at p,
D®|,(v) is normal to R™! x {0}.

The existence of such diffeomorphism follows easily from our assump-
tions. Define then d(z) := |®(x)|. It is obvious that d(z) = |z| +
O(|z|*). Computing the first and second derivatives we get, using Ein-
stein’s summation convention,

Oro, 0k x;
0;d K 7 + O(|z|) (4.25)
P e S S O O
Y || || |[?
= |z| 10y — || Pz + O(1). (4.26)

In particular (a) follows easily.
Next, consider a vector v orthogonal to 02 at p # 0, let z = ®(p).
Let (-,-) be the standard Euclidean scalar product and observe that,

from the first equality in (4.25)), we get
(Vd(p),v) = ||z, DP,(v)) - (4.27)

On the other hand, since z = ®(p) € R™ ! x {0} and D®|,(v) €
(R™1x{0})* by the assumptions on ® above, we clearly have (Vd(p),v) =
0. We conclude that Vd is orthogonal to any vector field normal to 0€2
and thus it must be tangent to 0S. U

4.2.6. Proof of Theorem Assume that ¢ and d have the
properties of Definition As a consequence of Lemma we may
assume that Vd - v =0 on B,,(0). This implies that the conditions of
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Proposition Lemma [£.23], are satisfied. Hence,
d H'(r)y D'(r) 1
gy = P02
dr H(r) D) r
QE("’) ~2G(r) +o(1)
H(r)  D(r)
Furthermore due to (4.23) we have

H(r)E(r) (% — %) = (E(r)* = H(r)G(r))

( [#(¢ )Zfz (D, w>>2
(o ()5 ')( [o(3) b Z(Dfi'w) =0

due to the Cauchy-Schwarz inequality. Moreover the equality holds if
and only if there is a function «, such that

d

;= D d 4.2
fi= oG (DSi - V) (428)
Finally we deduce, that
~ (1) < o) (4.20)
and therefore we deduce that, for r < rg,
s e“TI(r)

is monotone. This directly implies that lim~e“"I(r) = Iy exists.
Moreover, by Corollary [4.22, we have Iy > Cy > 0.

4.3. Further consequences of the frequency estimate

As a further consequence of the almost monotonicity of the fre-
quency we obtain the following result, compare [13], Corollary 3.16].

COROLLARY 4.26. Under the assumptions of Theorem there
exists a constant C' such that setting 1(0) = Iy > 0 for every A > 1
there exists r1 < rqo for which the following estimates hold true

(a) Ny < I(r) < Xy for all v < rq;
(b) forall0 <s<t<mr

t m—1+2)\_110 H(t) t m—1+2XIg
—C’(t—s) e < < C(t—s) = . 430
¢ (3) = H(s) =" (3) - (430
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(c) forall0 <s<t<mnr

m—242X"11, m—2+2X1
\~2-Cli—s) t ’ < D(t) < \2.00-9) t ’ '
s ~— D(s) s
(4.31)

PRrROOF. Point (a) is an immediate consequence of the almost mono-
tonicity of the frequency, (4.29))

Concerning point (b), using (4.10)) and Lemma we compute
d H(r) H(r) m-1 2
dr n(rml) H(r) r r (r)+0(1)

Integrating the above identity between 0 < s <t < r; and using point
(a), we obtain the estimate [4.30]
To prove (c), we have only to note that

D) It (t) HY
D(s) I(s) \'s H(s)
and appeal to points (a) and (b). O

COROLLARY 4.27. Under the assumptions of Theorem with
Iy = I(0), there are constants A > 1 (depending only on ¢), C' > 1
(depending on ¢,d and Iy) and r1 > 0 such that the following estimate
holds for all 0 < \?s <t < ry:

m—24+2X"11, 2 m—2+2X\I

_ ¢ D _ [t

-1 (_> < M <C (_) ) (4.32)
S mes Df[? §

When ¢ = 1)), we can choose both A\ and C' arbitrarily close to 1,
provided r1 1s small enough.

PROOF. Recall that ¢ =1 on some interval [0, p[. By the assump-
tions on d, for any A > p~! there is then a positive r; such that

d(z
1y, (2) <6 ( (@)
,
Hence we deduce that
DO < / DS < D),
B,NQ

and we conclude the proof from ([4.31)). When ¢ = 1o} we can choose
any A > 1. Note moreover that the constant C' in can be taken
to be e“" A7 where the exponent 7 depends only on Iy and m. The last
claim of the corollary is thus obvious. 0

) <1p, () Vr < r;,Vo € R™.
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LEMMA 4.28. Let Q C R™ be an open set of class C* with 0 € 0N).
Furthermore assume f € WH2(QNBy, Ag(R™)) satisfies the assumption
of Theorem [{.15. Then, for any ry | 0, there is a subsequence, not
relabeled, such that[]

(a) fk(x) = (T,i_m fBrka|Df|2> : f(rix) converges to a map g €
WH2(H, Ag(R™)) such that g = Q [0] on OH, where H is some
halfspace containing the origin.

(b) g is Dirichlet minimizing, in the sense that Dir(g, Bg N H) <
Dir(h) for every R > 0 and for every h € W'?(HNBg, Ag(R"))
such that glaneg) = hlansg)-

(c) g(z) = |z|"og(&), where Iy = lim, g 144(0) (which exists thanks
to Theorem .

PROOF. Let d, ¢ be a distance function and cut-off function that
are admissible in the sense of Theorem 415l As before we intro-
duce the usual scaling f,.(x) = f(rx), d.(z) = r~'d(rz) and Q, =
{z/r: x € Q}. Observe that Q, converges locally in C? to a halfspace
H, which up to a rotation we may assume to be {z : z,, > 0}. Fur-

thermore, by Remark [4.14] d,.(z) — |z| in C2 (R™\ {0}). Moreover, by
direct computation, Hy 4, (fr, R) = r™ *Hy 4(f,7R) and Dy 4 (f., R) =
™ 2Dy 4(f,rR), for any R > 0.

Let us pick A and r; > 0 such that the conclusions of Corollary
apply. Then, for every R > 1, the following estimate holds provided r

is sufficiently small:

/ |Dﬁn|2 < C(Io,m)Rm_Q—’_Qlét / |Dfr|2,
BgrNDom (f) BinDom ()

where Dom ( f +) denote the domains of the rescaled functions = Ap-
pealing to [29, Theorem 3.6] we deduce the existence of g satisfying
(a) and (b).

It remains to prove (c). Observe that (a), (b) together with d,, — ||
in C? imply, for R > 0,

D RD,, s(fn,R)  RDy (g, R
[d,qs(()) = lim By d’qb(f’ TkR) = lim dT’“’(b(Af k ) _ ||,¢>(g )
k—o0 Hd,¢<f7 Tk;R) k—oo Hdrka¢(f7‘k’ R) HH#)(g, R)

Now (iii) follows by straightforward adaption of the proof of [13, Corol-

lary 3.16] using (4.28)). O

3Here again we are using the following abuse of notation: if X is a scalar and
P =73, [P] an element in Ag(R"), then AP =", [AF;].
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4.4. Blowup: proof of Theorem [4.5 with ¢ =0

The proof is based on the monotonicity of the frequency function
and the fact that it ensures two things: non-triviality of the blow-ups
and radial homogeneity.

More precisely, we have the following:

LEMMA 4.29. Let (f*,f7) be a (Q — %) Dir-minimizer which col-
lapses at the interface (v,0), where v is C3. Fix p € v and, unless
(f*, f7) is identically (Q 0] ,(Q—1) [0]) in some ball B,(0), for every
r define

A 1
Ii"(x) = Ap,r fi<p + T‘l’) :

The normalizing factor A, , is chosen to fulfill

2 2—m —m _
- / DFFR 402 / Df P,
B (p) By (p)

Dir(f,,, Bi) + Dir(f,,, By) = 1.
If we set m = Ty, then, up to subsequences, the pair of sequences
(f5 fom) converges to a (Q — %) Dir-minimizer (g%, g~) which col-
lapses at the interface (m,0) satisfying the following properties:

(a) The convergence is as in Theorem[4.§
(b) Dir(g*) + Dir(g~) = 1.
(c) (g%, g7) is radially homogeneous, namely g*(rz) = rlog*(x),
where, if we fix ¢ = Lyq) in Definition then
+ —
I — i U+ DU)
rlo H(f+,r)+H(f~,r)
PROOF. After a translation we may assume that p = 0. Observe

that both z — f*(z) and 2 — f~(z) satisfy the assumptions of Theo-
rem Let us define the single normalization factors

@2 = [ D
B;f

so that A? = (A})? 4+ (A;)?. Thanks to Lemma [4.28 given any

sequence 1y — 0 there is a subsequence (not relabeled) such that

fiE(z) = A%fi(rkx) converge to some §*(x), which are homogeneous
Tk

so that

(4.33)

with exponent I5. Since

(fr) o) = (@ 3 i @),
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A
AT’; € [0,1].
Up to subsequences, we may assume that their limits exist and are
a® > 0. Due to the properties of A* and A,, we have

(™) + (a7)? = 1.
Point (a) agrees with the statement of Theorem since
(f1@) fr@) = (@t a 57 = (9", 97).
We now distinguish three cases depending on the values of

by PPUET)
1 _}ﬂlg(l) H(r)

it is sufficient to understand the possible limits of af =

Case If = Iy : In this case the tangent function (¢7,¢7) is Ij =
I; homogeneous and satisfies (b). Point (c) follows from the simple
observation that

r(D(f*,r) + D(f,r)) (8) oz 0+ (5) Ui

H(f*r)+ H(fr) (%)21{@;, 1) + (i—i)zH(ff, 1

Case I > I, : We claim that in this case a™ = 0, so that (g%, ¢7) =
(Q[0],g7) is Iy = Iy - homogeneous. Pick A > 1 such that \I; <
AT For rp > 0 sufficiently small, such that Corollary applies
for f* and f~, we may choose r < r;. Using , for some fixed
t < ry and for any s < ¢, we have that

+12
fBi‘g;:Q < \2mA2My
Bs

By our choice of A this converges to 0 as s — 0.
Case I < Iy : We argue as in the previous case swapping + and —
and conclude that a= = 0. U

<3>A113—Mo [ | DI
t Jo-IDf1

DEFINITION 4.30. A (g%, g7) as above will be called, from now on,
a tangent function to (f*, f7) at p.

REMARK 4.31. Let (g7, g7) be a tangent function to some (f*, f7)
at some point p. Let ¢ € T,7\ {0} and let us consider a further tangent
function (g, g;) to (97, ¢7) at g. Then, by [13, Lemma 12.3], (g;", g1 )
is invariant along the direction ¢, namely gi(z 4+ Aq) = g*(z) for every

AeR.

As a simple corollary we then conclude the following:
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LEMMA 4.32. Let (f*,f7) and p € 7 be as in Lemma[4.29. Con-
sider a tangent function (g7,g7) to (f*,f7) at p. Moreover fix a
base ey,...,em1 of T = Ty, and define inductively (g, g7) to be
a tangent function to (g%,97) at e; and (g;-r,gj_) to be a tangent func-
tion to (g5 1,9;1) at e;. Then (h",h7) = (gp_1,9m_1) 15 given by

(Q[L],(Q —1)[L]), where L is a nonzero linear function which van-
ishes on .

PROOF. Assume m = {x : x,, = 0}. Applying the remark above
m times we infer the existence of a map (h*,h™) with the following
properties:
o (W, h7) is a (Q — %) Dir-minimizer which collapses at the
interface (7, 0);
e (h*,h™) depends only on x,,, namely there exist Q-valued
function a® : Ry — Ap(R") and a (Q — 1)-valued function
a” i R_ — Ag_1(R") such that h*(z) = a*(x,,);
e (h™,h7) is an I-homogeneous function for some I > 0, namely
there is a @Q-point P and a (Q—1)-point P’ such that o™ (x,,) =
!l P and o™ (x,,) = (—x,,) P
® Dir(h+, Bl) + Dir(h_, Bl) =1.
Since (h™, h™) is a Dir-minimizer both A™ and h™ are classical harmonic
functions and, since they depend only upon one variable, we necessarily
have that I = 1. So there are coefficients 3", ..., 84 and 87, ..., B5_,
such that
Q

h(z) = Z 187 am]

Q-1
h™(x) :Z 187 2m] -

If ) = 1, then there is nothing to prove. If () > 1, then necessarily for
every choice of ¢ and j the function

ﬁ;“xm if x,, >0
k(x) =
B Tm if z,, <0

must be harmonic and hence linear. This implies that all 8, and Bj
coincide. The claim of the lemma follows. U

REMARK 4.33. The above result is the key step to establish Theo-
rem Note that in proving that the only 1 homogeneous 1 dimen-
sional (Q — %) Dir-minimizer which collapses at the interfaces (7, 0)
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we have used in an essential way that only one sheet has to take care
of the interface, while the values of the others can be modified even
over 7. In other words the above result is easily seen to be false if we
would have required to be minimizers only with respect to variations
that keep the pair f™ and f~ completely fixed over ~.

As a simple corollary of the above Lemma we have:

COROLLARY 4.34. Assume (f*,f7) is a (Q — %) Dir-minimizer
with collapsed interface (7,0), where vy is C3. Ifno f~ =mno fr =0,
then f*=Q[0] and f~ = (Q — 1) [0].

ProoOF. If (f*, f7) is identically (Q[0], (@ — 1) [0]) in a neigh-
borhood U of a point p € 7, then, by the interior regularity theory of
Dir-minimizer, (f*, f7) is identically (Q[0],(Q — 1) [0]) in the con-
nected component of the domain of (f*, f~) which contains p. Thus,
if the corollary were false, then there would be a point p such that
Dir(f*, B.(p)) + Dir(f~, B.(p)) > 0 for every r > 0.

If we consider (h*, h™) as in Lemma[4.32] we conclude that noh* =
noh~ = 0, since such property is inherited by each tangent map. But
then the nonzero linear function L of the conclusion of Lemma [4.32]
should equal m o ™ on {z,, > 0} and noh~ on {z,, < 0}. Hence L
should vanish identically, contradicting Lemma [4.32] U

COROLLARY 4.35. Theorem[{.5] holds when ¢ = 0.

Proor. We start noticing that by classical elliptic regularity, the
functions 1 o f* belong to C1(Q* U~). Let v be the unit normal to 7.
We claim that

dy(mo fH)(p) =0, (mof)(p) forallpeynQ. (4.34)

The claim will be proved below, whereas we first show that it is enough
to conclude. Indeed it implies that the function

no ft on OQF
(= (4.35)
no f~ on 2~

is a harmonic function. Now let us subtract it from (f*, f7), namely
let us define the functions

ft= Z [ —<] (4.36)
fo=2 1= (4.37)
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We conclude that (f+, f “)isa (Q — %) Dir-minimizer which collapses

at the interface (7,0) and that o f* = no f~ = 0. Thus we apply
Corollary and conclude that f* = Q0] and f~ = (Q — 1) [0],
which complete the proof.

To prove claim assume by contradiction that, at some point
p € vNQ, we have d,(n o f7)(p) # d,(no f7)(p) and consider a
tangent function (¢, ¢7) to (f, f7) at p, which is the limit of some
(fo oes fop)- Observe that, since at least one among 9,(no f*)(p) and

0,(mo f7)(p) differs from 0, we necessarily have

Dir(f+’ By, (p)) + Dir(f, B, (p)) = copy!
for some constant ¢y. We then have just two possibilities:

(A) Timsup, (o)™ (Dix(f*, By, (p)) + Dix(f~, By, (p))) = o0. In
this case the tangent function (g7, ¢7) has zero average, namely
nogt = nog = 0. By Corollary (97, 97) should
be trivial. But this is not possible because Dir(g*, B;) +
Dir(g—, B;) = 1.

(B) limsupy(px) ™(Dir(f*, B, (p)) + Dir(f~, B, (p))) < cco. In
this case we have that o gt and 1 o ¢~ are also nontrivial
and linear. Moreover they are two distinct linear functions.

We can apply this argument to the tangent functions of (g7, ¢~) and
since the case (A) is always excluded, after applying it m — 1 times, we
reach a pair (h™,h7) as in Lemma 7 with the property that noh*
and m o h™ are two distinct linear functions. However this contradicts
the conclusion of Lemma [4.32 O

4.5. Proof of Theorem [4.5; general case

PROOF. Let v be the unit normal to 7. As above, we claim that

(o fr)=0,(nof).

With this claim, proceeding as in the proof of Corollary we can
define ¢ as in and conclude that it is a harmonic function. We
then define (f*, /) as in and (4.37)). To this pair we can apply
Corollary and conclude.

To prove the claim, assume by contradiction that, for some p € ~,
we have that d,(no f)(p) # d,(no f7)(p). . Without loss of generality
we can assume that p =0, ¢(0) = 0 and Dp(0) = 0. Since at least one
among D f*(0) does not vanish, we must have

Dir(f*, B,) + Dir(f~, B,) > cop™ (4.38)



4.5. PROOF OF THEOREM (5} GENERAL CASE 73

for some positive constant ¢y. It also means that there exist a constant
n > 0 and a sequence py | 0 such that

Dir(f+, Bpk) + Dir(f_, Bpk) > n(Dir(f+, B2Pk> + Dir(f_, B2Pk)) )

otherwise we would contradict the lower bound (4.38]). If we now define
the blow-up functions

(z) = f*(px) .
o Dir(f*, B,,) + Dir(f~, By,)
we see that they have finite energy on By and thus there is strong
convergence of a subsequence to a (Q — 1) Dir-minimizer (¢*, g~) with
interface (7,7, 0). The latter must then have Dirichlet energy 1 on B;.
We then have two possibilities:
(A) limsupy(px) ™ (Dir(f+, B,,) +Dir(f~, B,,)) = 0co. Arguing as
in the proof of Corollary[4.34] this gives that nog™ = nog™ =
0. Thus, applying Corollary we conclude that (g%, ¢7) is
trivial, which is a contradiction.
(B) limsupy(px) ™(Dir(f*, B,,) + Dir(f~, B,,)) < co. Assuming
in this case that Tyy = {z,,, = 0}, we conclude that (g%, ¢7) is
a (Q — %) Dir-minimizer with flat interface (Tyy,0), but also
that n o g*(x) = éd,(n o f*)(0)x,, for some positive constant
¢. By Corollary [1.35, we then conclude that 8, (n o f1)(0) =
dy(n o f7)(0).

O






CHAPTER 5

First Lipschitz approximation and harmonic
blow-up

In this chapter we assume that mg = R™ x {0} and we use the
notation p and pt for the orthogonal projections onto 7y and 7~ re-
spectively., whereas p, and p: will denote, respectively, the orthogonal
projections onto the plane 7 and its orthogonal complement 7+. We
also introduce the notation B, (p, ) for the disks B,(p) N (p 4+ 7) and
C,(p, 7) for the cylinders B, (p, 7)+7*. If 7 is omitted, then we assume
™ = TQ.

DEFINITION 5.1. For a current 7" in a cylinder C,(p,7) we de-
fine the cylindrical excess E and the excess measure er of a set F' C

By (pr(p), ) as

1 =
BTG m) = g [ F AT
m r\P,T

1 =
er(F)i= [ [F=7RAIT].
+m

The height in a set G C R™" with respect to a plane 7 is defined as
h(T,G, ) :=sup{|py (¢ —p)| s ¢;p €spt(T) NG}.  (5.1)

The aim of this chapter is to produce a Lipschitz (Q — %)—Valued ap-

proximation for area-minimizing currents in a neighborhood of bound-
ary points where the latter are sufficiently flat. For this reason we
will introduce a set of assumptions: in this chapter we will work under
these assumptions and only later we will show when we will in fact fall
under them. In what follows, in order to simplify our notation, we will
assume that (x,0) € my and we will abuse the notation by identifying
R™ with my = R™ x {0}: in particular we will use C,.(z) for the cylinder
C.(z,m) and we will use the same symbol F' for subsets F' C R™ and
for the corresponding F' x {0} C . Similarly we will write F' x R" for
the set F' x {0} + 77

ASSUMPTION 5.2. T' C ¥ is a C? submanifold of dimension m — 1
and ¥ C R™" is a C? submanifold of dimension m + 7 = m +n — [

75
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containing I". We assume moreover that both ¥ and I' are graphs of
entire functions ¥ : R™*" — R! and ¢ : R™~! — R"!* gsatisfying the
bounds

| Dl + ||D¥]|, < co and A := [|Ar||, + [| Az, < o (5.2)

where ¢ is a positive (small) dimensional constant.
T is an integral current of dim. m with 0T Cy,.(z) = [I']L Cy ()
and spt(7") C ¥. Moreover we assume that

(i) p = (2,0) € T and T,I' = R™ ! x {0} C mp;
(ii) v = p(T') divides By,(x) in two disjoint open sets QT and Q~;
(ii) for some integer @)

pxT=Q "] +(@Q-1)[Q7]; (5.3)

(iv) T is area minimizing in ¥ N Cy,(x);
(v) @ — 3 < O(T,q) for every g € I' N Cy, ().

Observe that thanks to (5.3) we have the identities

E(Tv C4T(I)) =

o (IT1(Car(2)) — (QIQF| +(Q — 1)]Q7)) (5.4)

er(F) = |T|(FxR") = (QIQ" N F|+(Q - 1)|Q NFJ).
(5.5)

DEFINITION 5.3. Given a current 7" in a cylinder Cy,(p, ) we in-
troduce the non-centered maximal function of er as

er(Bs(y,
mer(y) == sup Li)) .
YEBs(2,m)CBar(pym)  WmS

Again abusing the notation, under Assumption [5.2] we regard mer
has a function on By, (z) C R™.

In what follows, given a ()-valued function u, we denote by Gr(u)
and G, respectively the set theoretic graph of u and the integer rectifi-
able current naturally induced by it. For the precise definition we refer

o [15]. We next rotate the coordinates keeping 7y fixed and achieving
suitable estimates for DW: the argument is the same as in [14, Remark
2.5].

REMARK 5.4 (Estimates on ¥ in good Cartesian coordinates).
Assume that T is as in Assumption in the cylinder Cy.(z). If
E := E(T,Cy.(x)) is smaller than a geometric constant, we can as-
sume, without loss of generality, that the function ¥ : R™*" — R!
parameterizing ¥ satisfies U(z) = 0, |[DVY|, < C EY? + CAr and
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|D*¥||, < CA. Indeed observe that

1

B=B(I.Cu() = g [ 1T~

Thus, we can fix a point p € spt(T") N Cy () such that |T(p) — 7|
C E'”. Then, we can find an associated rotation R € O(m + 7,
such that Rﬁf(p) = 7y and |R —Id| < C E'2. It follows that 7 :
R(T,Y) is a (m + n)-dimensional plane such that 7y C 7 and |7 —
T,%|| < CE"2. We choose new coordinates so that 7y remains equal to
R™ x {0} but R™"" x {0} equals 7. Since the excess E is assumed to be
sufficiently small, we can write ¥ as the graph of a function ¥ : 7 — 7+,
If (2,¥(z)) = p, then |DY(2)| < CO||T,% — R™*" x {0}]] < CE'~.
However, |D?¥|l, < CA and so |D¥|l, < CE'* + CAr. Moreover,
U(x) = 0 is achieved translating the system of reference by a vector
orthogonal to R™*™ x {0} and, hence, belonging to {0} x R'.

A

We introduce the notation Lip(u) for the Lipschitz constant of a
(Q-valued map u = ), u; and oscu for its oscillation, which is defined
as in [14] by

osc (u) = sup |ui(z) —u;(y)],
Z?y’lhj

and let ¢' : v — R" be the functionﬂ whose graph coincides with T'.

THEOREM b5.5. There are positive geometric constants C' and cgy
with the following properties. Assume T satisfies Assumption[5.3, E =
E(T,Cy(2)) < ¢y and |DV|o < C(E'? + Ar). Then, for any 0, €
(0,1), there are a closed set K C Bs, () and a (Q — 3)-valued function
(ut,u™) on Bs,(x) which collapses at the interface (v,1') satisfying the

I1f 4y is the first of component of the map 1, then
v ={(,¢1(2'),0) : 2’ € R™71}.

In particular ¢’ can be regarded as a function of 2’ and in particular we have
Y(a') = (Y1(2'),?'(2')). In the remaining part of the section we will adopt the
latter convention.
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following properties:

Lip(u*) < C(6Y* + r2Az) (5.6)
osc(u®) < Ch(T, Cy(z), ) + CrE* + Cr?A (5.7)
Gr(u*) Cc ¥ (5.8)
K C Bs.(z) N {mer < 4.} (5.9)
GL[(KNQH) xR =TL[(KNOQ*) x R (5.10)
|Bs(x) \ K| < 5€ er ({mer > 6.} N By () Vs < (3—r)r

) (5.11)
I7 = Gu = G (Carle)) _ Clm,m,Q) o

rm Oy

where ry =c % /JE.

1
From now on the approximation of Theorem is called the 67 -
approzimation of T in Cs,(x). Actually in the sequel we will choose
1

52 to be EP for a suitable chosen small 3.

In a second step we will prove that, if E is chosen sufficiently small
and T is area minimizing, then u is close to a (Q — %) Dir-minimizer
which which collapses at its interface and thus, by Theorem[4.5] consists
of a single harmonic sheet.

THEOREM 5.6. For every n. > 0 and every 5 € (0, ﬁ) there exist
constants € > 0 and C' > 0 with the following property. Let T be as
in Theorem and mass-minimizing in X, let (u*,u”) be the EP-
approximation of T in Bs.(x) and let K be the set satisfying all the

properties (5.6)-(5.12)). If E <e and rA < gE%, then
er(Bsy2 \ K)) <n.E, (5.13)
and

Dir(u®, Q" N By, (z) \ K) + Dir(u~, Q™ N By, (x) \ K) < Cn.E. (5.14)
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Moreover, there exists a (single) harmonic function h : Ba.(x) — R™
such that h|,,,—o = 0 and the function k(y) := (h(y), V(y, h(y))) satis-
fies the following inequalities:

2
7"_2/ g(u+,Qﬂﬁ]])2+/ (\Du+| — \/@’DI@D < n.Er™
BQT(I)QQ+ Bgr(x)ﬁﬂ+

(5.15)
2
[ g @-nprs [ (1D - V@ 1Dx])
By (2)NQ— Boy (2)N2—
< nErm (5.16)
/ |ID(nout) — Ds|*> < n,Er™. (5.17)
Bgr(x)ﬁﬂi

REMARK 5.7. Observe that from the Schwarz reflection principle
and the unique continuation for harmonic functions, it follows immedi-
ately that the h of the previous theorem is in fact odd in the variable
T

5.1. Proof of Theorem [5.5]

5.1.1. Artificial sheet and “bad set”. Since the statement is
invariant under translations and dilations, without loss of generality we
assume r = 0 and r = 1. We add to the current T" an artificial sheet ,
constructed by translating the boundary I' in the “negative direction”
—e,, over the negative domain Q7. Clearly, if the current T" were area
minimizing, the addition would (in general) destroy such property. On
the other hand we do not assume that 7" is area minimizing in Theorem
[5.5and the “augmented current” has no boundary in the cylinder, while
it still has small excess. This will allow us to apply the first part of
the approximation theory in the interior developed in [14] Section 3],
where the area minimizing assumption is not relevant.

Let therefore ¢ (2') = (¢¥1(z'),¢’'(2")) be the map introduced in
Assumption [5.2] whose graph gives I, and let (2/,z,) = z be the
coordinates of R™. We introduce further the map Gy : mp = R™ —
R™H given by Gy/(2/,2y) = (2,2, ¢ (2')): the image of Gy is
just the translation of I' in the direction e,, = (0,...,0,1,0,...,0).
Consider then the current Z := Gy, [Q7], cf. Figure E

Using the Taylor expansion of the mass, e.g. [14, Remark 5.4], we
can estimate, for any Borel set F' C R™.

D /|2
M(ZL(FxR")):\FmQH/FOQ' ;“ +/Fm R(Dy)
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Tm

FiGURE 1. The current Z is the graph over 2~ of a
function v’ which does not depend on x,,: ' is chosen

so that 0Z = [I'].

where R(Dv') = O(|Dv'|*). By assumption
DY/ (2)] < [2'| || D*'|[ . < cla’|A

for some dimensional constant c¢. Hence, assuming that the constant

co in (5.2) sufficiently small,
e (F) < / D < eA2F N Q).
Fno-
By construction we have 0ZLCy = Gy, [0 N By] = —[I7] and
p4Z = [Q27]. Therefore S :=T + Z satisfies
pxS =Q[Bs], 0S.Cy=0 and
es(F) <er(F)+eyz(F) <er(F)+cA*IFNQ|. (5.18)

We can thus apply the modified Jerrard-Soner estimate of [14, Propo-
sition 3.3] which gives:

(JS) For every ¢ € C®°(R") set ®,(x) := 5,(¢) with
Sz :=pu(S, p, x) € IH(R")

(the space of zero-dimensional integral currents in R™). If
| Dyl <1 then ®,(x) € BV (B,) and satisfies

(|D®,|(F))* < 2m*es(F) ||S| (F x mg) for every Borel set F C By.
(5.19)

Following a classical terminology we define noncentered maximal func-
tions for Radon measures p and (Lebesgue) integrable functions f :
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R*F — R, by setting

m(f)(z) = sp —

m
2€B;(y)CBy WmS Bs(y

W(Bs(y
m()(z) = sup B
2€Bs(y)C By WS

f
)

Note that the functions z — m(f)(z), z — m(u)(z) and z — mey(2)
are lower semi-continuous. Indeed, since m(f) is obviously the max-
imal function of the measure f.£™, it suffices to show the claim for
m(u). Next observe that for a general Radon measure p the map
y — 1(Bs(y)) is lower semicontinuous, and thus the claim follows from
the fact that the map z — m(u)(2) is the supremum of lower semicon-
tinuous functions.

Let us fix a small constant 0 < A < 1 and define the following “bad”
sets, which are, respectively, the upper level set U of merp

U:={x € By: mer(x) > 0.} (5.20)
and the upper level set of m(1y):
U*:={z € By: m(1y)(x) > A\}. (5.21)

As proven in [14], Proposition 3.2.] we have a weak L' estimate for
the Lebesgue measure of U. Indeed, fix r < 3 and for every point
x € U N B, consider a ball B* of radius r(z) which contains z and
satisfies mer(B®) > duwp,,r(x)™. Since mer(B”) < E we obviously
have

E

Win O

r(x) <rg= %

Now, by the definition of the maximal function it follows clearly that
B* C UN By4y,. In turn, by the 5r covering theorem we can select
countably many pairwise disjoint B** such that the corresponding con-
centric balls B' with radii 5r(2;) cover U N B, Then we get

m

5m 5
UNB,| < 5™ wpr(a;)™ < ~ > mer(B") < —mer(UNB,r,).

*

Since U is open we have U C U* and by the classical weak L' estimate
(see e.g. [40L 1.3 Theorem 1]), we have again

oM E
U*N B,| < 7|Uﬂ3r+n\ Vr < 3, where r =5 T/w VR (5.22)
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5.1.2. Lipschitz estimate. Since ¢, + cA? < 1, we infer that
M(S,) < Q+ 1 for a.e. x ¢ U. Indeed recall that ||S|| (F x 73) >
J» M(S,) dx for every open set F' (e.g. [35, Lemma 28.5]). Therefore

using
M(S,) < lim ISI(Cr @)

r—0 W™
7| (C,

< lim M + cA? < meg(z) + cA? + Q.
r—0 W™

There are then ) measurable functions ; : By \ U — R” such that
= Y9 [gi(x)] and we define g : B, \ U — Ag(R") by

Q
= Z [gi(x)]

Since the slicing is a linear operator and Z, = Z(,/ 4,,) = pjgg(Z, p,z) =
[¢'(2")] for all x € Q~, we have that

Q-
Z ()] + [¢'(2")] forae. z€Q \U.

D)-valued function (g*,¢~) as

In conclusion we can define a (Q -3

gt(x) = (x)]  forae zeQT\U

&Me
IS
?

-1

lgi( for a.e. £ € Q7 \ U,

—1
e g(x)=g (z)+ [77[}/ ! ] for all z € Q= \ U.
Combining (5.19 5.18) we infer
m|D®,|(z)* < 2m*(mer(z) + cA?)(mer(z) + cA* + Q)
<2m(Q +1)(6. + cA?).

Therefore, the theory of BV functions gives a dimensional constant C'
such that, for any ¢ € C*(R"™) with ||[Del| <1

@, (2) — @yu(y)] < Cv/2m(Q + 1) (0, + cA?)[z —y
< L.z —y for x,y € B3\ U,

@

SK\N

where L, := C/2m(Q + 1)(62 +c2A). As pointed out in the proof of
[14, Proposition 3.2] one has

sup{| @, (7) — @, (y)|: [Dplee < 1} = Wi(g(z), 9(y))
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where we have set
Wi (51, 52) == sup{(S1 — S2) () : | Depll, <1}
= 516171)1612 Z|5u — Sas(i)] > G(S1,52)

for Sy = 2?:1 [Ski] € Ag(R™). This implies the Lipschitz continuity
of g on By \ U and of g% on QF \ U. For g it follows directly from the
above estimate:

G(g(x),9(y)) < Wilg(z),9(y)) < Li|z—y| for all z,y € Bs\U (5.23)

and similarly for g and x,y € Q* N B3\ U. In the case of g~ we use
the triangle inequality to infer

G(g™(2), 97 () <Wilg (2),9™ (y))
<Wi(g () + [¥'(2)], g (y) + ["()]) + Wi([' ()], [¥'(y")])
<Lz —y|l+ [¢(2') = ¢'(y)] < (Ls + cA)|z — yl.
We now claim that for some dimensional constant a > ¢ we have
Glg" (1), Q¥ (@")]) < 33V/Q(L. + aA?)ly — |
for all y € QT \ U*, 2 € v and

G(g~(y),(Q — 1) [ (2)]) < 33v/Q(L. + aA?)|y — x|

for all y € Q= \ U*,x € . The latter estimates are implied by the
following claim:

(Cl) for y € By \ U* with |z — y| = dist(y,y) we have
l9:(y) — ¢/ (2)] < 33(L. + aA2)[x —y| Vi

(where we recall that, given a point « € R™, we write 2" for
the vector 2’ € R™™! having the first m — 1 coordinates of x.)

We will argue by contradiction. Assume yo € B3 \ U*, 9 € v and
ie{l,...,Q} satisfy

19:(y0) = ¥'(4)] = 33(L. + aA?)r,
where 7 = |yp — xo| = dist(yo,y) < 1. Firstly, we note that
| (x}) — ' (2})| < cAlxy — x9| for all xy, x5 € By. (5.24)

Moreover g;(yo) € spt(T) \ spt(Z) . Secondly, since yo ¢ U* we have
m(1y)(yo) < A and so
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Due to for all y € B,.(zo) \ U there must be a j € {1,...,Q}
with
195 (y) = ¥/ ()] > lgilwo) — ¥/ (2)] — Glg(y), 9(w0)) > 32(L. + aAZ)r

and, because of (5.24), g;(y) € spt(T) \ spt(2).
Choose N € N such that

1 1 1

— < (4(Ly + aA?))? < 5.26

T (5.26)
and set 7; := (1 — 55)r for i = 0,..., N. This choice ensures that, if

(y,2) € By, ((z0,¢'(x))) and y belongs to the annulus A; := B, (xg) \
B,,,,(x0), we must have

1 1
|z = @) < =iy < Frre < (AL + aA2))r,

Therefore, if y € A; \ U, the point (y, g;(y)) determined above cannot
be contained in B, ((zg, ¢’ (x))). In order to simplify our notation, set

po = (o, ¥ (z()). We then have

A\ U C p(sptT N Cy,(po) \ By, (po))
and thus
1Tl (Cr.(po) \ By, (p0)) > [A: \ U|. (5.27)
We now claim that there should be i € 1,..., N such that |A4;\U| >
514;], indeed otherwise

N N
1 1
Bn(an) V01 2 Y441 2 5 314 2 518 a0) \ B o)

> 1 (1 - 2%) 1B, (1)

which contradicts (5.25) because A < ;. Fix an annulus A; with |4; \
Ul > %|A;| and define p := r;. Now we can estimate the mass of T in
B,(po) from above using (5.5)), in fact

1]l (B,(po) = 1T (Cp (o)) = 1T (Cp(po) \ B,(po))
15.27)

< 1T (Col)) - 544

QI N By(z0)| + (Q — 1) N By(x0)| + mep(B,(x)) — %|Az‘|

< QI N By(zo)| + (Q — 1) N By (o)
+ mer (B, (w0) = 5| By(o)]. (5.28)
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Notice that
Q|Q+ M BP(I0>| + (Q - 1)|Q_ N Bp(x0)|

S (Q - %) |Bp(x0)| + |Bp(x0> N {¢1($/> S Ty < 1/11<J]6)}|

1
<(@ = 5)1Bylwo)| + cAplBy(ao)] (5.29)
Moreover B,(xg) \ U # 0 and mer(B,(xo)) < d.|B,(x)|. Combining
the latter inequality with ((5.28) and (5.29)) we have

1T (B,(po)) < |By(zo)] ((Q - %) +cAp+ 6, — ﬁ) . (5.30)

On the other hand, by Allard’s monotonicity formula and (v) in As-
sumption ([5.2) we have
—m 1
R p™™ [|T] (B,(po)) > O(T, po) > Q — 3
from which we deduce that
1
1T (By(po) = (1= CoAp)(Q = 5)IB,(wo)]  (5:3)

The comparison of ([5.30)) and ([5.31]) gives a contradiction, because,
for sufficiently large a > 0,

1 1 1
- < 2 R —
b+ (c+ Co)Ap— 15 < L2+ 4(c+ Co)A — oo

(-29)
< L2+ (c+ Co)A —4L% — 4a*A < 0.

This concludes the proof of the claim (Cl).

5.1.3. Conclusion. Having established the Lipschitz bounds above,
first we restrict g* to the sets Q* N B3\ U* and then we extend them
to v setting:

9" (x) = Q¥ ()]
9 () =(Q—-1)[¥'(2")].
We define the “good” set to be
K:=(QNBs\U")U~y (5.32)

and (5.22)) agrees with the claimed estimate on |B; \ K.
Next, write ¢¥(y) = Y, [(h (v), ¥(y, ki (y)))]. Obviously the

maps
y = W (y) = Z [h )]
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are Lipschitz on K* := K NQ* with Lipschitz constant 33(L, + aAz).
Recalling [13], Theorem 1.7], we can extend h* to maps u* € Lip(BsN
OF, Ag(R™)) satisfying

Lip(’i) < 0(51/2 +aA%) and  osc (aF) < Cosc (hF).

Set finally u® =Y [ u; (z)))]. We start showing the
Lipschitz bound FIX 21, To e B3 ﬂ Qi and assume, without loss of
generality, that G(a* (), u*(22))? = 3, |af (z1) — @ (22)|?. Then

G(u* (1), u* (x2))*
< Z |(@§t(I1)a 1317“3[(%1))) (Uf(xz)a‘l’($2>uzi($2)))|2

<23 (4 ID, VIR o) = 5 @)+ D e — )

<201+ [|DY[)G (™ (x1), @™ (x2))* + 2| DY[g|a1 — 2]
S O((S* + CL2A + ||D‘IJHO>|ZE1 - .T2|2 .

Recalling that ||[DV||, < C(E"2 + A) the Lipschitz bound follows. As
for the L* bound, recall that osc(u®) = inf, sup,cp, G(u* (), Q [p])-
Proceeding as above we then conclude

osc(ut)? < inf sup G(u*(2), Q [(p, ¥(0,p))])?

rE€B3
< 2inf sup ((1+ |DY[RG(E* (), Q [*])? + | DY |3laf?)
P zeBj
< 2(1 4 || DY||3)osc(@™)? + 18 || DY|3.
The identity G+ (K* x R") = TL(K* x R") is a consequence of
uF(z) = T, for a.e. * € K*. Indeed, recall that both T and G+ are
rectifiable and observe tha (T', 7o) # 0 ||T||-a.e. on K x R™ because
mer < oo on K. Similarly, (G,+,7) # 0 |G« |-a.e. on K* x R,
by [15], Proposition 1.4]. Thus, (G,+ — T)L K* x R" = 0 if and only
if (Gur —T)Ldxy A...Ndxylgeyrn = 0. The latter identity follows

from the slicing formula and the property (T, p,z) = (G,+,p,z) =
> [z u ()], valid for a.e. x € K*. Finally, to prove (5.12) we

simply not that by (5.11] - and .,
17— s — Gy [(Col)) — ||T— G — Gy [[(Cu() \ (K x RY))
< NTN(Cs(2) \ (K x R™)) + C|Bs \ K|
SE+(C+Q)Bs\ K| <CE.

2Here we use the notation (vi,v3) for the standard inner product between m-
vectors and S| w for the restriction of currents S on forms w.
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5.2. Lipschitz approximation of Sobolev maps

Before coming to Theorem[5.6] we need a preliminary lemma, which
is a modification of a corresponding statements in [14].

LEMMA 5.8. Let (f, f7) be a (Q — 1)-valued function on B, with
mterface (7,0) where v = {z,,, = 0}. Then for every e there exists a
(Q — 3)-valued function (fX, f2) with interface (7,0) such that

(a) fF and f= are Lipschitz continuous;
(b) The following estimate holds:

/ G(1, 2)° / (IDf*| - |Df2)’
T /B Do f*) - Do fA) <= (5.33)

If flop: € WY2(9B;, Ag), then f* can be chosen to satisfy also

O 2P+ [ (Df-IDE) e (B30
0B;

oBF
PROOF. Firstly we argue that once we have the properties (a) and
(b), the additional conclusion ([5.34) can be easily inferred using the

same trick of [14] Lemma 4.5]. Indeed, without loss of generality, as-
sume r = 1 and, using the hypothesis f|,p+ € W12(0B;, Ag), extend

the maps on By \ Bif as 0-homogeneous: the extension (f*,f~) are
then still in W*? and they form a (@ — 1)-valued function with inter-

face (7,0) (note that ~ is flat). Moreover f*((1+ &)z) = f*(x) for
every § > 0 and every z € 0B;.

Assuming that we can prove (a) and (b) for a general r, we infer the

existence of a sequence (u;,u; ) of Lipschitz (Q — 1) approximations

such that ?
/ G(f* ut) + / (IDf*| - |Dui))?
+/Bi|D<nofi>—D<nouf>|)%o.

2

By Fubini, there is a sequence ¢y | 0 such that

[ ey [ (o= 1m0
OB aB*E

146, 146,
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By a straightforward computation, if we define fi(z) := ui (z/(1+0)),
then we have at the same time

[ ot g+ [ (prt1 = 0sE)?

+ [ 1Dt %) = Dlno ££))* 0

1
2
G P+ [ (D= DS — 0.
dB;i dB;i
We now come to the main part of the lemma, namely the points

(a) and (b). First of all, without loss of generality, we can assume that
r = 1. We next define the auxiliary function h € W2(By, Ag(R™)) as

(o) if 2, >0

hw) = { F(2) + [0] if 2 < 0.
Observe that |DfT(z)| = |Dh(z)| for every z € B and |Df~(z)| =
|Dh(z)| for every x € By . Consider the maximal function m(|Dh|)(z)
and let

Ky :={z :m(|Dh|)(x) < A}

which is a closed set, since maximal functions are lower semicontinuous.
Arguing as in [13], Proposition 4.4] we conclude that h|g, is Lipschitz
with a constant C'A (where C' depends only upon m). Moreover, by
the standard maximal function estimates, we have

MN|B\ K| < c/ |Dh|?. (5.35)
Bi\K) /2
We next consider the symmetrized set K3 := {(2, z,,,) € Ky : (¢/, —zp) €
K} and observe that
B\ K3| < 2|B1\ K.
By an elementary comparisonﬂ we easily see that

G(f~ (@), f~(y)) < V2G(h(x), h(y)).

3Indeed, fix z and y and assume without loss of generality that ho(z) =
ho(y) = 0, and that h;(x) = f; () and h(y) = f; (y) for every i < @Q — 1.
Let 7 be a permutation of the set {1,...,Q} such that

G(h(z), h(y))* = Z [hi(2) = hagiy (W)

We define a permutation o of {1,...,Q—1} in the following way. If 7(Q) = Q, then
we simply set o(j) = 7(j) for every j < Q — 1 and we easily that G(h(zx), h(y)) >
G(f~(z), f~(y)). Otherwise there is a jo < @ — 1 such that 7(jo) = @ and an
1o < @ — 1 such that 7(ig) = Q. We then set o(ig) = jo and o(k) = 7w(k) for every
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Hence the Lipschitz constant of the restriction of f~ to K{ N By is at
most 3C'\ and we can extend it to a function g~ on B; with Lipschitz
constant at most C'\, for some C’ depending only upon m,n and @), cf.
[13 Theorem 1.7]. Consider now the function k : By U (By N K}) —
Ag(R™) such that

g (x)+1]0] for x € By
W) = { [T (x) foerB%rﬂKi.

We claim that £ is in fact Lipschitz with constant at most C'A. Fix
two points z,y in the domain of the function: if they are both in B;
or both in B; then our claim is obvious, given the Lipschitz bounds
on g~ and f*|ks, respectively. Fix otherwise z = (2, z,,) € K5 N B
and y € By . Consider now z° := (2/, —x,,) and observe that z° € K3.
On the other hand

|z* — x| = 22, < 2|z —y|.
We can therefore estimate
G(k(x), k(y)) < G(k(x), k(2”)) + G(k(z"), k(y))
= G(h(x), h(z*)) + G(k(z®), k(y))
< G(h(z), h(z*)) +3G(g™ (=), 9" (v))
< CAz —2°| + CXz® —y| < CAz —y].
We can now extend k to a Lipschitz map on the whole ball B; and we

define g™ () equal to such extension for every z € Bj". Observe there-

fore that (¢%,¢7) is a (Q — 3)-valued function with interface (v,0).

Moreover the Lipschitz constant is controlled by C'A\. Note also that
g* and f* coincide on K§ N By
Consider next that the functions

ot = G(f*.g%),
ke{l,...,Q —1}\ {io}. We can therefore compute
G(f~ (), f~ (y))?
< S U@ - Fn@P = S @) — ey + lhio(@) — i)

i<Q-1 i<Q—1,izio
< Z hi(2) = By (WP + 2| iy () + 2[R, (9) [?
i<Q—1,izi0

= > [hil@) = by ) + 20hig () = Prio) )1 + 2| () — ) ()P
i<Q—1,i#io
= G(h(x)-h(y)* + [hig () = ha(io) W) + [ho(2) = hrq)(W)]? < 2G(h(2), h(y))? .
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vanish on K§. Furthermore by choosing A sufficiently large we can
assume that |K§ N Bi| > 1/2|Bf|. Thus the Poincaré inequality gives

[ outtr= [ wrso [ e

1

Moreover, recalling that |B; \ K3| < 2|B; \ K,| and ({5.35))

| (1Da*F+(D7* = IDg*? + Dl 1) ~ Din o g*)F)

1

<c [ (DFPEDgP)y <O [ (IDFEP )

+ +
BY\KS BI\K3

<c [ DPPCRBAN
BY\K3

gc/ |Dfi|2+o/ |IDh|? = 0.
BF\K3 B1\K} 2

Since the latter converges to 0 as A — oo, we conclude the proof. [

5.3. Proof of Theorem [5.6

It is not restrictive to assume that x = 0 and » = 1. Thus ¥(0) =0
and ¥ (0) = 0.

5.3.1. Proof of (5.13)) and ((5.14)). Firstly we want to note that
5.14) is a consequence of (|5.13). Indeed, use first (5.9), (5.11]) and

5.13|) to estimate

1B, \ K| < Cn B2

Since Lip(u®) < CE?, follows easily.

We fix  and 7,. Assuming by contradiction that the statement is
false we find a sequence of area-minimizing currents 7 and submani-
folds Y, I'y satisfying the following properties:

(i) The cylindrical excesses satisfy the estimate

By = B(Ty, Cy(0),m) = —— Te— A dITell < = (5.36)
2wm C4(0,mp) k

(ii) 'y are smooth submanifolds of dimension m — 1 and ¥; C

R™*" are smooth submanifolds of dimension m+n = m+n—1

containing I'y. After possibly changing coordinates appropri-

ately (cf. Remark , Y and ['y are graphs of entire func-

tions Wy, : R™*" — R' and 9, : R™! — R*""!* satisfying the
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bounds
19kl ooy < CLES + Ay) < CES (5.37)
C _ip
||¢k||c2(38) < CA; < EE’“/ . (5.38)

(iii) Assumption [5.2| holds for each T.
(iv) The estimate (5.13)) fails, i.e.,

eTk(B5/2 \ Kk) > U*Ek = 502Ek, (539)

for some positive co. The pair of (Q — %)—Valued maps (f;7, /i)
denotes the E,f -Lipschitz approximations of the current 7.

For every s > 5/2, we have
er, (Kk N BS) S er, (BS) -5 Co Ek (540)

In order to simplify our notation, we use B,:ct’,n for the domains of the
functions fi intersected with the ball B,(0) C m. Instead BF de-
notes the corresponding limits, namely the sets B := B,.(0) N {%x,, >
0}. Using this notation and the Taylor expansion of the area func-
tional, since F; | 0, we conclude the following inequalities for every
s€1[5/2,3]:

D +12 D~ 2

/ M+/ MS(H—OEEB)eTk(KkﬂBS)
KpnB 2 KiNB; 2

< (1+CEY) (en(B) -5 By)

(5.41)

S er, (BS) — 402 Ek (542)

Our aim is to show that (| contradicts the mlmmlzmg property of
T,.. To construct a competltor we write fk =>. [[ f,C ]] and
denote by (fi)?(z) the first n components of the point (fiF);(x). This
induces a (Q — %) valued map (f5)" =", [[ 5 )]], namely a pair
of maps taking values, respectively, in AQ(R") and Ag-1(R™). Observe

that, since (f,;t)l(a:) are indeed point of the manifold Y, then

- S [ o (ERE)]

Moreover, by (5.41)), the fact that Lip(f;) < CEE and |Bs \ K| <
CE;_M gives
Dir(f,") + Dir(f,,) < CE,. (5.43)
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Let ((¢r)'(2), (¢¥r)"(2')) be the first 7 + 1 components of the map
1) whose graph gives I';,. We consider the (Q — %) valued map (g;", g )

1
with g := E, *(f)" with interface (yx, 1) where

1

o= A{rm =)' (@)} and (@) = B * ()" (2).

By assumption , denote by v the plane {z,, = 0} C m, we have
that (vx, ox) — (7,0) in CL.

For each k we let @, be a diffecomorphism which maps Bs onto itself
and ;N Bs onto yN B;. Clearly this can be done so that ||®5—Id||cr —
0. Moreover, given the convergence of 4 to v = {x,, = 0}, it is not
difficult to see that we can require the property ®,(9B,) = 0B, for
every r € [2, 3] (provided k is large enough)ﬂ Furthermore we have that
ngk o (13121”01(33) — 0 so we can choose s, € C'(Bs) with »g, = cpkofblzl

1

2) valued maps

on v and ||5¢||c1(p,) — 0. Now define the (@
e (@) == [(gi)io @ () — ()] -

We observe that (g;, g, ) is a (Q — 3) valued map with interface (v,0)

and by straightforward computations
Dir(g, & (A) N B*)
= (1+ o(1)) (Dir(g}, AN Bf) + Dir(g; ) + o(1) (5.44)

for all measurable A C B3 where o(1) is independent of the set A. From
(5.43) we conclude that the Dirichlet energy of (g;, g, ) is uniformly
bounded. By the Poincaré inequality and since the maps collapse at

their interfaces, their L? norms are uniformly bounded as well. By

compactness we can find a subsequence (not relabeled) and a (Q — %)

4A simple procedure to define the map on each sphere B, is the following.
Consider the north and south poles P¥ = (0,...,0,7). On each great circle C,

>
passing through P and P~ consider the corresponding half circles connecting P.
Each have exactly one intersection with, respectively, {z,, = 0} and 7. We then
map both half circles onto themselves by keeping the map an identity around the
poles and moving the intersections with «; to the intersections with {x,, = 0}. If
we use polar coordinates on the circle C; so that the north and south poles are
given by £%, we then can assume that one half circle is parametrized by [-7, F]:
we seek a map which is the identity around +7 and which maps a small given o in
0. Consider then a bump function A which is supported in (—1,1) and identically
1 on (=32, 23): an explicit formula for such a map is

0 6(1 — A(0)) + A(0)(0 — ) .
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valued map (g7, ¢~) with interface (v, 0) such that
e S
||g(gk o (I)k g )||L2(B?:’E) —0
and

Dir(¢") + Dir(g™~) < liminf(Dir(g;") + Dir(g;,))

k—o00
= li]gn inf(Dir(g;") + Dir(g;)) .
—00
Up to extracting a subsequence, we can assume that | D g,?ﬂé G* weakly

in L?(Bs3). One can then easily check, see for instance the proof of [14]
Proposition 4.3], that

|Dg™| < G*.

In particular, since |Bs \ Ki| — 0, we deduce that for every s € (0, 3):

Dir(¢g*, BF) < liminf/ (G*)?
k=oo J BEN®, (Ky) (5.45)

< lim inf Dir(gif, BEf N ®(K})) < lim inf Dir(gif, B N K})

where in the last inequality we have used .

Let € > 0 be a small parameter to be chosen later, we apply Lemma
to (g%, 97 )|; with & to produce a Lipschitz functions (¢, g-) sat-
isfying all the estimates there.

We would like to use Lemma to interpolate between (g;7, g )
and (¢, g- ) (note that both have interface (v,0)). However we would
like the functions (g, g, ) not to concentrate too much energy in the

transition region. To this end let us define the Radon measures

ui(A) = / DG + / D[P Ac B
ANBY ANB3

By

Up to the extraction of a subsequence we can assume that p;— p for
some Radon measure . We now choose r € (5/2,3) and a subsequence,
not relabeled, such that
(A) u(0B,) =0
(B) M((Ty — (Gfk+ + Gfk_)’ Ip|,7)) < CE. " where the map |p
is given by mo x w3 3 (1, ) — |=|.
Indeed (A) is true for all but countably many radii while (B) can be

obtained from the estimate ({5.12)) through the combination of Fatou’s
Lemma and Fubini’s Theorem. In particular, by (A) and the properties
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of weak convergence of measures, we have

limsuplimsup/ |D§,j|2—|—/ |Dg;. |2
ST k—o00 B;\BF ANB;\B;
< limsup u(B, \ B,) = 0.
s—r
Hence, given r € (5/2,3) satisfying (A) and (B) above, we can now
choose s € (5/2,3) such that

k—o0

limsup/ |Dg;f 2 +/ |Dg; |> < e, (5.46)
BI\Bf B \Bs 3

We now apply, for each k, Lemma (4.9) to connect the functions
(0, 9,) and (g7, g-) on the annulus B, \ By . This gives sets By C
V,\’fa C W)’f’E C B, and a (Q — %) valued interpolation map (C,:E,C,;E)
with

/ DCE|
(Wf,g)i\vf,s

. C .
SCA/ |Dg;f|2+|Dgf|2+;/ G(gF, 9%)*
(WE E\VE, (WE E\VE,
< CA/ DG + |Dg?
(WE R\,
c . A
+ = (G(ar.9%)> + G55, 95)%)

A Sk v,
Hence

lim sup lim sup lim sup/ |DGE|? = 0.
whawvy

A—0 e—0 k—o00

Thus we can find A\, > 0 sufficiently small such that

lim sup / IDCE? < 2. (5.47)
WEOERVE, 3

k—o00

Moreover, up to further reduce €, we can also assume that
(&)
DgF|? < Dg*|” + —. 4
[ o< [ ipge (5.18)

Next we define Lipschitz-continuous function on B, with interface (-, 0)
by (note that since A and ¢ are fixed we drop the dependence on those
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parameters for the sake of readability)
. gki on BT \ (W)I\C,a)i
hiy =4 G on (W)= \ VL (5.49)
ggt on (V)\k,s)i'

Let us then consider the functions hf = [[(ﬁf)z o®y + s 0 CIDkﬂ,
defined on B,:f’g. The resulting (Q — 3) valued map (h;, hy) has inter-
face (&, pr) and satisfies

lim inf <D11‘(h;:, By,) + Dir(hy, By,r ))

k—o00

= lim inf (Dlr(h;, BF) + Dir(h;, BS ))

k—o0

< Dir(¢t, B;) + Dir(g., B;)
+ lim sup (Dlr(Ck ’ (WA 97\ V/\k,£> + Dir(Gy <W’<€v5>7 \ VAk’E))

k—o00

+ limsup (Dir(g,j, B\ B.) + Dir(g;, BX \ Bs))

k—o00

< Dir(¢", Bf) + Dir(g~, B,) + c» (5.50)
< lim inf (Dir(g,j, B N K,) + Dir(gy, B N Kk,)> +es (551)
—00

where in the third inequality we have used (5.47), (5.48)), (5.46) and
the fourth one (5.45)).

We thus conclude that, for infinitely many &,
EDir(hy, B,) + ExDir(h;, B ,)
< Dir((f)", B, N Ki) + Dir((f;)", By, N Kx) + 2c2Ey . (5.52)
Let us consider the functions

vE(z) = E;/th(:z:) and Z [(vii (@), Oz, v (2)))] -

Observe that wi|pp, = fi¥ and Lip(w) < C’E,f.

We are now ready to construct our competitor currents to test the
minimality of the sequence Tj. First of all, by the isoperimetric in-
equality, there is a current Sy supported in X such that

OSk = <Tk: - (Gf+ + G *)v |p|,T>
and M(S)) < C(Ey *)a"1 = o(Ey).

where we have used that § < R‘ Let Z, = Gw}f LC, + ka— LC,+ 5.
We easily see that the boundary of Z;, matches that of T, L C, and
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that the support of Z is contained in ;. Thus it is an admissible
competitor and we must have

M(Zy) > M(T;; L C,) .

On the other hand, using the Taylor expansion of the mass, the bound
on Lip(h) and the bound on M(Sy), we easily conclude that

Dir(wy, Byf,.) + Dir(wy, By.,.) > 2er,(B,) — o(Ey) . (5.53)

We next compute

Dir(uf, B,) - Din(/{, B, ki) = |

B
/
B
Ig

n /B DU (P

N J/
-

I3

By (5.52) we already know that I} < 2¢yE), for infinitely many k. For
what concerns I, we proceed as follows. First we write

B=Y / (DO v () = DOVl () ():)

(D(Wy(z, v (2))i + D(Wr(z, (f7)"(x)))-
Next, recalling the chain rule [13, Proposition 1.12], we get
| D(W(, vf (2)): + D(Wr(a, (f7)"(2))i)
< O|ID,Uillo + C| Do (Lip(vr) + Lip((f)") = CE”.

Using the latter inequality and the chain rule again, we obtain

R<CE [ (DI () = Do, () )l

Duj|? / D(fH)?
,:jr B,jrka

-~

I

N

D )E = [ D () )

J/

+ I1Duello (1Dvf |+ D)) )

<CEMIDM [ Gl () + OB [ (1Duf+ DY)

+
Bk7

T

<CE". (5.54)
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Finally,
I3 < C||D‘Pk||§o|Ba\Kk|+C||Du‘lfk||§o/ (DF)')? < CE " +CE}.
B,

Hence ) + I+ I3 < 2¢o Ey + 0(E)). Since an analogous estimates holds
replacing + with —, we conclude that

Dir(wy, Byl,.) + Dir(wy , By,,.)
<Dir(f,7, By, N Kx) + Dir(f, By, N Ky) + 4c2 By, + o(Ey) . (5.55)
However, the latter inequality combined with implies
Dir(wy, By,) + Dir(w, , B;,) < 2er,(B,) — c2E 4 o(Ey) . (5.56)

Clearly (5.53) and (j5.56|) are incompatible for k large enough. This
completes the proof of the first part of the theorem.

5.3.2. Proof of (5.15), (5.16) and (5.17). We again argue by

contradiction. Assume the second part of the theorem is false for some
1.. We then have again a sequence of area-minimizing currents 7} and
submanifolds X, T’ satisfying the properties (i), (ii) and (iii) of the
previous step, which we recall here for the reader’s convenience together
with the fourth contradiction assumption. More precisely:

(i) The cylindrical excesses satisfy the estimate

= E(Ty, C4(0), m) = —— Th— BRI < <. (5.57)
2w Jc, (0,70 k
(ii) I'y are smooth submanifolds of dimension m — 1 and ¥; C
R™*" are smooth submanifolds of dimension m+n = m+n—1
containing ['y. ¥, and [’ are graphs of entire functions Wy, :
R™7 — R! and 1, : R™™1 — R*"1+ satisfying the bounds

1Wkllea sy < CUBS + Ax) < CE (5.58)
C
[kl (pgy < CAR < EEkh- (5.59)

(iii) Assumption [5.2| holds for each Tj.
(iv) The E,f -Lipschitz approximations (f,", f, ) fail to satisfy one

among the estimates (5.15)), (5.16) and (5.17)) for any choice
of the function .
As in the previous step we write f; (z) = Y, [(fi)i(z)] and denote
by (f£)?(x) the first 7 components of the point (f7);(z). This in-
duces a (@ — 1) valued function (f;)" := >, [(fif)/(x)] with values

2



98 5. FIRST LIPSCHITZ APPROXIMATION AND HARMONIC BLOW-UP

in Ag(R")(R™) and Ag_;(R™). Observe that, since (fi);(z) are indeed
points of the manifold ¥, then

- 3 [ e ()]

We keep using the notation of the previous step. In particular we let

() (=), (¥n)" ("))

be the first n + 1 components of the graph map of I'y and ¢, =

1
E, * ()" (2). We consider the (Q — 1) valued map (g;, g; ) defined
by

g = B (fE)

with interface (vx, ). For each k we let ®; be a diffeomorphism
which maps Bj onto itself and 7, N Bs onto 7N Bs. Again this is done
in such a way that ||®; — ®|[cx — 0, where ® is the identity map.
Furthermore, since ngk od, ‘Cl(B3) — 0, we can choose », € C(Bs)
with >, = @,0®; " on v and |5/l w1.2(py) — 0. Now define the (Q@—-13)
valued maps

Z[[gk 0(13 _%k( )]]

As in the previous step we can find a subsequence (not relabeled)
and a (Q — %) valued map (g*,¢g~) with interface (,0) such that
Hg(gj,gi)||L2(Bi) — 0. We next claim that

3

ot + - 1,2
5 )
(A) The convergence of i to g~ is strong in W"*(Bs/2), namely

kli_)rgo(Dir(g;, B;r/z) + Dir (g, , BE)_/Q)) = Dir(g* B5/2) + Dir(g~ B5—/2) :
(B) g* is a (Q — 3)-minimizer.

Assuming that (A) and (B) are proved, from Theorem we would
then infer the existence of a classical harmonic function & which van-
ishes identically on {z,, = 0} and such that g* = Q[h] and g~ =
(Q — 1) [h]. Setting hy := E;/Qﬁ and kg (z) = (hg(x), Yi(x, hi(x))) we



5.3. PROOF OF THEOREM FE.6 99

would then conclude that

[ e+ [ (151 vainwl) = o5,

k,5/2 Bk,5/2
| etc@-vial+ [ (1= vV@=Dioml)
k,5/2 k,5/2
(Ek)7
/ Do £~ Dief? = ofEx).
B 50

But these estimates are incompatible with (iv) above. Hence, at least
one between (A) and (B) needs to fail. As in the previous section we
will use this to contradict the minimality of 7. Note that in both
cases there exists a (Q — %) valued function (g, g~) with interface
(7,0), v = {x,, = 0}, and a positive constant ¢z > 0, such that

Dir(g", B) + Dir(g—, B,) < li]?1 inf Dir(g,", BY) + Dir(g;, , B, ) — 2¢3
— 00
(5.60)

for all s € (5/2,3). Indeed this is true with (g*,57) = (¢, ¢7) if (A)

fails, while if (B) fails we choose (g, §7) to be a (Q — 1)-minimizer

with boundary data g= on dBj ; extended to be equal to g* on Bs\ Bs .
We can now argue exactly as in the previous step to find a radius
r € (5/2,3) and functions A" such that

M((Ti = (G+ + G, ), Ip|, ) < OB

and, arguing as we have done for (5.50)),
li;n inf Dir(h*, B, ) + Dir(h™, B;,) < Dir(g", B;) + Dir(g~, B, ) + ¢3
—00 ’ ’

(5.61)
< h]gn inf Dir(¢", By,) + Dir(¢9™, B,,.) — cs. (5.62)
As in the previous section we consider vif () := E,/ E/*hif(x) and

Z[[Uk ‘I’kka( )))ﬂ

and observe that wi"|sp, = fi-. We then construct the same competitor
currents to test the minimality of T}. First we consider a current .S
supported in X such that

05, = (T~ (Gy+ + G ), Iplr) and M(S,) < C(EX)a™ = o),
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Then we define, as before, 7, := Gw]: LC, + Gw; L C, + Sk, for which
we can verify that

M(Zy) > M(TLC,). (5.63)
By the result of the previous section, we know that
2er, (B,) = Dir(f;, Bljﬂ,) + Dir(f,, B,;T) + O(niEy) . (5.64)

Observe that now we can choose 1, — 0 as & — oo. On the other
hand, using the bound on M(Sy) and Taylor expansion we infer

2ez,(B,) = Dir(wy, B{,) + Dir(w , By,) + o(Ey) . (5.65)

Arguing as in the previous section (see (5.54))) and relying on (5.62)) we
also have

Dir(wf, Bf,) + Dir(uwy, By,
<Dir(f,", By.) + Dir(f,, By.,.) — csBx + o(Ey) . (5.66)

Clearly (5.63)), (5.64)), (5.65) and (5.66)) are in contradiction for k large
enough, which completes the proof.




CHAPTER 6

Decay of the excess and uniqueness of tangent
cones

In this chapter we prove the decay of the excess at totally collapsed
points for area minimizing currents. As a consequence we will conclude
that the tangent cone at each such point is in fact unique.

DEFINITION 6.1. Let T be an integral current of dimension m in
R™*" We define the excess E(T,B,.(p),7) of T in the ball B,.(p) with
respect to the (oriented) plane 7 as

E(T,B, (p), ) = — /B @) =A@ 6

2w, ™

If T is area minimizing in a Riemannian manifold ¥ C R™"" we then
define the spherical excess of T' at any ball B, (p) centered at some
point p € spt(T) C ¥ as

E(T,B.(p)) := min{E(T,B,(p),7) : 7 C T,X}. (6.2)

We underline that 7 is constrained to be a subset of 7,2, so probably
a more appropriate, yet cumbersome, notation would be E*(T, B, (p)).
Moreover we let h(7,B,(p)) be the minimum of h(7,B,(p),7) while
m C T,% runs among those planes which optimize the right hand side

of (6.2).

Before stating the main theorem of this chapter we need to intro-
duce a modified excess function for boundary points, where we con-
strain the “minimal” reference planes to contain 7,I".

DEFINITION 6.2. Let 7', ¥ and I' be as in Assumption and
assume that p € I'. We define the modified excess in B,.(p) as

E’(T,B,(p)) := min {E(T,B,(p),n) : T,T C 7 C T,%} . (6.3)
With this notation, the main result of this chapter is the following

THEOREM 6.3. Let T be a C? (m — 1)-dimensional submanifold of
a C? (m + n)-dimensional submanifold ¥ C R™™ and consider an
area minimizing current T in 3 with the property that 0TI .U = [I]

101
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for some open set U. If p € T' N U 1is a collapsed point with density
o(T,p)=Q — %, then there exists r > 0 such that:

(a) Each ¢ € T'NB,.(p) is a collapsed point for T with density
_ 1.

(b) At eéch q € I'NB,(p) there is a unique flat tangent cone
Qlr()T]+ (Q—1)[n(q)"], where n(q) C T,% is an oriented
m-dimensional plane containing T,1';

(¢) For each ¢ > 0 there is a constant C' = C(g) with the property
that

E’(T,B,(q)) < E(T.B,(q),7(q))
A 2-2¢ 2c A 2
<C - E’ (T, By (p)) + Cp™ " r=A (6.4)
for all g € T NB,(p) and for all p €]0,r[;
(d) For each € > 0 there is a constant C = C(e) such that
[7(q) = 7(q)] < OB (T, Boy(p))” + Ar)lg —ql'™=  (6.5)

Vq,q" € I N B.(p);
(e) There is a constant C' such that

h(T,B,(g),7(q)) < C(r'E’(T, By, (p)) + A)'*p"*  (6.6)
for all g € T NB,(p) and for all p €]0, 5[.

Before coming to the proof we state an important corollary of the
theorem which will be used often in the remaining chapters (for a geo-
metric illustration of the conclusions we refer to Figure @

COROLLARY 6.4. Let I')3, T and p be as in Theorem [6.5, assume
r = 20 is a radius for which all the conclusions of Theorem hold,
set E = E’(T,B,(p)). Furthermore let © be an optimal plane for the

right hand side of (6.3) and 7(q) be the tangent plane to T in q as
in conclusion (b) of Theorem . If we denote by p,p*,p, and pqL

respectively the orthogonal projections onto w, 7+, 7(q) and 7(q)*, then

IT(q) — 7| < C(E+ Ar), (6.7)
spt(1) N Bo(g) C {z: [p*(z — q)| < C(E+Ar)”|z —q}  (6.8)
for all g e T NB,(p) and

spt(T) N By(g) C {a: [pL(z —q)| < CrE+ A)”|lz —g|2} (6.10)
for allqg e T NB,(p).
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Fi1GURE 1. The region delimited by the thick curved
lines is the right hand side of (6.10]), whereas the cone
delimited by the thick dashed straight lines is the right

hand side of

6.1. Hardt—Simon height bound

In this section we show the validity, at the boundary, of the classi-
cal interior height bound, under Assumption|5.2l The argument follows
an important idea of Hardt and Simon in [27] and takes advantage of
an appropriate variant of Moser’s iteration on varifolds, due to Allard,
combined with a crucial use of the remainder in the monotonicity for-
mula.

THEOREM 6.5. There are positive constants € = €(Q, m,n,n) and
Co = Co(Q,m,n,n) with the following property. Let T, Cy.(x), 3, T'
and m := R™ x {0} be as in Assumption[5.9 and set

E :=E(T,Cy(z)), a:=|Arllo and a:=|Ax|o.
If E+a+a<e, then
h(T, Cy, (), m0) < Co(E + a'r'/ + ar)r.

We will split the proof of the theorem in the following two lemmas,
where again the corresponding geometric constants Cy depend only
upon m,n,n and Q.
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LEMMA 6.6. Under the assumptions of Theorem[6. there is a con-
stant Cy such that

sip IpL(z— @) < Cor ™ / L (2 — )P dIT)(2)

zespt(T)NCayr (z) Cs, ()
+ Co(a* + a*)rt. (6.11)

LEMMA 6.7. Under the assumptions of Theorem[0. there is a con-
stant Cy such that

r_m/ Ipx, (2 — ) d||T||(2) < CoEr* + Coa’r* + Coar*. (6.12)
Cs(z

After rescaling and translating we can assume in all our statements
that r = 1 and z = 0 . Moreover, we use p and p~ in place of p,, and

1
Pry-

6.1.1. Proof of Lemma [6.6l The estimate is a classical one in
Allard’s interior regularity theory. The proof in our setting follows
from a minor modification of the arguments, which we however report
for the reader’s convenience.

We fix a system of coordinates so that mp = {y : Y1 = ... =
Yman =0} and fix 1 € {m+1,...,m+n}. We fix a constant Cy, to be
chosen in a moment, and consider the function

f(z) == max{z; — Coa + Coalz|?, 0}.
We wish to show the estimate

sup ﬁ@ﬁclcﬁ@WﬂW% (6.13)

zespt(T)NCa

from which we will get simply summing up all the corresponding
inequalities when taking i € {m+1,...,m+n} and —y; in place of y;.

In fact we let 74 5 be a suitable convex smoothing of the function
R > t +— ri(t) := max{t,0}, with the additional properties that r, ;
vanishes on the negative half line and equals the identity for t > §: then
we will show the inequality for the function f(z) := r4 5(z; —
Coa + Cpalz|?). Since the constant C; will not depend on §, we will
achieve the correct inequality by simply letting 6 | 0. For the rest
of this proof f denotes such a fixed smoothing of max{x; — Cpa +
Coél|l‘ |2, 0}
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Observe that, by choosing Cj sufficiently large we achieve that f
vanishes on I" and, according to [2] Section 7.5], that f is subharmoni(ﬂ
on the varifold induced by T.

We next show that holds under these two assumptions. Note
that Allard in [2, Section 7.5] proves precisely this statement, but we
cannot use [2, Theorem 7.5(6)] directly because the constant in the in-
equality depends upon the distance of the support of f and the bound-
ary I': the purpose of the following argument is to show that in fact
such dependence is absent in our case.

We denote by C* the decreasing sequence of cylinders Cy,p-r. We
then observe that the (short) paragraph proving [2, Lemma 7.5(5)]
applies to our situation and implies the inequality

/ |vTh|2dy|T||§22k+2/ h2d||T|| (6.14)
Ck+1 Ck

for any subharmonic function A which vanishes on a neighborhood of
I'. We next use the Sobolev inequality on stationary varifolds, namely
from [2], Theorem 7.3] we know that, for a smaller than a positive
geometric constant,

m—1

(/ck(hsp)"ﬁld”T”) <Gy /Ck Vr(he)] (6.15)

whenever ¢ is a smooth function compactly supported in C* (remember
that h vanishes in a neighborhood of I').

Following the classical scheme of Moser’s iteration, cf. [2, Theorem
7.5(6)], we introduce 3 := ™= and

Next we fix a cutoff ¢y identically equal to 1 on C?**2 compactly
supported in C2*! and with [Viy| < Cp2%*. Substituting h = f25*
and ¢ = ¢y, inside (6.15)) we then conclude

M1 <G [ Ve 4 G [ .
C2k+1 C2k+1 (6 16)

1We recall that a function h is said to be subharmonic on the varifold induced
by T if

/VTh -Vred|T| <0 Vo € C! with ¢ >0,

where Vrh is the orthogonal projection of Vh on the tangent space to T (i.e., if
V1,...,Um 18 an orthonormal frame such that T'(z) = v1 A ... A vy, then Vph =
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Next we compute

k k k
/ V()T < 2 / V(2 1T
C2k+l CQk+1

1/ 1/
<2 ([ weearn) ([ tam)
C2k+1 C2k+1

Now, since R, > ¢t 7" s (2, convex, and increasing, the function
h:= f#" is subharmonic (cf. [2, Lemma 7.5(4)]). Moreover it vanishes
in a neighborhood of I". From (6.14)), we then conclude

k k
[ <2 [ prar) e
C2k+1 C2k

Putting together and , we then easily conclude
I(k+1) < C*" (k).
The estimate follows from
sup  f?(2) <limsupI(k) < CI(0).

z€spt(T)NCa2 k—o0

6.1.2. Proof of Lemma . We follow here the proof of [39]
Lemma 1.8] (note that essentially the same idea was used in [27]).
First of all, we let » =4 and s go to 0 in (3.5)) to achieve

N}
/ |:|E|m|+2d||T||(x) <A47™|T|(By) — wm©O(T,0) + Erry + Erra,
B4
(6.18)

where

Brry = / / DIdIT (z) dp
Erry ::/0 /Bme z) | dH™ H(x) dp.

Straightforward computationg] show that |z -7i(z)| < Cpalz|? for v € T
and |2+ - Hy(z)| < g;|o*[* + 2m®pa®. Thus we can bound

4
El"l"g SCOB_/ pl_mHm_l(Bp N F) dp S C[)a
0

2Observe that 2 Hp(z)| < &5t 2 +2p|Hr(x)[?, while | Hr(z)| < m[|As|lo <

ma by (3.1)).
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and

IR “T)(B
Erry S—/ +2/ |zt 2 d||T||(x) dp—|—2m2a2/ wdp
8Jo P B, 0 p"

1 ’xLP =2
< = d||T|(z) + 2Coa”|| T']|(By)
B

-9 . |x’m+2

where in the last inequality we have used the monotonicity of p —
e“?p~™||T||(B,). Plugging these two estimates in (6.18)) and recalling
that ©(T,0) > @ — 5 we then conclude

xLQ
/ T J1Tll(2) < 47T (Ba) = (Q— LYo + Coa+ Coa?| T (By)
B4

‘x’m+2
(6.19)
Next, by (5.4) and computations as in ([5.29)), we infer
A7 TN(Ba) = (Q = 3)wm
T|(C
=Wm (W - (Q - %)) < me(T, C4) + Coa. (620)
Wy 4™
Hence we easily conclude from (6.19)) that
/ 2= 2 d||T||(x) < Co(E +a +a?). (6.21)
By

Next, a straightforward computation gives
1 -
Z P = 5Pt () = 2PIT(2) = mol?
for every z € spt(7T'). Integrating the latter inequality and inserting in
(6.21)) we then conclude

/B P ()d)T](2) < Co(E +a+ a%). (6.22)

In order to complete the proof we need to show that spt(7) N Cs C
By, if the parameter ¢ in Theorem is chosen sufficiently small.
Arguing by contradiction, if this were not the case there would be a
sequence of currents Ty, in C4 and submanifolds I'y, ¥ satisfying all the
requirements of Assumption 5.2 with E(T}, Cy) + || Ar, [lo+[|As,flo — 0
but with the additional property that there is a point py € spt(7}) N
C; with |px] > 4. Note however that, under these assumptions, the
mass of Ty in Cy4 converges to (Q — %)4mwm and T}, converges, up
to subsequences, to a current 7T, of the form @ [[C4 Ny ]] + (Q —
1) [Csnmy]. On the other hand this means that, for some geometric
constant r > 0, B,.(py) has positive distance from the plane 7y and is
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contained in Cy4. Let U be an open set which contains the closure of
C, Ny and has empty intersection with B,.(px). Then

M(Tx) > | Txl[(U) + [| T3 [|(Br(p)) -

Letting k — oo and using the semicontinuity of the mass we conclude
1 .
(@ 5) 4w = ITl|(U) + tim sup | T3] (B, (1)
—00

On the other hand |7 |(U) = (Q — 3)4™w™ and so
Jim {7 (B, (pe)) = 0.
—00

Since py € spt(Tx) and B,.(pr) C C4\ T, for k large enough we contra-
dict the interior monotonicity formula.

6.2. Excess decay

The core of Theorem is in fact the decay estimate ([6.4]), which
we prove in this section for the modified excess function introduced in
Definition [6.2] under a suitable smallness assumption.

THEOREM 6.8. For any € > 0 there is an €y = eo(e,Q,m,n) > 0
and a My = My(e, Q, m,n) with the following property. Let T, ¥ and
I’ be as in Assumption and assume that

(1) A%0® + E = (| As| + || Ar]))?0® + E(T, Buo(q)) < €0
(i) O(T,z) > Q — 3 for all z € T N By, (q);
(iii) ¢ € T and ||T[|(Bus(q)) < (Q — })wm(do)™.
Then, if we set e(t) := max{E’(T,B,(q)), MyA?t*} we have
e(0) < max{2 **¢(40),27 % *e(20)} . (6.23)
The rest of this section is devoted to the proof of Theorem [6.8]

6.2.1. Preliminary considerations. Without loss of generality
by scaling, translating and rotating, we can assume ¢ = 1, ¢ = 0,
E’(T,B;) = E(T, By, 1), where 1y = R x {0} C T,X = R™xR"x{0},
and T,I' = R™! x {0}. We also recall that, if we do not specify the
center of a ball or a cylinder, we implicitly assume that such center is
the origin.
We start by observing that, without loss of generality, we can as-
sume
E’(T,B,) > 2 " MyA?, (6.24)
and
E’(T,By) > 274™E (T, By). (6.25)
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Indeed, note that
e(1) = max{MyA% E’(T,B;)} < max{MyA? 2"E’(T,B,)}.

So, if (6.24)) fails, then
e(1) < MoA? = 27%3(22MyA?) < 27%e(2),

whereas, if (6.25) fails, then
e(1) < max{MyA% 27'E’(T,B,)} = 2 %e(4).

Hence in both cases the conclusion would hold trivially.
Summarizing, under assumptions ((6.24]) and (/6.25)), we need to show

the decay estimate:
E’(T,B,) < 2%72E(T,B,). (6.26)
Let us now fix a positive n < 1, to be chosen sufficiently small
later, and consider the cylinder U := By_(0,70) + B!z (0, Ty ), which
by abuse of notation we denote by By_, X B\"/ﬁ. If g is sufficiently
small, we claim that

spt(T) NOU C 0By—y x By (6.27)

B, ,Nspt(T) CU. (6.28)

Otherwise, arguing by contradiction, we would have a sequence of cur-
rents T} satisfying the assumptions of the theorem with ¢y = %, but
violating either (6.27)) or (6.28]). Then 7} would converge, in the sense

of currents, to

To:=Q [Bf] +(@ -1 [B/]
where Bff = By(0,m)N{£x,, > 0} and Q' is a positive integer. By the
area-minimizing property, this implies that the supports of T} converge
to either By (if Q" > 1) or EZ (if @ = 1) in the Hausdorff sense in
every compact subset of B4. This would be a contradiction because
both By, \ U and OU \ (0B4—, x B'5;) are compact subsets of B, with

positive distance from B,. We have therefore proved ([6.27) and (6.28)).

We remark further that we must necessarily have || T ||(Bs) < (Q —
Jw,, 4™ by assumption (iii). Hence, by the monotonicity formula @' —
= O(Tw,0) < Q — 1. On the other hand, by assumption (ii) and the
upper semicontinuity of the density of area-minimizing currents under
convergence of the latter, we must have ©(7,,0) > @ — % Since @’
is an integer we conclude Q' = (). Observe also that, by the area-
minimizing property, || Tk||(A) = ||Twl||(A) for every compact subset A
of B4. Thus, for g is sufficiently small, we have that:

DN [ = [ =
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(A) the mass of T"in the ball B, is, up to a small error, (Q — 1) w,,r™
forany 1 <r <4 — 1.

Next, let us define Ty := TLU. Observe that (6.27) and (6.28))
imply:

(B) aTo LC4,77 = [[F N C4*77]];

(C) TLB4,7) - TO LB4,,7.
Choose a plane T C TpX which contains TyI" and such that E(T, By, 7) =

E’(T,B4). Let us observe that (since m, is the optimal plane for
E’'(T,By)):

7 — mo[*|TI(B2) = / 7 — mo[* || T

B>
<2 / T — mol? d|IT]| +2 / T —72d|T]|
BQ B2
< 2-2"w,, E’(T,By) + 2 - 4™w,,E’(T, By)
< CE’(T,By).
Moreover
E(Ty, Cy4—y) < E(T, By 1, m)
< 2E’(T, By 1) + 52T — mo*[ T (Ba—y)

wm4'm
< 2B’(T,By_y) + C|7 — mo[*||T||(B,) < CE(T,By),
(6.29)

where in the third inequality we have used (A), namely that the mass
of T'in a ball of radius r < 4 — 1 is comparable to (Q — %) wy,r™. Thus

(D) E(Ty, Cy_,y) < CE(T, By).
Moreover, recalling that p : R™"" — 7, is the orthogonal projection,
by the Constancy Theorem
(E) piTo = Q* [QT]+(Q*—1) [ ], where Q* is a suitable positive
natural number and QF are the regions in which B, is divided
by p(I'); in particular
0 [[Q+]] LC4,77 =—0 [[Qi]] LC4,77 = D¢ [[F]] LC4,7] .
Since Ty = TLU and U C By_,s, clearly ||T5||(Cy—y) < ||T||(Ba—y2)-
On the other hand, by (D) and (E),
ITol(Camp) > Q[QT| +(Q" — DI

Assuming that the constant £y in the assumption (i) of the theorem is
sufficiently small, we conclude that p; [I']L. Cy4_,, is close to an m — 1-
dimensional plane passing through the origin. In particular Q*|Q"| +
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(Q* —1)|27] is close to (Q* — 3 )wy (4 —n)™. Thus, if £ is smaller than
a geometric constant, we infer

ITl|(Camy) > (Q° = Dom(d =)™

However, by (A), a sufficiently small ¢y would imply ||T||(Ba—y/2) <
(Q — 3)wm (4 — )™ and hence we achieve Q* < @ provided 7 is chosen
smaller than a geometric constant.

On the other hand,
ITol[(Cay) < QT+ (Q" = 1)|Q7 |+ E(Ty, Cuy) -

Using (D) and the argument above, if gy is sufficiently small we get
|To[[(Ca—y) < (QF — 3w (4 —n)™. Recall that we have shown that
TLBy ., =TyLBy_,. Thus ||T]|(Bs—,;) < ||T0|/(C4s—,) and, using (A),
we also have || T||(Bs_,) > (Q — 3)(4 —n)™. Thus necessarily Q* > Q.

Next, since T'L By = T B, then

2 \"
A? < 2MEMTE (T, By) < 2 <m) My E(Ty, Cyp)

62
< CM;'E(T,By).

Thus we can apply Theorem with g = 5Lm and a sufficiently small

parameter 7, to be chosen later, provided ¢ is sufficiently small and
M is sufficiently large.

6.2.2. Reduction to excess decay for graphs. From now on
we let (ut,u”),h and x be as in Theorem In particular, recall
that (u™,u™) is the EP-approximation of Theorem [5.5| (and therefore it
satisfies the estimate ([5.6)-(5.9))) and A is the single harmonic function
which “supports” the collapsed (Q — %) Dir-minimizer x. Moreover,
denote by E the excess E(T}, C4_,) and record the estimates:

A? < CoMy'E (6.30)
E < CE’(T,B,), (6.31)

where Cj is a geometric constant and the second inequality follows by

combining ((6.29) and (6.25)). Next, define 7 to be the plane given by
the graph of the linear function x — (Dh(0)z,0). Since, by Remark

h(z',0) = 0 we have that
7D Tl = R™ ! x {0}.
Moreover, by elliptic estimates,

7| < |DR(0)] < (CDix(h, B

N[
VAN
Q

) (6.32)
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Fix 1 to be chosen later; in the next steps we show that
E(Gy+ +G,,C1,7) < (2-7) *9E(G+ +G,—, Cy_5)+TE . (6.33)

From this we easily conclude (6.26]) as follows. First of all, by the
Taylor expansion of the mass of a Lipschitz graph and the Lipschitz
bounds on u*, we conclude

E(Gye 4Gy, Cs 7) < B(Ty, Cy_y)+C /

|Du+|2+0/ |Du~|?.
QH\K

Q-\K
Secondly,
E(T,By,7) < E(Ty, Cy, )
<E(Gyr + Gy, Cy,7) +2er(B \ K) +2|7]*|B; \ K.

From ((5.13)), (5.14]) and (6.32)) we infer

E(Gu+ + Guf, Cg_ﬁ) S E(To, Cg_ﬁ) + CH*E
E(T,By,7) <E(G,+ + G,-,Cy, 1)+ Cn.E.

Combining these two last inequalities with , we conclude
E(T,By,7) < (2 —-1)*E(Ty, Ca5) + Cn.E +E. (6.34)
Using the height bound in Theorem we infer
spt(T) N Co_y C B
Since Ty By, =T'L Bo, gives us that
E’(T,B)) < E(T,By,n)

2 m
< (2-7)"%9 (—) E(T, By, 1) + OnE +7E

=7
— 2 (

Hence, since the constant C' in the last inequality is independent of
the parameters n,,7, choosing the latter sufficiently small and recalling

(6.31)), we conclude ([6.26]).

9 m

6.2.3. Reduction to L2-decay. In this section we want to replace
the excesses in (6.33) with suitable L? quantities. In particular the
Taylor expansion of the area functional and the estimate Lip(u*) < E?
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give

20m (2 =) "E(Gy+ + Gy, Cay) — / |Dut? + / | Du~ |2
BgfﬁﬂQ'F Bgfﬁﬁﬂ_

<CE¥ / |Du+|2+/ Du 2| <’E, (6.35)
Bg_ﬁmQ_F Bg_ﬁmQ_ 3

provided gq is sufficiently small. Let us define the linear map = —
Ax := (Dh(0)z,0). We now claim that

z%£«h++Gmth)s/‘ G(Du™,Q[A])

B10Q+
E.
6.36)

w3

+[ aw@-nAp*+

~—~

If we introduce the notation 7 for the unit simple m-vector orienting
7, then the latter inequality is implied by

/Q"'ﬂBl xR"™

and the analogous inequality for u~. In fact, since the argument is
entirely similar, we only show . The argument follows the one
of [I5, Theorem 3.5]. Arguing as in [15], thanks to [15] Lemma 1.1],
we can write ut = ), [[uﬂ] and process local computations (when
needed) as if each u; were Lipschitz. Moreover, we have that

—

Gor — 7

2 9o M
d|Go- | < / G(Du*, QA + 1B (637

é—l with € = (e +Ae) A...Aem + Aey).

7__’
Here and for the rest of this proof, we identify R™ and R™ with the
subspaces R™ x {0} and {0} x R" of R™™ respectively: this justifies
the notation e; + Ae; for e; € R™ and Ae; € R™. Next, we recall that

€] = VIE.€) = \/det(6; + (Aes, Aey) = 1+ S| AP + O(A*).
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By [15], Corollary 1.11]

_ . 2
pit / Gur — 7| dIGur] (6.38)
(Q"'ﬁBl)XR"
:zma%g—z/‘ (G, ) d]| G |
(Q+ﬂBl)XRn

_ 200 N B+ / (IDu* 2 + O(| Du[4))

QtNBy
_2/ Z((el—|—Dufel)/\.../\(em—i—Du:rem),F}.
QtNBy i
On the other hand (Ae;, ex) = 0 = (Du; ej, e;). Therefore,
{(e1 + Duf er) A ... A(em + Duf ey,),T)
=€  det (0% + (Duf ej, Aey))
|A[? 0 + +12( 412
= 1+T+O(1A| )] (1+ Duf : A+ O(|Dut|?|A]%)) .

By the mean value property of harmonic functions

][ Dh
B

and the Lipschitz bound Lip(u*) < E”, we conclude

Al = < CE? (6.39)

At / IDut+ Q2" N By AP
B1NQ

—2 Duf : A+ O (E'"?
/W; ; (B'+)

_ / S Duf — AP +0 (EY9)
Q+tNB1

_ / G(Du,Q [A])? + O(E™*%).
Q+NB;

The claim ([6.36]) follows from the latter identity for 9 small enough.

Combining (6.35)) and (6.36]), (6.33)) is reduced to
[ wut. QA+ [ 6w, @-va)
QO+tNB1

QO+NB1

<(2-m) e / |Du™|? + / Du | + 1E.
Q+OB2—T] Q*QB2_W 3
(6.40)
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6.2.4. Reduction to L?-decay for harmonic functions. As a
first step, we substitute u* and u~ in the inequality (6.40]) with @ [«]
and (Q — 1) [r], where & is as in Theorem In fact, from ([5.15)) and

(5.16)
/ Dutp + / Du?
Q+mBg_ﬁ Q_mBg_ﬁ

>Q Def+@-1) [ e - ayE.

Q+r\|B27ﬁ Q_mB27ﬁ

Moreover, using again (5.15)), (5.16]) and (5.17)), the identity

/Q+mB G(Du™, [A])? = / (|Du+|2 —2Q(D(mou™): A) + Q|A|2) J

QO+tNB1

and , we also conclude
| et [+ [ oD@ 1) 14D’
QtnB;

Q—NB1

<Q ]D/f—A|2+(Q—1)/ Dk — A|* + Cn,E .

QtNBy Q—NB1

Next, notice that
7\ B ;| + |BE; \ Q7| < CJlAr|| < CA < OM; *EY?

and compute

<

m

|Dk| < |Dh|+|D, W (x, h)|+|Dy ¥ (z, h)||Dh| < —E>  for x € By,

In the latter estimate we are using that the harmonic function A is
defined on By _» and that JIDh]* < CE, together with the usual
interior estimates for harmonic functions. Note that, in particular, we
have the better bound |Dk| < CE? on the smaller ball B.

Thus

0 |D/-;—A|2+(Q—1)/ Dr— A

Q+tNB1 Q—NBy

g@/ |D/<;—A|2+(Q—1)/ Dk — AP + CE?
B B

1



116 6. DECAY OF THE EXCESS AND UNIQUENESS OF TANGENT CONES

and

Q DutP 4 (Q—1) / Du |

Q+mB27ﬁ Q+mB27ﬁ
C

z@/ \DH\2+(Q—1>/ i~ S EY
Bf . B n

27
In conclusion, if gq is sufficiently small (depending on 7) (6.40) is re-
duced to

Dk — Af? — Dk — A|?
Q/B;'“ 21(Q 1>/Bl_m |
_ —=\—m—2+¢ 2 _ 2 ﬁ
<@2-7) (Q/B+'D“‘“Q 1>/B“|Dm|)+8E.
(6.41)

Now we will substitute x with the harmonic function h in (6.41)).
To this regard, recall that A = (Dh(0),0) and

Dk = (Dh, D,V + D,V (x, h)Dh),

2-7

where o
D, V| +|D, V| < CA < —E7.
Therefore
C
|Dk — A|> < |Dh — Dh(0)]?* + —E
Mo

|Dk|? > |Dh|?.

Hence, assuming M, sufficiently large, the proof of (6.41)) will be com-
pleted in the next paragraph, where we show that

Q/B+ |Dh—Dh(O)|2+(Q—1)/ |Dh — Dh(0)?

By

<e-n(Qf pr@-n [ pip).  (6e)
B;lﬁ 21?

Recall that h vanishes on {x,, = 0}, hence by the Schwarz reflection

principle and unique continuation for harmonic functions, h(2’, z,,) =

—h(2', —,,) (see Remark [5.7). This implies that the left hand side of
(6.42) equals (Q — 3) fBl |Dh — Dh(0)|?, whereas the right hand side

equals (2 —7)""2(Q — 3) fBQ,ﬁ |DRh|?. Thus (6.42) is equivalent to

/B |Dh — Dh(0)]* < (2 — ﬁ)"”/ |Dh|?, (6.43)

BQ,E
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which is a classical inequality for harmonic functions. In order to show
it suffices to decompose Dh in series of homogeneous harmonic
polynomials Dh(z) = >"°, P;(x), where i is the degree. In partic-
ular the restriction of this decomposition on any sphere S := 0B,
gives the decomposition of Dh|g in spherical harmonics, see [41], Chap-
ter 5, Section 2]. It turns out, therefore, that the P, are L?(B,)-
orthogonal. Since the constant polynomial By is Dh(0) and [ By |P))? =

(2 —mq)m% fB%ﬁ |P;|2, (6.43) follows at once.
6.3. Proof of Theorem [6.3]

We first notice that, by definition of collapsed point, for every é > 0
there exists p = p(J) small such that

(i) E’(T,Bay(p)) + 4A0? < § for every o < p;
(i) ©(T,q) = O(T,p) = Q — 3 for all ¢ € I'N By(p).

T,
Next, since O(T,p) = Q — %, if the radius p is chosen small enough we
can assume that

ITIB(r) < on (@ 2) 49"

By a simple comparison, for n sufficiently small, if ¢ € B, (p) N I' and
7 = p— 1, then

ITBir(0) < ITIB ) < 0 (@ 3 ) 49"

5
< m _ 4—/ m .
<w (Q 16)( )
Next, by the monotonicity formula
o " T)[(By(9)) < A= (45') (|| (Bup ()

< 64A'Ewm (Q - %)

for all o < 4p'. In particular, if p is chosen sufficiently small, we then
conclude

1
ITI(Bal) < (Q= 7)o" Va € By () 1T and Vo < 45

(6.44)
Set now r := min{n, p'}. For all points ¢ in B, N T we claim that

E’(¢,B,) < 2"E’(p, By,) + CA%? < C6. (6.45)
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Indeed let 7 be a plane for which E’(p, By, (p)) = E(p, Bo,(p), 7). By
the regularity of I' and 3 we find a plane 7(g) such that |7 — 7(q)| <
CrA and T,I' C 7(q) C T,X. Then we can estimate

E’(T,B,(q)) < E(T,B,(q),7(q)) < 2™E(T, By, (p),7(q))
< 2"E’(T, By, (p)) + Cr?A% < C5§.

We will now show that the conclusions of the theorem hold for this
particular radius r. First, without loss of generality we translate p
in 0 and rescale r to 1. Summarizing our discussion above, for every
g € By NI we have the following three properties

(A) EX(T,Bi(q)) + A2 < 2mE’(T,B,) + CA? < C6;

(B) ©(T,z) > Q — 1 for every z € By(¢q) NT;

(C) IT)|(B,(q)) < (@ — ns™ for every s < 1,
We now fix any point ¢ € I' N B; and define e(s) := E’(T, B4(q)). We
claim that

e(27F 1 < max{2_2(1_5)ke(i), 2_2(1_6)k+26(%)} for all k£ € N.

(6.46)
We prove it by induction on k: notice that the inequality is trivially
true for £ = 0,1. If the inequality is true for k = ky > 1, we want to
show it for k = ko + 1. We set o = 27572 and notice that, by inductive
assumption

e(40) < max{e(5),e(3)} < Ce(1) (%) Cé.

Hence, provided we choose 6 = §(m, Q) (and thus r) sufficiently small,
we are in the position of applying Theorem [6.8} note that the induction
assumption covers hypothesis (i) of Theorem [6.8 whereas (B) and (C)
imply the hypotheses (ii) and (iii). We thus deduce that

e(27F7%) = e(0) < max{27*"%¢(20),2 " *¢e(40)}
< maX{2—2(1—a)ke(711)’ 2—2(1—a)k+2€(%)} '
From we easily conclude that for all such points ¢ and for p €]0, %[
E(T,B,(q)) < E'(T. B,(q)) < Cp**e(}) (6.47)
< Cp* 2B (T,Bi(q)) + Cp* = A®
< Cp* B (T, Bi(q)) + Cp* 2 A

(4)
< Cp* % B (T,By) + Cp* A2, (6.48)

In addition, the estimate is trivial for % < p < 1. Next, given 0 <

t <s<1,if n(q,s) and 7(q,t) are the optimal planes for E(q,t) and
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E’(q, s), (648) implies

2o L T —7(q, s)|?
l0.9) = 0.0 < gy Lo 1700 ()
< CE(T,B:(q),7(¢, ) + CE(T, Bi(q)), 7 (1))

< Cs* ¥E(T,B,) + Cs* *A?.
We thus conclude the existence of a unique limit 7(¢) such that
7(q) — m(q,8)]> < OB (T,By) + Cs* *A% Vs<1. (6.49)

From the latter inequality and , we conclude , namely state-
ment (c) of the theorem, for all ¢ € By NT.

Next, notice that, at every such ¢ € ByNI', T,I' C 7(q) C 1,3 and
that, from , the tangent cone is unique and takes the form

Q [r(@)*] + (@ —1) [x(g)7] -

for some Q* € N (since the tangent cone is an integral current). By
(i) @* — 3 = O(T,q) > Q — 5. Furthermore, by (C) Q < @ + 1 and
thus Q* = Q. Therefore O(T,q) = Q — % and this proves statements
(a) and (b) of the theorem.

We next turn to (e): arguing as in Section we let

Ty =TL (By(q,7(q)) x B}(0,7(q)"))

and we note that it satisfies (5.2) in the cylinder C,(¢,7(¢q)). In addi-

tion we have

E(Ty, C,(q:7(q))) < CE(T,B,(q),7(q))
and T'LB,(¢) = TyLB,(q). Thus, we can apply Theorem to get
h(T',B,(q),7(q)) < h(Ty, C,(q,7(q)), 7(q))
< C(B(T, B,(q), 7(q))? + A2p?)p.

The estimate follows at once from the latter inequality and (6.4)).
We conclude by proving (d) of Theorem [6.3] First of all, observe
that it suffices to show (6.5) when p := |¢ — ¢’| < 1/2. Recall the

estimate ([6.49)):

max{|7(q) — 7(q, p)|, |7(¢) — 7(d', p)|} < C(E*(T,B1)? + A)p' <.
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Hence to complete the proof of (6.5)), we notice that

\w(q,p) — 7(d, p)|? S][ 1w(q,p) — 7(d, p)|?
By(q)NBy(q)
< C

— C —
e N O R N U
WP By(q) WP By(q')

— C(E(T,B,(q)) + E’(T,B,(¢)))
< C(E(T,By) + A2)p? %

where we have also used that ||T'||(B,(p) > c¢p™, a simple consequence
of the monotonicity formula in Theorem [3.2]

6.4. Proof of Corollary [6.4

The inclusion ([6.10)) follows immediately from applied to some
p with 2|z — ¢| > p > |z — ¢|, where = € spt(T) N B,(q). Next we

observe that (6.10)) is in fact stronger than , because, by (6.7]), we

can control the tilt |7(q) — 7(p)|. Indeed,

p—p; P =Ip—p <mlr—n(q)? < CE.

Using Theorem (d) with ¢ = p and ¢ = 5 we conclude the crude

estimate |7(q) — 7(p)| < C(E'? + Ar). In particular
by — Pt = [py — P <min(q) —7* < C(E+A*%?).
Fix therefore a point x € B,(q) Nspt(T’). Then
p*(z — q)| <[z —qllp* — Py |+ [Py (z — q)|
<C(E"* + Ar)|z —q| + C(r'E + A)"?|z — q|%
<C(E+ Ar)"|z — q|,
which proves .
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Second Lipschitz approximation

Recalling Theorem [3.8] our main task is to show that, under As-
sumption [1.5] any collapsed point ¢ € T is regular. By the usual scaling
and translation argument, we can moreover assume that:

(i) 0 € T is a collapsed point with multiplicity ©(T,0) = Q — %;

(ii) at any point ¢ € I' N By the conclusions of Theorem [6.3] apply
for every radius r < 1;

(iii) A and E’(T,B;) are small, namely
A’ +E(T,B,) < &, (7.1)
where g is a sufficiently small constant whose choice will be

specified in the remaining proofs.

Let 7y be a plane which minimizes the expression defining E°(T', B;).
By Corollary we know that

1
spt(T) N By C {z : [py (v)] < Celal}, (7.2)
where pg is the orthogonal projection on 73. Since we can restrict
the current T' to By and further scale by a factor 2, we can assume,

without loss of generality, that
(iv) There is a plane 7, such that E’(T,By) = E(T, By, m), Tol' C
mo C T2 and
spt(T) N By C {x : |pg (w)] < O[]} (7.3)

From now on we will work under the above assumptions, which we
summarize together in the following

AssumPTION 7.1. T, ¥ and T' are as in Assumption [I.5 and they
satisfy additionally the conditions (i), (ii), (iii) and (iv) above.

In particular, Theorem is implied by the following milder ver-

sion:

THEOREM 7.2. If T, ¥ and I' are as in Assumption then 0 is
a reqular boundary point of T.

121



122 7. SECOND LIPSCHITZ APPROXIMATION

In this framework we can then refine our Lipschitz approximation
in cylinders with small excess. We first note the following corollary of
Theorem [6.3] and of the cone condition in Assumption [7.1](iv).

PROPOSITION 7.3. Let T,% and I' be as in Assumption with
g0 sufficiently small (depending only upon m,n,n and Q). Then there
are positive constants C' = C(m,n,n,Q) and & = &(m,n,n,Q) with
the following properties. Assume that g € TN By, r < % and 7 is an
m-dimensional plane such that T,I' C 7 C T2 and

E =E(T,Cy(q,1)) <. (7.4)

Then
spt(O(T'LCyr(q,m))) C 0Cy (¢, m)UT

and
B(T, Car(q, 7). ) < Cr(E + Ar)'~. (7.5)

We are then ready to state our improved approximation theorem:

THEOREM 7.4. Let T, X, T', q, r and 7 be as in Proposition [7.3.
Consider the orthogonal projection v of T' N Cy.(q, ™) onto the plane
q + ™ and observe that, since €y is sufficiently small, ' N Cy,(q,7) is
the graph over v of a C*% function v. Then there are a closed set
K C B,(q) = B/(¢,7) and a (Q — 1)-valued map (u",u™) on B,(p)
which collapses at the interface (77, ) satisfying the following estimates:

Lip(u®) < C(E + A*r?)° (7.6)

osc(u®) < C(E + Ar)'"r (7.7)

G L[(KNQF) x ] = TL[(K N QF) x R (7.8)
Gr(u®) Cc ¥ (7.9)

|B.(q) \ K| <C(E + A?r®)ttopm (7.10)

er(B.(q) \ K) <C(E + A?r?)ttopm (7.11)

/ o |Dul? <C(E + A%?)!topm (7.12)

<C(E + A*rHor™  YE C QF measurable,
(7.13)

1
er(F) =5 [ 1DuF

where QF are the two regions in which B,(q) is divided by -y, whereas
C >1 and o €]0, [ are two positive constants which depend on m,n,n

and Q).
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7.1. Preliminary observations
We start recalling [14], Theorem 2.4] in our context.

THEOREM 7.5 (Almgren’s strong approximation). There exist con-
stants C,0,& > 0 (depending on m,n,n, Q) with the following property.
Let T, ¥ and T be as in Assumption|[7.1, ©, q¢ and r as in Proposition
and let x € By such that

(i) the cylinder C := Cy,(x,m) does not intersect I' and is con-
tained in Cy(q,);
(ii) A%p*+ E = A*>+ E(T,Cy (z, 7)) <&
Then, there is a map f : By(z, ) = Ag(7*), or a map f : B,(z,7) —
Ag_1(m+), with spt(f(z)) C X for every z € B,(z,7), and a closed set
K C B,(x,m) such that

Lip(f) < C(E + A%p*)” (7.14)
G;L(K xR") =TL(K x R")
and |B,(z,m)\ K| < C (E+ A2p2)1+0 A (7.15)
IT1(Cnlo) = Quin oy =3 [ DA (710
<C(E+ A2 p" vo<s<1 (7.17)
and
osc (f) < Ch(T,C, )+ C(E"* + Ap)p. (7.18)

From now on, in order to simplify our notation, we assume that
m=my = R™ x {0} and use the shorthand notation By(x) for B(x, ).

In addition to the conclusions of the theorem above, we observe
that they imply the following further estimates

er(By(z) \ K) <C(E + p*A%)"p" (7.19)

/B DI SO Ay (7.20)

<C(E + p*A*»)'"7p™ YF C B,(x) measurable.
(7.21)

er(F) -~ [ IDsP

This can be seen as follows. First of all (7.14]) and (7.15)) give

/F PSP S OB+ A% B, (@) \ Kl < OB + A% 17y
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for every F' C B,(x) measurable. In particular we achieve ((7.20)) setting
F = B,(z).

Next recall that ||T']|(B,(z)) —Qwmp™ = er(B,(z)) and hence ((7.17)
can be reformulated, for s = 1, as

er(B,(z)) - 1 / DfP

Bp(f”)

S C(E_v _|_ A2p2)1+apm .

In particular

%/ D> < (B +C(E + A2)*) pm < C (B + A%2) p.
BP(I)

Secondly, the Taylor expansion of the area functional and ([7.14]) give

ea,(F) — 1 / DfP

for every F' C B,(z) measurable.
Combining the inequalities just obtained we achieve

er(B,(x) \ K) = er(B,(r)) — eg,(B,(x) N K)

< CLip(1)? [ IDJ? < C(E+ A% 20y
F

1
<ler(By) ~5 [ DS
Bﬂ(x)
1 _
5[ D -ee B K|+ [ s
By(z)NK Bp(z)\K
<C(E+ A%p*)"*7p™,
which implies (|7.19)).

Finally, for every F' C B,(x) measurable we have

1 2 1 2
er(F) = [ ID5F| <|ec,(FnE) =5 [ 1Df]
1
rer(F\K)+3 [ i

S C(E + A2p2)1+apm )
7.2. Proof of Theorem [7.4]

Without loss of generality we assume that 7,I' = R™! x {0}, 7 =
R™ x {0} and T,X = R™™" x {0}. We then use C,(¢q) in place of
Cs(gq,m), and B,(q) in place of Bs(q, 7). Note that

T Cy(q) = [I'N Cur(q)]
and  py(9TLCu(q)) = [v N B (p(9))] - (7.22)
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As in the previous sections, denote by Q1 and €~ the two connected
components of By, (¢) \ 7, chosen so that p,7L Cy.(¢q) = Q [QT]+(Q —
D[],

Let Lo be the cube ¢+ [—r, r|™ and, for any natural number k& € N,
let Q;, be the collection of cubes L of the form q+r2 Fz+[—27Fr 27Fy]™,
for € Z™, which are contained in Ly and intersect B,(q). We fix a
number N € N such that the 16y/m2 Nr-neighborhood of Upcg, L is
contained in Cy,(¢) and construct a Whitney decomposition of

Q= J L\~
LeQn
in the following way. We set Ry = Qun. If L € Ry has diam (L) <

%sep (L,7), then we assign L to the class Wy. Here and in what
follows we set

sep (L,vy) =min{|x —y|: x € v,y € L}.
Otherwise we subdivide it in 2™ subcubes of side 27¥r and assign them
to Rys1- We then inductively define W, and Ry, for every k > N.
The Whitney decomposition W = Uj>nW; is then a collection of closed
dyadic cubes whose interiors are pairwise disjoint, which cover QT UQ™
and such that

1 1
min {ﬁsep (L,7), \/E2NH} < diam(L) < 165°P (L,v). (7.23)

We denote with c¢; the center of the cube L € W and set r; =
3diam(L) so that L C BirL(CL)‘

FIGURE 1. The Whitney decomposition W in Q™.

We claim that for each cube L the current 7' restricted to the cylin-
der Cy,, (cr) satisfies the assumptions of Theorem
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First note that, by the construction of the Whitney decomposi-
tion, we have Cy,, (c) NT = 0 and Byg,, () C By.(¢) and thus
OTL Cy,, (cr,) = 0. Moreover, either By, (¢r) C Q1 or By, (cp) C Q™
and thus p;T'L Cy,, (cr,) equals either @ [ By, (cr)] or (Q—1) [Bar, (c1)]-

To check the second assumption of Theorem [7.5| we distinguish the
two cases 1, = 2 Vr and rp < 277, If r, = 27V we simply have

E(T,Cy,, (cz)) < 2Y"E(T, Cy.(q)) = 2V™E.
For each L € W with r;, < 277 let 2, be the point of vy closest to ¢y,
and let g, € T be the point (21,4 (xr)). From the first inequality of
(7.23) we deduce that Cy,, (cr) C Cisr,(qr). In particular notice that
by the cone condition (7.5)), spt(7") N Ci4r, (¢z.) C Bier, (qr) and by our
choice of N we have Cyy,, (q1) C Bigr, (qr.) C Cur(q).
Next, observe that
E(T,Cy,(cL)) <4™E(T,Big,(qr), )
< CE(T, By, m(q)) + Clm — 7(qr)|?
According to Theorem (6.3)) we then conclude
E(T,Cy,,(c1)) < C(E + A*?). (7.24)
So, provided ¢ is chosen sufficiently small, we can apply Theorem
in every cylinder Cy,, (cz) and obtain:

- a @-valued (or (@ — 1)-valued) map fr on each ball B,, (cr)
with spt(fL(z)) € X for every x € B, (cr)
- a closed sets K C B,, (cr)

such that
Lip(f1) <C(E + A%*r2)° (7.25)
G, L(Kp x R") =T (K, x R") (7.26)
1B, (ct) \ Ki| <C(E + A%r3)tory (7.27)
er(B,,(ct) \ K1) <C(E + A%r3)tory (7.28)
/ |IDfL|* <C(E + A*r2)ttopm (7.29)
By (cL)\KL

<C(E + A*))"r" YF C B,,(c) measurable
(7.30)

er(F) 5 [IDAF

whereupon ([7.29)), (7.30)) follow as explained in (7.19)), (7.21)).
Next, for each L we let N'*(L) be the neighboring cubes in W with

larger or equal radius, i.e.
N+(L) = {HEWZ HmL#@,TH ZTL}.
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Note that by the construction of the Whitney decomposition we en-
sured that if H € N*(L), then L C B,,(cyx). We define

Ky=K,n (] Ku

HeN+(L)
K= |J KpnL
Lew,LcOt
K= |J KinL
LeW,LCQ—

and further
at(z) = fr(z)ifr e LN K" and @ (z) :== fr(z)ifz € LN K.

Since the cardinality of N7 (L) is bounded by a geometric constant
C(m), we conclude from from ([7.27) that

L\ K| < C(E + A%r?)tor, (7.31)

In particular, if gq is sufficiently small, we conclude that L N K} # ().
We next claim that

Lip(a®) <C(E + A*r?)” (7.32)

Gy L(K* x R") =TL(K* x R") (7.33)

er(L\ K}) <C(E + A*r*)t*opm (7.34)

/ |DTE|* <CO(E + A%r?)tForm (7.35)
L\K/,

Inequalities ([7.33)), (7.34) and (7.35) follows easily by the fact that
L\ K} C B,,(cy)\ K1, and @* coincides with f;, on K. To show the

the Lipschitz ((7.32) we let H, L. € YW be any two cubes and we assume
that diam(H) > diam(L) and x € H,y € L.

If HN L # 0 (and in particular if H = L) by construction a4+ = fg
on K*NB,, (cy) C Ky, hence the inequality G(a*(z), a*(y)) < C(E+
A?r?)? |z — y| follows from the Lipschitz bound for fg.

If HN L = we have

1
o /m

In case rg = 277 then the Lipschitz estimate follows from the hight
bound (7.5): G(at(x),a*(2")) < 2Cr(E+Ar)'? < C(E+Ar)?|z—2/|.

ry < |z —1yl.
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If 75 < 27Nr consider for the points z,y € « which are the closest
to o',y respectively We claim that

G(at(x), Q [v(2)]) <Clz — a'|(E + Ar)'" (7.36)
G(@*(y), Q)] <Cly — y'|(E + Ar)". (7.37)

Indeed, both inequalities are due to the fact that dist (z,7) is compa-

rable to r and that, in the cylinder Cgig,, (2'), we have the height

bound (7.5)) (recall that the points (2,1 (z’)) and (x,a;(x)) are all in

the support of the current 7). Note also that, by the regularity of T',
(') = ()] < OB+ Ar)Pla’ —y|.

In particular we can estimate

G(a*(x), u*(y))

G(a*(x), Q [v(2)]) + Q|v(') — v(y)| + G(a*(y), Q [v(¥)])
C(E+ Ar)"(|o — 2| + o' — /| + |y — yl)

C(E+ Ar)"@2lz —2'| + |z —yl| + 2|y’ —y])

C(E + A%z —yf

where we have used that o < i and that

IAN AN IAN A

|z —a'|+]y' —y| = dist(z, ) +dist(y,v) < C(rp+ry) < Crg < Clo—yl.

Note in particular that we have also proved that a* (resp. @~) has a
unique Lipschitz extension to (K™ U~)NB,(q) (resp. (K~Uvy)NB.(q))
which on v N B,(q) coincides with @ [¢] (resp. (Q — 1) [¢]).

We next wish to extend @* to the whole QF keeping the Lipschitz
estimate (up to a multiplicative geometric constant) and the property
that spt(z, @ (z)) C . This can be easily done observing that ¥ N
C,(q) is the graph of a function ¥ : ToXNB,.(q) — ToXt = {0} x R*™"
with Lipschitz constant controlled by C'Ar. Therefore we can write

@ () = 3 [v (@), ¥, o (@)]

for an appropriate Lipschitz Q-valued map vt : KT — Ag(R"™) and an
appropriate Lipschitz (@ — 1)-valued map v~ : K~ — Ag_1(R") with
Lip(v¥) < C(E + A?r?)°. Extending first v* to QF and then compos-
ing with U, we achieve the desired extension u® of a* to QF. Note
moreover that, by the observation above, the pair (u™,u~) collapses
at the interface (v N B,(q), ). Recalling the height estimate ([7.5)), we
also have that osc (a%) < C(FE + Ar)"?r and the Lipschitz extension
can be constructed so to preserve the oscillation bound as well (up to
a geometric factor, cf. [13, Theorem 1.7]).
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Setting K = KU K™, we have so far proved the conclusions ((7.6]),
(7.7), (7.8) and ([7.9). For the remaining estimates, observe first that
Z rit < C(m)r™.

Lew

Hence, (7.10), (7.11) and (7.12) follow from summing, respectively,
(7.31), (7.34) and (7.35).

Finally, fix a measurable set ' C Q1 and observe that, for any cube
L in the Whitney decomposition of Q7

1
eT(FmL)——/ | Dut|?
2 FNL
1
< eT(FmLmK+)—_/ |Du*[?
2 FNLNK+
+er(L\ KT) + Lip(u®)?|L\ K7
1
< eT(FﬂLﬂKJF)—E/ |DfL\2 +C(E+A2T2)l+arzz
FNLNK+

< O(E + A*r?)ttopm

Summing over L we obtain ([7.13)). The same arguments work for u~
and conclude the proof.






CHAPTER 8

Center manifolds

As already pointed out in the previous chapter, our task is to prove
Theorem which for the reader’s convenience we recall here:

THEOREM 8.1. If T,¥ and I are as in Assumption then 0 is
a reqular boundary point of T

We thus work from now on under the assumption that 0, the origin
of our system of coordinates, is a collapsed point and that

Tyl = R™ ! x {0}
ToY = R™™ x {0} and
Rn — Rm—‘rﬁ—H )

Therefore, the tangent cone of T at p = 0 is Q) [[W(ﬂ] +(Q—-1) [[7?0_]],
where

e ={r €R" : 42, > 0,Tpmy1 = ... = Ty = 0}.

As in the previous chapters, we denote by 7y the projection on my of I'
and, given any sufficiently small open set {2 C my which is contractible
and contains 0, we denote by QF those portions of Q lying on the
right and left of 7. We are going to build two separate m-dimensional
surfaces M* of class C® which will be called (respectively) left and right
center manifolds. Both surfaces lie in the manifold ¥. M™ will be a
graph over By, (0, 7o) (which from now on we denote by By,) of some
function ¢t and M~ a graph over Bg_/2(0, 7o) of some function ¢~ .
Both center manifolds will have I' N Cj3/5(0, mp) as a boundary, when
considered as surfaces in the cylinder Cs/2(0,m) and will be C? (in
fact C** for a suitable positive ) up to the boundary. In addition, at
each point p € I' N C3/5(0, mp) the tangent space to both manifolds will
be the same and will coincide with the plane 7(¢) of Theorem [6.3] In
particular M = MTUM™ will be a C**! submanifold of XN Cj3/2(0, )
without boundary.

Finally we remark that at this stage we do not have any information
about higher regularity of M: in particular we do not yet know that
the second derivatives of the two functions (¥ coincide at . At the

131
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very end of the proof of Theorem [8.1] which will be accomplished in
the final chapter, it will however turn out that M is indeed C® and
that T Cs/2(0,m) = Q [MF] +(Q — 1) [M~].

8.1. Construction of the center manifolds

8.1.1. Boundary dyadic cubes and non-boundary dyadic
cubes. We focus on the construction of M™ (the one of M~ follows
a “specular” algorithm). We start by describing a procedure which
reaches a suitable Whitney-type decomposition of B;“/Q with cubes
whose sides are parallel to the coordinate axes and have sidelength
2¢(L). The center of any such cube L considered in the procedure will
be denoted by ¢(L) and its sidelength will be denoted by 2¢(L). We
start by introducing a family of dyadic cubes L C 7y in the following
way: for j > Ny (an integer whose choice will be specified below), we
introduce the families

@ :={L: L is a dyadic cube of side ¢(L) = 277 and Bj, N L # 0},
For each L define a radius

rp = Mo\/ﬁf([z) s

with My > 1 to be chosen later. We then subdivide 4" := U;% into,
respectively, boundary cubes and non-boundary cube{]

¢ ={L €€ : dist(c(L),v) < 64r.}
¢ = {L €€ : dist(c(L),y) > 64r.} .

Likewise we also use the notation ‘5}’ and ‘Kju for €’ N ¢; and %jh =
€"N€;. Indeed in what follows, without mentioning it any further, we
will often use the same convention for several other subfamilies of % .

DEFINITION 8.2. If H, L € ¥ we say that:

e H is a descendant of L (and L is an ancestor of H) if H C L;
e H is a son of L (and L is the father of H) if H C L and
(H) = 3((L);

e H and L are neighbors if $¢(L) < ((H) < ¢(L) and HNL # 0.

Note, in particular, the following elementary consequence of the
subdivision of %"

1Observe that some boundary cubes can be completely contained in B3+/2' For
this reason we prefer to use the term “non-boundary” rather than “interior” for the
cubes in €F.
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LEMMA 8.3. Let H be a boundary cube. Then any ancestor L and
any neighbor L with ((L) = 2¢(H) is necessarily a boundary cube. In
particular: the descendant of a non-boundary cube is a non-boundary
cube.

PROOF. For the case of ancestors it suffices to prove that if L is
a father of a boundary cube H, then L as well is a boundary cube,
and since the father of H is a neighbor of H with ((L) = 2¢(H), we
only need to show the second part of the statement of the lemma. The
latter is a simple consequence of the following chain of inequalities:

dist(c(L), ) < dist(c(H),y) + [e(H) = c(L)]
= dist(c(H),7) + 3vml(H)

67
< Gdry + 32 < (64 +3M;") 22 <
Mo 2

?T’L<64TL.D

Moreover, we set the following:

o If L € %jh, then B; is a ball in R with radius 64r; and
center some chosen point py, € spt(7") such that pr,(pr) = ¢(L)
(note that such py is a priori not unique: we just make an
arbitrary choice) and 7y, is a plane which minimizes the excess
in By, namely E(7,B.) = E(T,By, 7)) and 7, C T}, X.

o If L € 6", then B, is the ball in R™*"*! with radius 2764r,
and center p; € I' such that |py,(p}) — c¢(L)| = dist(c(L), 7).
Note that in this case the point p} is uniquely determined
because I' is regular and A is assumed to be sufficiently small.

Likewise 7, is a plane which minimizes the excess E’, namely
such that E’(T,BY) = E(T, B, 7.) and T, T C mp C T, 3.

A simple corollary of Theorem [6.3]and Corollary [6.4]is the following

lemma.

LEMMA 8.4. Let T, % and T be as in Assumption[7.1. Then there is
a positive dimensional constant C(m,n) such that, if the starting size of
the Whitney decomposition is fine enough, namely if 20 > C(m,n) My,
then the balls B'j: and By, are all contained in Bs.

Moreover, there exists €1 such that, for any choice of My, e > 0
and ap < %, if

E’(T,Bo) + [ Ene0 + 19 1Z0.00 < e1, (8.1)
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then for every cube L € € we have

E’(T,B) < Coeyri 2, (8.2)
h(T, B, m) < Coef/'riten (8.3)
I — mo| < Cogy”, (8.4)

7 = w(py)| < Coey*rp e (8.5)

where, 7(p},) has been defined in (b) of Theorem and Cy depends

only upon a, ayn, m and n.

PRrOOF. The first part of the statement is just a direct inspection.
Estimate (8.2)) is a direct consequence of (6.4). Consider now 7(p’) as
in Theorem By the monotonicity formula we know that

IT(I(BL) = win(2764r)"™
because we know that O(T,p}) = Q — l > 5. Moreover implies
E(T, B, 7)) <E(T,B’,7(p})) < Coziri 22,
Thus
Im(ph) — 7TL|2 < CO(E(T B}, m) + E(T, By, 7(p}))) < Cosy 172 .

which proves is now a direct consequence of (| . and .
while is dlrect Consequence of

8.1.2. Decomposition and stopping conditions. We will now
defined a suitable refining procedure of our initial Whitney decomposi-
tion. To this end let C, C}, be two positive constants that will be fixed
later, see Assumption below. We take a cube L € %y, and we do
not subdivide it if it belongs to one of the following sets:

(1) #5, :={L € €Y, : E(T,By) > Cee1((L)* "}

(2) #2 = {LeCh : W(T,Bp, ) > Cne " ((L)+on},
We then define

yNo = (gNo \ (Wﬁo U W]\};o) .

The cubes in .y, will be subdivided in their sons. In fact we will
ensure that Wy, := # U#% = 0 (and therefore €y, = Hu,) by
choosing C and CY, large enough, depending only upon oy, ae, My and
Ny, see Proposition below.

We next describe the refining procedure assuming inductively that
for a certain step j > Ny+1 we have defined the families #;_; and .%;_;.
In particular we consider all the cubes L in ¢} which are contained in
some element of .%;_;. Among them we select and set aside in the
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classes #j := W °U V/jh U™ those cubes where the following stopping
criteria are met:

(1) #2 =={Lsonof K € 7] | : E(T,By) > Coe{(L)* 2% };

(2) #* :={L son of K € eyjh_l . L& WP and

h(T, By, 7)) > Cue, ™(L) +on):
(3) #* :={Lsonof Ke€.%;_y: LgWUW} but
L' € #;_, with LN L' # 0}.
Note, in particular, that the refinement of boundary cubes can never
be stopped because of the conditions (1) and (2). Indeed we could have
included analogous stopping conditions for boundary cubes as well, but
Lemma [8.4] would have implied in any case that these conditions would
never stop the refining of boundary cubes. In principle a boundary
cube might still be stopped because of the third condition, but we will
see in Lemma that this possibility can be excluded as well. Thus
boundary cubes always belong to .. Clearly, descendants of boundary
cubes might become non-boundary cubes and so their refining can be
stopped.
We finally set #; = #° U V/jh U #* and we keep refining the
decomposition in the set
S ={L €€ sonof K €.;_1}\¥;.
Observe that it might happen that the son of a cube in .%;_; does not
intersect B;)F/Q: in that case, according to our definition, the cube does
not belong to . neither to #: it is simply discarded.
As already mentioned, we use the notation 5”; and LS’jh respectively

for ., N6 and .%; N €. Furthermore we set

W o= U W;
Jj=No

S = U <
Jj>No

st= N (UL)=8B\UH
j>No LeJj Hew

We emphasize that B;‘/2 includes v M Bs)s.

LEMMA 8.5. %’?’ NH =0 for every j > Ny and in particular vy N

By, C S*.

PROOF. Assume there is a boundary cube in % and let L be a
boundary cube in # with largest side length. The latter must then
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belong to #." for some j. However this would imply the existence of
a neighbor L' € # with ¢(L’) = 2¢(L): by Lemma L’ would be a
boundary cube in #, contradicting the maximality of L. U

8.1.3. Hierarchy of parameters. From now on we specify a set
of assumptions on the various choices of the constants involved in the
construction.

ASSUMPTION 8.6. T,% and I' are as in Assumptions and we
also assume that

(a) ay, is smaller than ﬁ and a is positive but small, depending
only on ay,

(b) M, is larger than a suitable constant, depending only upon
e,

(c) 2Mo > C(m,n, My), in particular it satisfies the condition of
Lemma [8.4]

(d) C., is sufficiently large depending upon e, an, My and Ny,

(e) CY, is sufficiently large depending upon ae, o, Mo, Ny and Ce,

(f) holds with an ¢; sufficiently small depending upon all the

other parameters.

Finally, there is an exponent ay,, which depends only on m,n,n and
() and which is independent of all the other parameters, in terms of
which several important estimates in Theorem [8.19| will be stated.

Note that the parameters are chosen following a precise hierarchy;,
in particular ensuring that there is a nonempty set of parameters sat-
isfying all the requirements. The hierarchy is consistent with that of
[16], in particular the reader can compare Assumption with [16]
Assumption 1.9].

8.1.4. Interpolating functions. In this section we define the “in-
terpolating functions” g;, for each cube L. In particular, over the set
B;f/2 \ ST, the function ¢ is defined by patching together the g;’s
with a partition of unity subordinate to the cover # . Since however
we need to define ¢ over ST as well, we introduce all the necessary
objects for any cube in U ¥ .

PROPOSITION 8.7. If T, and I' are as in Assumptions|[7.1] and if
the various parameters ., ayn, Mo, No, Ce, Ch, €1 fulfill the Assumptions
we have

spt(T) N Cser, (pr, 7) C By when L € efﬂjh U,

spt(T") N Carser, (ph,71) C B}, when L € 5”;,
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and the current T satisfies the assumptions of Theorem[7.5 in the cylin-
der Cser, (Pr, L), T€SP. the assumptions of Theorem in the cylinder

Caorsr, (praﬂ'L)-

We omit the proof here and in fact a strengthened version of the
proposition is included in Proposition @ In each cube L € 5”]? (resp.
L e 47;1 U%;) we define (f,, f;) (resp. fr) to be the Lipschitz approx-
imation of T" in the cylinder Cyr,, (p}, 7z) (resp. Cop, (pr,71)). More-

over we define the multifunctions f; (respectively f1,) by projecting the
values of fi (resp. fr) on the plane Ty (resp. T,,3). More precisely,

if we introduce the plane >, := 7; N T, ¥ (resp. s = 7 N T}, %),
which is the orthogonal complement of 77, in Ty % (resp. in T, ¥), the
functions fLjE and f;, are defined by

Q Q-1
=3[ U] f7 =3 e ()]

Q
and  fr = [P ((f2))] -

i=1

We can therefore regard each value (f7);(x) (resp. (f1)i()) as an ele-

ment of the product space z, X Tpib % (resp. s, xT;. X). Hence, if we let
L

Uy T, % — TpibLZ (resp. Wy : Tp, % — T,. %) be the parametrization

of the ambient manifold 3 (in such a way that locally ¥ = Graph(¥})),
we have the identities

(FD)ilx) = ((fD)il@), Uiz, (f)i(x)))
(fr)i(z) = ((fL)z(ﬂf)a Uy (z, (.fL)z(x))) .

Although abusive, in order to make our notation less cumbersome we
. : —+ —+ - —

will then write f; = (f,, Vo f;) (vesp. fr = (f, V0 f;) and we

will adopt the same convention for other maps with the same structure.

DEFINITION 8.8. The maps f; and f;, defined above will be called
7 -approzimations of T in the respective cylinders (indeed fzc approx-
imates the current on the “half cylinder” p;Ll(BQ%QTL)).

We next let bz, be the solution of a suitable elliptic system (coming
from the linearization of the mean curvature condition for minimal
surfaces in XJ), subject to appropriate boundary conditions, which differ
depending on whether L is a non-boundary or a boundary cube. More



138 8. CENTER MANIFOLDS

precisely, for each cube, we introduce the constant matrix L as

L# = = AW (pr)d),, Vi(pr) ifLeE (8.6)
J

L% = =) AV ()05, V1(0,) i LeD. (8.7)
J

and we impose that

Ahp =L (z = P, (pr))

B B (8.8)
hL ZUOfL on aB5TL(pL77TL)’
when L is a non-boundary cube and that
Ahy =L (2 = pr, (p)
(8.9)

- —+
hL :TlofL on a(B;5rL(praﬂ_L)) 5
when L is a boundary cube.

DEFINITION 8.9. The function
]'LL = (EL, qu OEL)
will be called the tilted L-interpolating function.
We now are ready to define the final function, g, on our “reference
coordinate system” (i.e. the domain of g is contained in 7y and its
values are contained in 73 ) with the property that its graph coincides

with (a suitable portion of) the graph of hy. For this reason we need
the following proposition ((cf. [16, Appendix B]).

PROPOSITION 8.10. Under the assumptions of Proposition[8.7], for
every L as above the function hy, is Lipschitz on B;.QTL/Q(pr, L) (resp.
By, j2(pr, 1)) and we can define a function gy, : B;4T'L (P, mo) — o
(resp.gr, : Bur, (pr, m0) — 5 ) such that

G,, = Gy, B (P}, o) xR (resp. G,, =Gy, L Cy, (pr,m)) -

274ry,
DEFINITION 8.11. The function g, is called L-interpolating func-
tion.

8.1.5. Glued interpolations and center manifolds. Let us de-
fine the Whitney cubes at the step j as

J

i=No+1
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Note that &; is a “Whitney family of dyadic cubes” in the sense that
if K, L € 2; have non empty intersection, then 3¢(L) < ((K) < 2((L).
Consistently with the notation introduced in the previous section we
let s := w3 NTpY be the orthogonal complement of 7y in TyX. Recall
then the map ¥ : my X 29 = ToX — TpX*, which is the graphical
parametrization of ¥ with respect to TpX. We fix a function ¢ €
C>([—1%, 4™ [0, 1]) which is identically 1 on [—1,1]™. For each cube

167 16
L we define further
= fy—cl)

We obtain a partition of unity of B;j/Q by setting
i
I1(y) = L(y) .
ZHegzj Vu(y)

DEFINITION 8.12. We set
%= > gy,
Le®

and
Pj = (Ejv v o@j) .
The latter map is called the glued interpolation at the step j.

We are now ready to state the main theorem regarding the con-
struction of the right center manifold.

THEOREM 8.13. If T,¥ and I' are as in Assumptions and
O, p, My, Ny, Co, Ch, 1 fulfill the Assumptions then there is a
k>0, depending only upon ae and oy, such that

(a) ||90jH3,/@,B;'_/2 < 061/27 fOT some C' = C(Oée, O, M07 Cea Ch);

(b) If i < j, L € W;—y and H is a cube concentric to L with
((H) = 2U(L), then @; = ¢; on H;

(¢) ¢; converges in C® to a map ¢+ : B;/Q — R", whose graph s
a C** submanifold M™ of ¥, which will be called right center
manifold;

(d) ¢* =1 onyN Bse, namely OM* N Cyjo =T N Cyo;

(e) For any q € OM™ N Cs)y, the tangent plane TyM™ coincides
with the plane 7(q) in Theorem[6.5

The construction of M* made in Theorem [8.13 is based on the
decomposition of B;)F/Q. Under Assumption , the same construction

can be made for Bgﬂ and gives a C*" map ¢~ : B?)’/Q — R™ which
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agrees with ¢ on yNBs/s. The graph of ¢~ is a C** submanifold M~ C
>, which will be called left center manifold. Clearly its boundary in
the cylinder Cs/p, namely OM™ N Cs)2, coincides, in a set-theoretical
sense, with OM™ N Cy, but it has opposite orientation, and moreover
its tangent plane 7, M~ coincides with 7(q) for every point ¢ € IM™N
Cs/o. In particular, the union M := MTUM™ of the two submanifolds
is a C! submanifold of ¥ N Cj/, without boundary (in Csjs), which
will be called center manifold. Moreover, we will often state properties
of the center manifold related to cubes L in one of the collections %
described above. Therefore, we will denote by #* the union of all %
and by 7~ the union of the corresponding classes of cubes which lead
to the left center manifold M.

REMARK 8.14. We emphasize again that so far we can only con-
clude the 1! regularity of M, because we do not know that the traces
of the second derivatives of % and ¢~ coincide on 7.

DEFINITION 8.15. Let us define the graph parametrization map of
MT as ®F(x) := (z,¢"(x)). We will call right contact set the subset
K* := ®*(S™). For every cube L € # we associate a Whitney region
L on M as follows:

e [ := ®*(H N By) where H is the cube concentric to L such
that ((H) = 1£¢(L).
Analogously we define the map ®~, the contact set K~ and the Whit-
ney regions on the left center manifold M™.

8.2. The approximation on the normal bundle of M

In what follows we assume that Theorem may be applied and
we fix a corresponding center manifold M, subdivided into its left and
right portions. For any Borel set V C M we denote by |V| its Hausdorff
m-dimensional measure and we write [, f for [, f dH™.

Since the two portions M~ and M™ are C3* and they join with C'!
regularity along I', in a sufficiently small normal neighborhood of M
there is a well defined orthogonal projection p onto M. The thickness
of the neighborhood is inversely proportional to the size of the second
derivatives of ¢* and hence, for ¢, sufficiently small, we can assume
it is 2. Summarizing, in the rest of the section we make the following
assumptions:

ASSUMPTION 8.16. T, ¥ and I' are as in Assumption [7.I] and the
various parameters ae, an, Mo, Ny, Ce, Ch, €1 fulfill the Assumptions[8.6]
In particular Theorem applies and we let M be the union of the
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left and right center manifolds. ¢, is sufficiently small so that, if

U:={¢eR"™": 3¢ =plg) e Mst. |[¢g—¢|<land q—¢ L M},
(8.10)

then the map p extends to a Lipschitz map to the closure U which is
C** on U\ p~}(T') and

p '(¢) =¢ + Bi(0, (TyM)L) for all ¢ € M.

We then have the following as a consequence of the construction
algorithm:

COROLLARY 8.17. Under Assumption the following holds:
(a) spt(A(TLU))NC; cTUp HOM), spt(T)NC; C U and

p(TLU) =(Q—1) [M ] +Q[M'];

(b) spt((T,p, ) C {y : |z —y| < Ce/*"U(L)***n} for a C' =
C (e, an, My, Ny, Co, Cy) and every x € L Whitney region cor-
responding to L € W T U W ~;

() (T\p,q) = Q4] V¢ € K"\ T and (T,p,q) = (@ —1)[q]
Vge KT\ T}

(d) KN K™ =T'NCyp and spt(T' N p~1(q)) = {q} for every
qc< rn Cg/z.

8.2.1. Local estimates. The center manifold is coupled with a
map on M taking values in the normal bundle which approximates the
current 7" with very high accuracy.

DEFINITION 8.18. Given a center manifold M as in Assumption
, an M-normal approximation of T is given by a triple (K, F*, F™)
such that

(A1) Ft : M*TNCy — Ap(U) and F~ : M~ NC; — Ag_1(U) are

Lipschitz and take the form F*(z) = 3, [z + N;"(z)] with
N*(z) L T,M* and z + NF(x) € ¥ for every i and every
r € M*;

(A2) K € Misclosed and Tp«Lp ' (KNM*) = TLp H{(KNM*),

where Tp+ := FﬂjE [M], see [15] ;

(A3) KT UK~ C K and moreover F*(z) = Q [z] (resp. F~(x) =

(Q—1) [z]) on KT (resp. K7).

Observe that the pairs (F*, F~) and (NT, N7) can be regarded as
(Q — %)—Valued maps. The following theorem, which is a consequence
of the construction and of the estimates leading to Theorem [8.13] en-
sures the existence of an M-normal approximation which describes the

current 7" with a high degree of accuracy:
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THEOREM 8.19 (Local estimates for the M-normal approximation).
Under Assumption there is a constant oy, > 0 (depending on
m,n,n, Q) such that there is an M-normal approzimation (IC, (F+, F~))
satisfying the following estimates on any Whitney region L C M asso-
ciated to a cube L € WU W~ (where to simplify the notation we use
N in place of NT and N~ ):

Lip(N|z) < Ce§re(L)v (8.11)

INg[lo < CeYme(L)+on (8.12)

L\ K|+ | Tr = T[(p1(L)) < Ceyrome(L)m+2ror (8.13)
(8.14)

/ |DN|2 < C€1€(L)m+272ae
L

for a constant C' = C(te, an, Mo, Ny, Ce, Ch).
Moreover, for any a > 0 and any Borel V C L,

[ e ] < Ce (e s+ at(nypresy)
%

v / G(N.Qmo N (8.15)

8.2.2. Separation and domains of influence. We next analyze
suitable “bounds from below” induced by the stopping conditions in
the center manifold construction. The next proposition shows that the
current “separates” suitably on top of Whitney regions corresponding
to cubes in #'b.

PROPOSITION 8.20 (Separation). Under the assumptions of Theo-
rem (recall, in particular, that Cy, > C,), the following conclu-
sions hold for every Whitney region L corresponding to a cube L €
wh oyt

(S1) ©(T,p) < Q — 5 for every p € Bug,, (pr);

(S2) LN H =0 for every H € #™ with ((H) < $((L);

(33) G(NT(2),Q[no N*(@)]) > LChe/"e(L)or Vo € M+ N

C%/EZ(L) (pL)-

For L € #'® C W~ the same conclusions, where in (S1) we replace
Q— 3 with Q — 3.

20Observe that, when Q = 2, we actually draw the conclusion that no cube
L C #~ can belong to #: in fact when Q = 2, we could use directly Allard’s
regularity theorem to prove that the “left” side of the current coincides with a
single smooth classical graph over B. In order to make our work shorter we

3/2°
prefer however to treat the case Q = 2 together with the general one @ > 2.
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A simple corollary of the previous proposition is then the following

COROLLARY 8.21. Given any H € #™ C W™ (resp. C W~ ) there
is a chain L = Lo, Ly,...,L; = H such that:
(@) Lo € e C W™ (resp. C#~)and L; € W™ C W™ (resp.
W) for all i > 0;
(b) Li N Li—y # 0 and €(L;) = 50(L;—1) for all i > 0.
In particular, H C Bs, /mo(14) (T Lo, To)-

We use this last corollary to partition #™.

DEFINITION 8.22 (Domains of influence). We first fix an ordering
of the cubes in #© C #* (resp. C # ) as {J; }ien so that their side
lengths do not increase. Then H € #™ belongs to #™(.Jy) (the domain
of influence of Jy) if there is a chain as in Corollary with Lo = Jy.
Inductively, #™(J,) is the set of cubes H € #™™\U;, #™(J;) for which
there is a chain as in Corollary with Ly = J,.

8.2.3. Splitting before tilting. Next we show that even around
cubes L € #'° the sheets of the current “open up” in a suitable quan-
titative way. Again we bundle the estimates for the two maps N* in
single statements using the letter N to denote both of them.

PROPOSITION 8.23 (Splitting). Under the Assumptions of Theorem
the following holds. If L € #© C W™ (resp. C W~ ), q € mp with
dist(L, q) < 4y/ml(L) and Q = Cyya(q) N M, then (with C,C* =
C(aea Qp, M07 NU) CEH Ch))

Coe1l(L)" 2720 < ((L)™E(T,Br) < C / IDN|?, (8.16)
/ IDN> < CUL)™E(T,By) < C*(L / INJ2. (8.17)

8.3. Estimates on tilting and optimal planes

ProrosITION 8.24 (Tilting and optimal planes). Under the As-
sumptions and we have W, = 0. Then the following esti-
mates hold for any couple of neighbors H, L € . U W and for every
H L e.UW with H descendant of L:

(a) denoting by my, 7L, the excess-minimizing planes in By and
By, respectively,

Im — mr| < Ce/* (L) |y — mo| < Cey™;

(b)8 W(T, Cusy,, (prr, o)) < Ce/*™C(H) and
spt(T) N Casyyy (P, M) C By if H € €%
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(b)? (T, Cyragry, (P, m0)) < Ce) €(H) and
spt(T) N Coragyy, (P, m0) € By if H € 6°;
(¢)f W(T, Csgy, (pr, 71)) < Cey?"¢(L)+en and
spt(T) N Cagr, (P, mu) C By if H, L € €%;
(c) h(T, Corsgr, (., 1)) < C\ (L)
and spt(T) N Cyrsg,, (0, 7r)) C B} if L € 6”;
where C' = C(te, an, My, No, Co) and C = C (e, an, My, No, Ce, Ch).
PROOF. In this proof, constants denoted by C' will be assumed to
depend on m,n,Q and all the parameters ae, an, My, Ny, Ce, Ch, con-
stants denoted by C will be assumed to depend on m,n, Q, te, an, Mo,
Ny, Ce and constants denoted by Cy will be assumed to depend only
upon m,n and (). Constants depending on other subsets of the param-
eters above will be explicitly mentioned. We first show that #y, = 0.
We have already proved that % does not contain boundary cubes in
Lemma M Next, if H € CK]E,O, By C By by Lemma and thus we
can estimate

E(T, By, m) < C(My, No)E(T, By, m) < C (Mo, Ny)ey (8.18)
Next, let m be the projection of the plane 7y in 7},,%. Since my C Ty,
by the regularity assumption (8.1)) on 3,

|mo — | < Cog,”.
In particular, since by the monotonicity formula we can assume
|T|(Br) < Co(64ry)™,
we conclude
E(T,By) <E(T,Bp,m) < C(My, No)e1 < C(My, No)e1b(H)* >

By our assumptions on the parameters, since Co > C(My, Np), we
conclude that L & #/°.

Next, notice that, since py € spt(7'), by the monotonicity formula
we know

1
|T)|(Br) > §wm(647”H)m- (8.19)
Thus we can estimate
"H'H - 71'0’2 S CoE(T, BH) -+ C(]E(T, BH, 71'0)
< Coer + C (Mo, No)E(T, B, mo)
< C(My, No)eq -
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Hence,
h(T,By) =h(T,By, 7y)
< Colry — mol(rg + W(T, By, 7)) + h(T, By, m)
< C’(MO,NO)ei/Zm.

Since C}, is assumed to be large enough compared to My and Ny, we
conclude that H & #'®.

We next prove (b)’, (c)” and (a) when H € 4”. Since the conclu-
sions (b)” and (c)” are direct consequences of Corollary (6.4 and (a), it
will be enough to prove (a) for H € 4”. To this end, note that the
second part of the statement is in Lemma [8.4] We start with the first

part of (a) in the case of L is a boundary cube. In this is case the we
can use Lemma and Theorem part (c) to conclude that

i — o ? <3 (|lmw — ()P + [ — w(py) P + |7 (ply) — 7(p7)1?)
(8.20)
S 300€1€(H)2_2ae + 300816([/)2—20@ + 300514(11)2—20@‘
where we have also used that, by regularity of I, [p}, — % | < Co|c(H) —
c(L)] < Col(L). Since £(H) < 2((L) this proves (a) when L € %”.

It remains the case that L is not a boundary cube. Since H is a
boundary cube, Lemma implies that 1¢(H) < ¢(L) < ¢(H). In this
case from Corollary , equation , and the very definition of p’;
we deduce that

(1= Coe})lpL — Pl < [Pro (P — D)
< |e(L) = e(H)| + |e(H) = Pry (py)] < 6574 (8:21)
Hence we conclude that B, C B?I and so arguing as above
imL — my|* < CoE(T, By) + CoE’ (T, B%)).

1

If L ¢ #° we conclude that |7 — mg| < CeZl(H)'"2. Otherwise let

7 be the projection of 7y onto 7, ¥. By the regularity assumptions
1

on ¥ and the estimate (8.21)) we have |m — 7y | < Coe2l(H) and so
E(T,B;) < E(T,Bp,7) < CoE (T, By)+Co|n—mn|* < Coetl(H)> 2.

Hence we conclude as well if L € ¥ |r, — 7| < Ce?l(H)' %, since
((H) < 2{(L), this concludes the proof of (a) if H is a boundary cube.

Now we now turn to the proof of (a), (b)* and (c)®. To do so we
first pick H € €% and we start by considering a chain of ancestor-cubes
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H = Hj,+1 C Hj, C -+ C Hj such that H; is the father of H;; and
Hj; is the first ancestor that is a boundary cube or j = Ny. We want
to show by induction that

. — 1 — 1
(i) g, — 7, | < Crefb(H;)' = and |mp, — mo| < Chef;
(ii)) spt(T)NC; C By, and h(T', C;,my) < Cief™((H;) with C; :=
Casr; (PH;, T0);

for suitable constants C'; = C'(ce, an, My, No, Ce)
and Cl - 01(0697 Qh, M07 N07 087 Oh)

Base Step, j = j: If H; = Hy, we have shown already that

1
Ty, — mo| < C(Mo, No)ef €(Hp,)' ™

and spt(T) N Cy, C By, . Hence we need to consider only the case
in which H; is a boundary cube. In this case we argue as in (8.21) to
deduce

3 b b
(1 = Coet)lpas,, — P | < [Py (Pr;,, — Py
b
<lew;,, —cm;| + e, — p,ro(ij)\ < 657y (8.22)
In particular this implies that B Hy,, C B%}. Hence we have
b b
|7TH3+1 _ 7TH3|2 < CoE(T, BH3+1) + CoE (T, BHE)'

As before if H; 4 € /5., we directly conclude that

— 1
|7TH3+1 - 7TH3| < 05126(1—[34‘1)1_0“3'

Otherwise let 7 be the projection of 7y, onto the tangent space of
Y at pp,, . By the regularity of X and the estimate (8.22) we have

7 — 7| < C(Mo)ef €(Hy,,). Since [ T[(BY) > war /2

E(T,By;,,) < E(T,By,,,m) < CoE’(T, By ) + Colm — 7

’2
J+1

1
< Ceil(Hjyy)* 2. (8.23)

We conclude the first part of (i)! for j = j, while the second one follows
from (6.7) and the estimate:

7 (P,) — 7o | < Coerryy

Induction Step: Let us assume the validity of (i), (ii)’ for all j <
4" < j, we want to show that (i)7*!, (4i)™! hold true. First note that
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pa,., € Cj, and thus, by (i)},

pr, — pay [P < Je(Hjp) — e(H;) P + Py, (P, — PN

9
< (M2 + 40151) TH i1 (824)

where [0 = b or [0 = depending on whether H; is a boundary or a non-
boundary cube. Hence, provided M, U and e, are sufficiently small,
By, C B%j. Thus

‘7THj+1 — T |2 < C’OED (T, BEIJ-) + CoE(T, BHJ‘H)'

Note now that H; € .%; (since otherwise it would have not been sub-
divided to produce H,1), hence

E(T, BH].Jrl) < C()ED(T, B%]) < C’OC 816( )2 20 < Cglg( )2 206

for a constant C' which depends only on m,n,Q, and Ce. This proves
the first part of (i)*! if we choose C; > C The second part follows
from the first one and the inductive assumption via the estimate

j+1 j+1
(1-«
[T, — ol < g ]7TH,—7TH,1|<6’151 E 9~ (1—ae)f’ <C’1€1
i'=j J'=j+1

since we can choose Ny big enough to ensure

i 9-(—ae)i” < 1

J'=No

We now prove (ii)’*'. The idea is to first use the inductive as-
sumption (namely the height bound in C;) in order to prove that
spt(T') N Cj41 C Bp,,, and hence to use the height bound in By,
in order to conclude an height bound in C;;: in the second step it is
crucial that the tilt |7y, — 7| has already been proved to be under
control, cf. Figure . Indeed, by (ii)l for all x € spt(T) N Cjy1 C
spt(T)) N C; we have

& = a2 < (487,,,)" + (T, C;, o)
< (487~Hj+1) + Cidel(Hjs)? < (64rp,,,)%  (8.25)
provided ¢ is small enough. This implies that spt(7) N C;41 C By

) a1
and thus the first part of (ii)’*!. We now note that, if H; 11 € %41,
then

h(T7 Cj+17 WU) < CUTHJ‘H ’ﬂ-HjJrl - 71-0| + h(T7 BHJ‘+17 7THj+1>

< Cie/*"U(Hj ).
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provided C is chosen big enough. If instead H;yy ¢ .41 (which can
just happen for j = jy) we just observe that C;;; C C; and that
H; € #; (otherwise it would have not been subdivided) and thus, by
choosing C' possibly bigger,

h(T, Cj+1, 7T0> < h(T, Cj, 7T0> < C(]?”Hj |7THj - 7T0| + h(T, B%j,ﬂ'Hj)
< Corg,, |7H,,, — 7ol + Chfi/ng(Hj)Hah
< Cie)/"0(Hjs)

This complete the proof of (ii))*! and of the claim. Note in particular
that (ii)*! implies (b)".

BH]‘+1

N TN

\

N~ ~_

Cin

-

o

7\

FIGURE 1. The inductive proof of (ii)’*! consists of two
steps: first the height bound in the cylinder C; is used
to prove that spt(T') N C;;1 C By, ,; then the height
bound in By, , is used to prove the height bound in the
cylinder C;;.

Let us now prove (a), and (c)®. For (a), let L be an ancestor of
H, then either L = H; for some ¢ < j or L is a boundary cube with
H; C L. In the first case the we use (i) to deduce that

jo+1

< Z |7THj - 7THJ'71|

j=i+1

[T — 7| = 7wy — T

) Jjo—1 ) i
< Cefl(H;)' 700y 27070 < Cefl(Hy)' o,

j=1
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In the second case we use the triangle inequality and (a) for boundary
cubes (which has already been shown) to deduce
[T — 7] <|\mw — 7|+ T — T
< C=F0(H;) 0 + O O(L) % < Ceio(L)1—o

It remains to prove the second part of (a) in the case that L, H are
neighbors and both are non-boundary cubes. Let M be the father of
L and we may assume that ¢(H) < ¢(L) = 2¢(M). Since |c(H) —

-2
c(M)] < 3y/ml(L) we have that py € Csa,,, (prr, m0) Nspt(T) or py €
Cor39ry, (P o) N spt(T) if M is a boundary cube. In both cases, by
(b), By C By (or By € B),), hence
|7TH — 7TM| < Oéfﬁ(M)l_ae.
Since a symmetric argument holds for L we obtain
|7TH —7TL‘ < ’7TH —7TM’ + ’7TL —7TM‘ < 406?6([;)1_0@.
and this concludes the proof of (a). To prove (c)? we consider again
the chain of ancestors H = Hj,,1 C H;, C --- C H; where H; is
either the first boundary cube in this chain or H; € %y,. Let us set
C; = Cusry, (P> 70), ()t will follow if we show that for all j > j
spt(T) N Csgry, (p%j, mr,;) C spt(T) N C; (8.26)

(note that the possibility [J = b can only occur for j = j). Indeed
the inclusion spt(7') N Csery, (p%j7 mg) C BF will then follow from (b),

the arguments in the last step and simple geometric considerations.
Moreover, assuming (8.26)) and using (a) we will have

h(Ta C367“Hj (p%] ) 7TH)) S h(Ta CJ7 7TH) S h(Tv B%jv TrH)
S h(T, B%j,ﬂ'Hj) + C’T('H - WHj’rHj
< Cue™ ((Hy)rom + Ceyl(H; )0,
from which we easily conclude.
We are thus left to show (8.26). First, note that from (8.24) and
(a) for j > 7
|p7TH(ij+1 - p%]” S |pﬂ'0(ij+1 - p%]” + C|7TU - 7TH||ij+1 - p%3|
1
< (3vm + Ce} )l(H;)

(recall that H;.; is a non-boundary cube by assumption). Hence, by
choosing first Mj large and then e, small, we always have

C36'I‘Hj+1 (ij+17 7T-I{> C C36'I’Hj (pEIji ﬂ-H) (827)
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1
Now, if H; = Hy, we deduce from |rg — 7, | < Cef that
CSﬁrHNO (pHNO,WH) C Cn,
if &1 is sufficient small. If H; is a boundary cube, Corollary implies
that Carsgr,, (D, Tr) C Coragry (P, ™). Hence, in both cases, (8.26))
J - J J
holds for 7 = j. Let us assume now that there exists a first index

4’ > 7+ 1 such that (8.26]) fails. Then there is a point p € spt(T) such
that

pE Spt(T) N C367Hj, (ij/,ﬂ'H) \ Cj/.
By a simple geometric argument and (a), this implies that

367"}[],, CTHj,

€
— >
|p7r0(p ij/)| = C’ﬂ'o _7TH| i

On the other hand, by the inclusion (8.27)), the validity of (8.26) at the
step j/ — 1 and (b), we have

px,(p — pr,)| < Py (P — P, )| + [Py (P11, — D1, )
<2h(T,Cj_1,m) < Crp,,.

Taking ¢; small enough the last two inequality are in contradiction,

from which we deduce the validity of (8.26)) for j'. O

In particular, a simple additional argument implies Proposition [8.7]
in the following strengthened version:

PROPOSITION 8.25. Under the Assumptions and the fol-
lowing holds for every couple of neighbors H, L € . U W and any
H LeUW with H descendant of L:

spt(T) N Cser, (pr, 7)) C By when L € €7,

spt(T) N Cyraey, (P}, 7r) C B, when L € €”,
and the current T satisfies the assumptions of Theorem[7.5 in the cylin-
der Csgr, (pr, mH) (Tesp. of Theorem in Corsgr, (D), 7))

PROOF. The first two claims have already been proved in the pre-
vious proposition. We now wish to prove the applicability of Theorem

in Cse,, (pr, mH), resp. of Theorem in Cyrsgr, (P}, 7xr). In both
cases let C be the corresponding cylinder and B their bases, namely

Bsgr, (Pry (P1), Tr) and Byrsg,, (Pry (P)), 7r). We only have to show
the following properties:

P, (T'LC) = Q[B] if Le%" (8.28)
P (TLC)=Q[B"]+(Q—-1)[B7] if Le®® (829)
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where, in the second identity, we consider BT and B~ as the regions
of B which are separated by pr, (I').

We just show the argument for the second case, since the first one
is entirely analogous and already contained in [16] (in fact also the
argument for the second case is just a modification of the one contained
in [16]).

Assume first that L & %n,, let M be the father of L and let
C = C2736TM(p'}W,7T0). Consider that, by case (c)’ of the previous
proposition, we clearly have spt(7") N C C C’. Consider thus a contin-
uous path of planes [0,1] 5 ¢ — 7(¢) such that 7(0) = mo, 7(1) = 7y
and |7 (t) — mo| < Cey” and let S := TLC', C(t) := Carsg, (9, (1))
and T'(t) := pru)(SLC(t)). Observe that, by the height bound on
C', if ¢, is sufficiently small, then spt(9S) N C(t) C I'. In particular, if
B(t) = Byrser, (Pt (P},), ©(t)) and B(t)* are the corresponding regions
in which pr(;) subdivides it, we must have

T(t) =k(t) [BO)] + (k(t) = 1) [B(t)"]

for a suitable integer k(t). However, by a simple continuity argument
on t +— T(t), the map t — k(t) must be as well continuous, that is
constant. Since k(0) = @, we thus must have k(1) = @ as well. On
the other hand 7T'(1) = p,, (7L C), thus implying the desired claim.
In case L € €y, we use the same argument where we define C’ to
be the cylinder Cyrra,, (15, T0)- d

8.4. Interpolating functions and linearized system

Consider now a pair H,L € . U # which are either neighbors
or such that H is a descendant of L. By Proposition [8.25 we can
consider corresponding maps f7; and fy as in Section by ap-
plying Theorem and Theorem in the cylinders Cyrsg,, (P}, Ta)
and Csg,, (pr, Tr ), respectively. Hence we introduce the corresponding
maps hyr(r) = (hup(x), Vi (z, hyr(z))) where hyp solves

AEHL =L- (53 - pﬂ'H(pH))

B B (8.30)
har =mno fur on OBg,, (pr, ) ;
if H and L are both nonboundary cubes,
Ahpp =L (& = Pry (pa))
(8.31)

- -+
hHL :nofHL on aB;?grL(praﬂ-H)a

if L is a boundary cube and H is a non-boundary cube,
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Ahgp =L (z = pr, (Py))
j - (8.32)
har =mo fyur on 0Bs,, (pr, TH),

if L is a nonboundary cube and H is a boundary cube and finally

Ahgr =L (2 = Pry (D))

(8.33)
7 Fa + b
hur =mo fyr on 83278TL (PL,7H)

if both H and L are boundary cubes. The constant coefficient matrix
L is given by

L == AV, (p)0s,, Wy (pn)  if H € 6 (8.34)
J

L = - AV, (PH)OE, Wy () fHE? (8.35)
J

Observe that the third case cannot happen when H is a descendant of
L and thus it can only happen when H and L are neighbors.

In order to simplify our discussion, in what follows we always use the
convention that sy is the orthogonal complement in 7, ,, 3 (resp. Tpt}{ Y)
of mgy. Moreover, for every map u defined on a domain €2 C 7y and
taking values in 73, we denote by 4 its projection on s. In particular,
if the graph of u is contained in 3, then we have u = (u, Uy o u).
The same convention, given the obvious adjustments, is adopted for
multivalued maps.

The key estimate leading to the proof of Theorem [8.13]is contained
in the following proposition.

PROPOSITION 8.26. Under the Assumptions and the fol-
lowing estimates hold for every pair of cubes H and L which are either
neighbors or such that H is a descendant of L:
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[ (P16 fur) - DG+ 6L ey = )
<CerrP ™ (rp | Do + [[¢]lo) (8.36)
VC < Cé)o(BgrL(pL,ﬂ'H), %H) Zf L, H € cgh;
/ (D(no fur): D+ ¢ L (Pry (z — pyy)))
<CerrP™ o (11| Do + [1¢lo) (8.37)
V¢ € C(Bs,, (pr,7h), 21)  if L€ € and H € 6°;
/ (D(no Faw) : DC+ ¢ L (pay (& — pir))
<Cerrp T (rL | DClo + 11€l0) (8.38)
V¢ € CX(Byrg,, (P, mr), 22)  if L €6’ and H € 6%
[ (Do fur) s DG+ L (b (o )
<Cerrp T (rL | DCNlo + 11€l0) (8.39)
V¢ € CF(Bgrg,, (01 7r), 2n)  if LLH €%

Moreover,
L —mo f_HLHLl(BgrL(pL,?TH)) < Ceyr™tor Gf L e 6% (8.40)
|hrr —mo fHLHLl (pL ) = Célr?+3+ah if Le€’; (8.41)

||DhHL||L°°(B7TL(pL e < Cefri® if L€ %% (8.42)
1Dl o 5

b
777" (pL:T"H

PROOF. Proof of (8.36) -, - 8.38)) and ({8.39)). The argument follows
that of [16], Proposition 5.2] with essent1ally 1no Varlatlons and we report

it here for the reader’s convenience.

In order to simplify our notation we let p = py in the first and third
cases and p = p; in the second and fourth ones and we write 7, 3 and
@ for the planes 7y, 5 and 7,3+, With a slight abuse of notation we
denote by ¥ the map Wy, so that the graph of ¥ : 7,2 — T, %+ is X.
Finally we use the coordinates (x,y, z) € m X 3 X w to identify points
in R+ = R™* and we set f = fur, f* = fi,, r = rz. To avoid
cumbersome notation we use |-||, for ||-||o and ||-||; for ||-|[o1.

In all the cases the identities are derived by testing the first variation
condition §7'(x) = 0 for the vector field x(x,y, z) = (0, {(x), D,¥(z,y)-

< Cefr; % ifL€E. (8.43)
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¢(x)): in the first case the condition will be tested in the cylinder C :=
Cs,, (pr, mr), whereas in the second and third cases it will be tested
in the domain C* := By;. (p},7u) x 7. Note that in both cases
the vector field y vanishes at the boundaries of the respective domains,
whereas the current 7" has zero boundary in both C and C*. Finally,
although y does not have compact support, the currents T C and
T C" have both bounded support and thus we have 6(7'L C)(x) = 0,
S(TLCH)(x) = 0. Using the formula for the first variation and the

estimates in the Theorem [7.5] in the first case we conclude

0G0 = 10(Gy = TLC)(x) < [IDx[[eM(TLC = Gy)

< Co|| Dxllor™(E(T, C, 7y) 4+ r*A%)'T7 < Co| [ Dx|lor™ (1777 2%) 7.
(8.44)

On the other hand ||x|lo < 2||¢|lo and ||Dx|lo < 2|0 + 2]|DC¢||o, pro-
vided ¢ is sufficiently small. Choosing ay, < § and ae small enough

so that (2 — 2ae)(1 +0) > 2+ §, we conclude that
0G;(x)] < Cerr™ (1] DCllo + [I¢]o) - (8.45)

Using the same argument and the estimates in Theorem [7.4] we gain
the same estimate for the second and third case.

The remaining computations are the same for all the cases and we
give them for case two and three. First we write f+ => [[ f*]] and
fr=% 1611 Gr(f+) € S implies f+ =3, [(fi", ¥(z, f;"))]. From
[15, Theorem 4.1] we can infer that

5Gy+(X) =
/B > (Do (e J1) - ¢+ (Do ¥, ) - Do) - ¢+ DU a, J) - Dt )
z‘ o ) 24
(v, f) + D ) D)
(D) ()
D,(: D, f +Err. .
+/BZ ¢:D,ff +Enr (8.46)

Recalling [15, Theorem 4.1], the error term Err in (8.46]) satisfies the
inequality

Bl < C [ IDAIDS < Il [ 1DFF < Clixlitin() [ 1054
(8.47)
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Using now the estimates of Theorem and arguing as above we
achieve

[Err| < err™ 0 (r| DClo + [1€]lo) - (8.48)

The second integral in is obviously @ [, D¢ : D(no fT). We
therefore expand the product in the first integral and estimate all terms
separately. In order to simplify our computations we shift coordinates
so that p = (0,0,0). Recall that this implies that |p.(pr)| < Col(L),
or |p=(p})| < Cob4r if L is a boundary cube.

In particular we have ¥(0,0) = 0 and DV(0,0) = 0. Taking into
account the bounds on A, we then can write the Taylor expansion

DV(z,y) = D,DU(0,0) - = + D,DU(0,0) -y + O(e/*(|z]* + [y]?)) -
In particular we gather the following estimates:

|DU(z, )| < Cel’r and DW(z, f;7) = D,DW(0,0) - & + O(e) '),
D*W(a, )| < 2" and D*W(, ) = D*W(0,0) + O(e}"r)

We are now ready to compute the behavior of the summands in (8.46)).
First

/Z(A) . (D) :/Z(Dzy\II(O,O)-() . D, Uz, ﬁ+)+0(slr2/|g|)

:Q/Z(Dmy\II(O,O) ¢ Dy ¥(0,0) -z + O<61 plton / |C|> .
Z (8.49)

Next, we estimate

[ X =0 [1). (550
[ Xm0+ my=0oar [10), (851
/Z(C) L (E) = O<€17~2+ah / ‘DCD. (8.52)
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Finally we compute

/Z(C) D) = /Z((ny‘l’((), 0)-z) - D) : DY (x, f;)
+0(e r2+ah/|D(|>
:Q/ D _(Day¥(0,0) - 2) - Do) : (Dea®(0,0) - )

Oz / D)
Summarizing, the first integral in (8.46)) takes the following form:

> 02, 9%0,0)¢ ()02, UH(0, 0)x, da

1,7,k,s

—l—Q/ Z 8§y U*(0,0)2,0,¢7 (2)92,, ¥*(0,0)x, dx + Err,

1,5,k,8,r

where Err satisfies the estimate (8.48]). Integrating by parts the second
term we achieve

-Q / > i (Z Ax\If’“<0,0>aiypr’f<o,0>> ¢’(x) dx + Err,
i,J J

which completes the proof of the claim.

Proof of (8.40) and . The estimate is the same in all cases:
we denote by 2 the domaln of the function h := hy, and observe that
for the difference v := h —no f, resp. u:=h —no f+, the function u
satisfies u|pn = 0 and

/QD“ DX ‘ < ormtten(|cllo + 7| DClo) V¢ € WiR(Q)

(although the estimates in (8.36]), (8.38)) and (8.39)) were proved for ¢ €
C>(Q), a simple density argument extends it to the case above). Now,
for every v € L? consider the unique solution ¢ := P(v) € Wy*(Q) of
A(¢ = v. We then have the estimates

rHIP)llo + ID(P@)]lo < rllvllo-
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Therefore we can write

fulloy = s [wo= s [uAPw)
Q Q

vi||v|[o<1 vif|v|[o<1

= (= e o)
< Cenm™ 4 sup (I1PW) o +rID(PG) o)

vil|vllo<1
< Cegrmt3ton

Proof of (8.42). We split h as v + w, where

Av=0 in Bs, (pr,7H)
B (8.53)
v=mnof ondBg, (pr,7H)

and
Aw=L-z in By, (pL,7n)
(8.54)
w=0 on 0Bs,, (pr, TH)

The estimate (8.42)) follows from the interior regularity for the Laplace
equation. More precisely, for the harmonic part we have

||D,U||%°°(B7TL(IJL)) < C’r‘;m/ |DU|2

BSTL (pL)
<ot [ pmen < cari
BSTL(pL)

whereas for w the estimate holds up to the boundary
[1Dw|[ L= (B, r)) < CrrllAw]ee < Cerrt .

For later use let us note that in particular if L € %]E,O we have (for some
constant C' depending on Ny)

4
1
Z HDkU||B7TL(pL) <C ”DhHLz(BsTL(pL)) < Cef
k=0

4
Z ”Dkw”B?rL(pL) <C HAwHCQ(BEiTL(PL)) < Cer.
k=0

Therefore we conclude that, for any L € %]E,O,

1

||h/HL||C?’7H(B7TL(pL)) < Cep . (8.55)
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Proof of (8.43). Let L be a boundary cube, we want to apply Schauder
estimates to prove (8.43). To this aim we first observe that n o f
coincides with the C*% function whose graph describes I on v = p, (7).
For this reason we fix a C%% extension of it to the whole domain .
We will show below that, by our assumption on I', we can impose
013,00 < Ce)”. As customary we write ¢ = (&, U(x, §)).

We then split h as v + w + ¢, where

Av =0 in By, )
(8.56)
v=mnof—¢ ondBjg (},7u)
and B
Aw=L-2—A¢ in Byrg., (P}, 7n)
(8.57)

w =0 on GB;STL (P}, mh) -

Step 1: Definition of ¢. Recall that I' is a C*% graph of a function
Y over 7 = T, I' with [[¢pls6, < 051/2. Consider now that |r —
| < Cai/QE(L)l_ae < 061/2 and hence, if we define 7 := p,(m),
under the assumption that ¢, is smaller than a geometric constant we
conclude as well that|T — 7| < Cei/QE(L)l_“e < 051/2. We can now
invoke Lemma below (namely [16, Lemma B.1]) to conclude that
I' is the graph of a function ¢ over 7 with [|¢||3,4, < C’ei/z. Fix next
a unit vector e orthogonal to 7. We can then write ¢ = e + o,
where ¢ = p,i(¢). Since 53;% (P}, mr) N B278,,L(pr,7TH) C p.(I),
we infer that the graph of ¢ over a suitable subdomain of 7 describes

aB;grL (pl}n 7TH) N B2787‘L (pr: 7TH)-

Next, for every x € m we let * = v + fe with v € 7 and define
o(z) = d(v). Clearly ||¢]l34, < Ce"?. Moreover, when restricted to

OB;STL (P}, i) N Byrs,, (P, i) the graph of the function ¢ gives the
portion of I' lying over it. Hence ¢ = m o f over 83;78m (P}, mr) N
By, (9, 7). Note in addition that for every ¢ € B,
TN —7| <|T,)8 — 7|+ |m— 7| = |T,I' = T, Tl
< Ce+1'"°|g = ph| + Ce/* (L) % < Ce*0(L)" .
This estimate implies
D¢l < Ce0(L) .

Step 2: Schauder estimates. By interpolation
(Do < C D] || D*0||%, < Ceze(L)oe1=e),
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. 1 . .
Since - div(z ® z) = z, we have

1
Lz — A¢p = div <m+1Lx®x—V¢) = div(F).

By classical Schauder theory for operators in divergence form and 0-
boundary conditions, we have

1 L e
[Dw], < C[F], < [ 1La:®x — V(b] < Cezpllmoe)liz)

m +

«

We moreover have the elementary estimate
[Dwl|2 < C[[F|z2,

which follows from multiplying the equation by w and integrating by
parts. Hence we conclude

|Dwl|,, < Cré[Dw], < Ceari=oe.

It remains to estimate the harmonic part |[Dv| . Since v = 0 on

QB;?STL (p},, 7)) N Barg,, (P}, i) we can use a classical estimate on har-

monic functions vanishing on a smooth boundary to deduce that

b <Cr ™™ | Dv|?
oy @) i
2787‘L (pL77rH)

2
HDUHCO(B;7

<Cr [D(no f—¢)* < Ceyry .

B;gm (P}, wH)

Combining all estimates give (8.43). As in the interior situation let us
remark that for L € CK]'{,O there is a constant depending on N, such that
for k < ag

3
_ 1
(D% + Y [[D"0]| cogy < Cllmo flleo + |6l oo < Cet
k=0

and

3
Dl + 3 D)) oy < C Al < Cef
k=0

where B’ = C**(BJ,. ). Therefore

277ry,

1
Werellconss,  @hm < CFF - (8.58)

777'L
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We end this section by recalling the following simple consequence of
the regularity theory for harmonic functions vanishing at a sufficiently
smooth portion of the boundary.

LEMMA 8.27. Let r < 1 and consider any m — 1 dimensional C34
hypersurface v C R™ which passes through the origin and is the graph
of a C*% function o with ||¢||cs.e0 < 1. Let BT the subset of By lying
over y. Then there is a constant C(r,ag, m) such that the following
estimate holds for every harmonic function h in BY which vanishes
along y:

llcsonznse) < Clr.ag,m)|[h] e (8.59)

8.5. Tilted L' estimate

DEFINITION 8.28. Four cubes H, J, L, M € € make a distant rela-
tion between H and L if J, M are neighbors (possibly the same cube)
with same side length and H and L are descendants respectively of J
and M.

LEMMA 8.29 (Tilted L' estimate). Under the Assumptz’ons and
the following holds for every quadruple H, J,L and M in . U W
which makes a distant relation between H and L.

o If J € €", then there is a map hia : By, (ps, m5) — 73 such

that
G}ALLM = G-hLM L C47”J (pJ7 WH)
and
rrrs = DA LB, (o ey < CErl(J) 02, (8.60)

where =+ or O = depending on whether M is a boundary
or a non-boundary cube. )
o If both J and M belong to €°, then there is a map hry :

;747~J (0, 7r) — TF such that
GHLIM = GhLM L02747"‘1 (p%lv ﬂ-H)
and
HhJI;J — hLM||L1(B;_72rJ(p5’7TH)) < Célg(J)m+3+ah/2 . (861)

Before coming to the proof we recall the following two lemmas from
[16].

LEMMA 8.30 (Lemma B.1 in [16]). For any m,n € N\ {0} there
are constants cg, Cy > 0 with the following properties. Assume that

(1) 5,209 C R™™™ are m-dimensional planes with |» — 3| < ¢
and 0 <r <1;



8.5. TILTED L' ESTIMATE 161

ii) p = (q,u) € 2 x 2~ and f,qg : BP(q, ) — »* are Lipschitz
(i) (¢, u) 7r
functions such that

Lip(f),Lip(g) < co and [f(q) —ul+[g(q) —ul < cor
Then there are two maps f', g : Bs,(p, 30) — 5 such that
(a) Gf/ = GfLC5r(p, %0) and Gg/ = GgLC5r(p, %0),'

(B) 1" = 9l 21Bsr o) < Colf = 9llLr (B, s
(c) if f € C*%(By.(p, 5)) then f' € C**(Bs,(p, 30)) with the esti-

mates
1f" = wllco < CIIf = ullco + Cloe = 54| (8.62)
IDf o < CIDfllco + Cle = 54 (8.63)
1D f'llcrn < ®(J5¢ = a0l [|1D* fllcrr) (8.64
where (¢',u') € 29X 2 coincides with the point (q,u) € sx -

and ® is a smooth function with ®(-,0) = 0.

All the conclusions of the Lemma still hold if we replace the exterior
radius Tr and interior radius 5r with p and s: the corresponding con-

stants ¢y and Cy (and the function ®) will then depend also on the ratio
P

LeEMMA 8.31 (Lemma 5.6 of [16]). Fiz m,n,l and Q. There are
geometric constants cq, Cy with the following property. Consider two
triples of planes (7, 3, w) and (7, 3, @), where

e 7 and T are m-dimensional;
e i and x are n-dimensional and orthogonal, respectively, to

and T;
e w and w [-dimensional and orthogonal, respectively, to ™ X s
and T X .
Assume An = |7 — 7|+ |3 — x| < cy and let ¥ : 7 X 3¢ — w, U :

T X 5 — @ be two maps whose graphs coincide and such that |\If( )| <
cor and [[DV¥||co < co. Let u @ Bg,(0,7) — Aq(3) be a map with
Lip(u) < co and [[ullos < cor and set f(z) = S,[(n(x), D(a, us(2)))]
and f(x) = (nowu(x),V(xr,nou(x))). Then there are

e a map @ : By(0,7) — Ag() such that the map f(x) :=

> [(i(z), Uz, 4;(x)))] satisfies G; = Gy Cy, (0, )

e anda mapf' : B4y (0, ) — sexw such that Gy = Gl Cy, (0, 7).

Finally, if g(x) := (noa(x), ¥(z,noa(x))), then

If — gl < Co(llfllco +rAn) (Die(f) + " (|IDT |20 + An®)).
(8.65)
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PROOF OF LEMMA [R.29] We start by examining the first case.
Using Proposition we know that ||hg; —no fHJHLl(BSTJ(pJﬂrH))
Ceq rm+3+a“ Now, since Wy is Lipschitz and hyy = (hys, Y(z, hiy)),
frr; = (no fuy, \IJH(n o fus)), we easily conclude that

lhes — Erall s, (0gmm)) < Ceyrlytaten, (8.66)
Similarly,
R — fLMHLl(BsTM oarimn)) < Cglrﬁ+3+ah < C«glr?+3+ah
in case M is a non-boundary cube or

th:_M < 0517”?+3+ah

+
fLM||L1(BQ78rM(p5W7rL)) =
if it is a boundary cube. Since the two situations are entirely analogous,
we just focus on the case where M is a non-boundary cube.

Now both hpy and fy, are Lipschitz (and well defined!) over
B, (ps, 7r) and recall that, due to Proposition 8.24] |px, (pamr —ps)| <
3v/ml(M). Moreover they satisfy the assumption (ii) of Lemma
by a simple Chebyshev argument on the L! estimate above. So we can
apply Lemma to get a function f7,; the function such that

G.

fr

LCu,(ps, 1) = Ge,py L Cur, (D, 7H) ,

similarly for hyy; and to conclude that
s — fLMHLl (Bar, (prrm)) < C1 prtsten (8.67)

In order to simplify the notation, shift the center p; to the origin and
consider next fL M, U and g as in Lemma once we define f = fra,
m =7y and @ = m. Now, the graphs of & and fy; coincides except for
a set of Lebesgue measure bounded by Cr7(g,7%2*¢)1*7 hecause of the
Lipschitz approximation theorems. On the other hand the oscillations
of both functions are bounded by Cal/ sl ton

that

. It is thus easy to verify

||fHJ - gHL1 (Bar; (py,7m)) < 051Tm+3+ah (8'68)
We now claim that
HfLM — gHLl(BMJ(pJ,WH)) < C€1T3n+3+ah/2 : (869)

which combined with (8.66)), (8.67) and (8.68|) would give the desired

estimate.
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In order to reach (8.69) we wish to apply the estimate (8.65) in
Lemma [8.31] Recall that in our context we have the following esti-

madtes:

I fllo < Cef*mrren
r=ry
An < 051/27“‘1,7%
Dir (f) < Ceyrlyt22ee
DV |0 < Ceylry .

Hence the estimate (8.69)) follows easily from (8.65) once we impose
an > 4ae.

In the case where both M and J are boundary cubes, the argu-
ment is entirely analogous. The only subtlety is that we cannot apply
directly the lemmas [8.30] and since the functions we are dealing
with are only defined on a portion of the respective ball, namely on

;7671] (p’, 7). Note however that all functions can be easily extended
to the whole ball By, (p’, 71) with the following simple trick: on
the boundary v = By, (p’, 71) N 83;6”(]95,7@) the graph of hry,
coincides with the boundary T', hence with a C? function ¢, and the
graph of frys coincides with @ [¢]. Note moreover that v satisfies the
estimates r|[¢ o + 75| DY|lo + [[D*]l0 < 081/2. Hence it suffices

to extend v to 32_76”(77%7’ 71) to a function ¢ with the same estimates
and hence extend hrys and frar to B;GT](pZ,WL) by setting them re-

spectively equal to ¢ and @ [¢]. In this way we keep all the estimates
which were essential for the argument above. U

8.6. Construction estimates and proof of Theorem [8.13

In what follows we use the shorthand notations zpy (resp. %) for
the center c¢(H) = pr,(pu) (resp. pr,(py)) and we write B,(z) for
B, (x,m).

PROPOSITION 8.32. Let k := min{an /4, ap/2}. Under the Assump-
tions and[8.6] the following holds for every pair of cubes H,L € 2,
Bl

(@) lgullcs~m) < Ce,”, where B = By, (zg) when H € €% and
B = B}, (2%) when H € €”;

274T'H

3Recall the definition of Z; given in Section
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(b) If H and L are neighbors then

g — grllcis,, @) < CeP(H)* ™ Vie{0,1,2,3)
when H € €7, (8.70)
1 K—1 .
lgr — g1 cz‘(B;TH (@) < Cél/zg(H):H_ Vi € {0,1,2,3}

when H,L € €”; (8.71)

(c) [DPgr(a) — DPgp(a7)] < C=\*|aly — 2|7, where O = if the
corresponding cube is a non-boundary cube and O = b if it is
a boundary cube;

(@) llgn =z, (p)lleogs) < Ce*"U(H) if H € €* and gl = ¥
if H € 6°, where B is as in (a);

(@) |1Ta = Tla,gu (@) Ggn| < Ce*t(H) " for every x € B, where
B is as in (a);

(f) If H' is the cube concentric to H € #; with ((H') = $((H),
then

loi — gull iy < Cerl(H)™3ren/2 i > 541, (8.72)

PRrOOF. Proof of (a). Consider the chain of ancestors H = H; C
H;,_y C...C Hy,. Fix any j and consider the two cases where H; is a
boundary cube or where H; is a non-boundary cube. In the first case
observe that H;_; must also be a boundary cube. It follows then that
hHH — hHH _, is an harmonic function on §; := 3277rH (pH , Ty ) in
the first case and in Q; := B77'H]~ (pH,, ™) in the second case. Notice
next that, by Proposition [8.26] we have

s, = ham, e,y < Imo fuu, —mo fum, e,y + Cerrfr oo,

On the other hand 1 o f HH; — 1 © fTHHj,l vanishes except for a set
of Lebesgue measure at most CU(H;_1)™(e1l(H;_1)* 2*)'. Taking
into account that the oscillation of both functions are bounded by

C’el r};ah we also know that

I o fHHj —ne fHHjﬂ HLl(Qj) < Cslé(ijl)erngZah.

We thus conclude

“hHH — hHH 1HLl < Oé‘lf( )m+3+ah .
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Now, if H; is a non-boundary cube we immediately conclude from the
mean-value inequality for harmonic functions that
4

Zé(Hj—l)kHDk(BHHj — BHHj—l)HCO(BAerj (ij,WH)) S C(’:‘lé(Hj_l)?H-Oéh .
k=0

(8.73)
In particular we conclude the estimates

||BHHJ — BHHj_l ||C3,K(B47‘Hj (ij ) S 6’612_]"'i . (874)

Similarly, using an obvious scaling argument together with Lemma
8.27, when H; is a boundary cube we conclude

3

> U(H; 1) D (han, — hern Mooy, @y mmy < Carl(Hia
k=0 i

[D*(hyp, — f_lHHj_J]o,ao,BQWH_(pgfj,ﬂH) < Ceyl(Hj—y
J

In particular,

||BHHJ - BHijl ||CS’“(BQ74TH‘ (pr]. "TTH
R

Summing all the estimates we conclude that if H is not a boundary
cube then

1Rl o (Bas, prr01)) < Wity [l () + Cer - (8.78)

If H is a boundary cube we have

||]_7JH||C3v”(B;'74Th(p3_I,¢H)) < ||BHHNO ||CS"€(QNO) + Cey .
Recall that in previously in (8.55)), (8.58)) we already showed that

_ 1
1hr by, lesny,) < Cet

composing with Wy we find the desired regularity for hy. The regu-
larity for gy follows then from Lemma [8.30}

Proof of (b). Consider the function hy defined by Lemma
when we take H = J and L = M. We then have the two estimates

Vett = Bill oty < Carl(I)™/2 - (8.79)

||hH — hLHLl(B;QTJ(p"’]JfH)) < OElé(J)m-l-?H-ah/Q ; (880)
depending on the two cases under examination (H non-boundary cube

or both H and L boundary cube).
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Observe that the graph of g7, coincides with (a portion) of the graph
hi. We can thus use Lemma m to prove

lger — g9elli) < Ceyf(J)mt3ten/2

where €Q; is either B, (x;, ) or B;TJ(:E?,, 7o) depending on whether J

is a non-boundary cube or a boundary cube (in the second case we argue
as in the proof of Proposition [8.29; in order to apply Lemma [8.30] we
extend both maps hy and hy, so that they are equal on By, (ps,7H)

and the Lipschitz constant of both remains bounded by Cai/ ). In
order to conclude the estimates we then apply [16, Lemma C.2]. In
the case of boundary cubes it is easy to see that the proof given in
[16] of Lemma [16, Lemma C.2] extends to B272r (py, mH) with trivial
modifications.

Proof of (c). If the distance between H and L is larger than 27
then there is nothing to prove. Otherwise we can find an ancestor J of
H and an ancestor M of L which make a distant relation and such that
((J) = €(M) is comparable to |z — x| up to a geometric constant.
Consider then the chain of ancestors H C H;—; C ... C J. Observe
that, by the same arguments given in the previous step we can find
maps ggy, whose graphs coincide with (subsets of ) the graphs hypy,
and satisfy the estimates

\grm, — 9rm,_\ |lc3,) < 051/25(111}71)'i

where the domains ; are either B,, (zp,,m) or Bar., (:L'H , o) de-
pending on whether H; is a non-boundary cube or a boundary cube.
Moreover, all the maps ggy, enjoy uniform C** bounds by the same
arguments of point (a). We thus conclude that

1 K

1D g, (5,) — DPgm, (2, )| < O"27

Summing all the estimates we then reach
D gra(a) — D gras(a7)] < Ce*0(1)" < Olafy — o5".

Arguing similarly we conclude the corresponding estimate

D’ g(af) = Dgua(aiy)| < Cilafy — af|".
Finally, the obvious adaptation of the argument for (b) gives

D211 (5) = D gui ()| < Ceiafy — 27|

Proof of (d). The claim is obvious by construction for boundary
cubes. For non-boundary cubes, consider that the height bound for T’
and the Lipschitz regularity for fy give that ||p L (pr) —no fulle <
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Ce/*™((H). If we set fy = (o fu, Uz, o fu)) we also get
[Prt (Pr) — frloe < Cey/*"¢(H). On the other hand the Lipschitz
regularity of the tilted H-interpolating function hy and the L' esti-
mate on hy — fy easily gives |[p..(pr) — hulleo < Ce/*"0(H). The
estimate claimed in (d) follows then from Lemma [8.30]

Proof of (e). The estimates and show that the dis-
tance between any tangent to the graph of hy and my is at most
C’gi/ “0(H)'~% in the corresponding regions, which is just a reformu-
lation of (e).

Proof of (f). For nearby neighbors H and L we can conclude the
estimate ||gg — g1 || 1 (mory < Cerl(H)™ 3 0/2 from the corresponding
estimate for hgy — hy and Lemma [8.300 The conclusion is then an

obvious consequence of the definition of the glued interpolation maps
Pi- O

PROOF OF THEOREM [8.13 The estimate in (a) is a consequence
of Proposition the argument is entirely analogous to that of [16],
Theorem 1.17(i)]. Point (b) is a direct consequence of the definition of
;. Points (c) and (d) are a consequence of (a) and of the obvious facts
that by construction the graphs of ¢; are contained in ¥ and coincide
with 'NCsy/9 over YN Bs/y. Next, take any point ¢ € v and consider ¢;.
Let H € %; be any cube which contains ¢ and observe that, since H is
a boundary cube, it must necessarily be that H € .. In particular we
have |7y — T,G.,| < Ce,27(17¢) by Proposition (b)&(e). Note
moreover that by Theorem [6.3 we have |7y — 7(q)| < Cey/*2-i(1-0e),
On the other hand, as i — oo the planes T,G,, converge to T,M™,
thus completing the proof of the theorem. O

8.7. Proof of Cor. and Prop. and Theo.

Since all of the cubes in # are non-boundary cubes, the proofs
follow literally the ones of the corresponding corollaries, proposition
and theorem in [16], where Corollary corresponds to [16, Corol-
lary 2.2], Corollary [8.21] corresponds to [16] Corollary 3.2], Proposition
corresponds to [16], Proposition 3.1} and Theorem corresponds
to [16, Theorem 2.4]. Note in particular that the estimates claimed
in our statements match the ones of the statements in [16] once we
identify our parameters ag, Qe, an, My, No, Ce, Cp, 1 with the parame-
ters £g, da, B2, Mo, No, Ce, Cp, mq in [16]. Moreover, although the excess
E(T,By) used in [16] differs slightly from ours (since it corresponds to
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minimizing E(7T, By, 7) over all planes 7, whereas in this note we min-
imize over all planes m C T},, ), it is obvious that it is smaller than the
one used in this note, which suffices to prove all the estimates claimed.
For the reader’s convenience we briefly outline the arguments:

PROOF OF COROLLARY B.17l First of all, while in [16, Corollary
2.2] it is claimed that the boundary of T'_U is supported in 9,U, in
our case we claim that it is supported in U UTI". This is a consequence
of the height bounds in (b)” and (b)? of Proposition [8.24. In order to
prove the second claim of (a) we proceed similarly to the proof of the
corresponding statement of [16 Corollary 2.2]. First of all consider
that from the first part of the claim we conclude that the current S :=
p:TLCy(0, m) is integer rectifiable and 9SL C;(0,m) C I'. In partic-
ular we must have S = ky [M™ N Cy(0,m)]+k_ [M~ N C1(0,m)] for
some integers ko and k;. Next fix any cylinder C = C(x, r, mp) for some
point z € By(0,7) \ 7 and some 2r < dist(z,7). We can then repeat
literally the argument of [16], Section 6.1] to show that py7'L C(x,r, m)
is either Q [MTNC] or (Q — 1) [M~ N C], depending on whether x
belongs to By or By . We then must have k. = Q and k_ = @

For the proof of (b) and (c) we can apply the same argument of [16],
Section 6.1] used to prove (ii) and (iii) of [16], Corollary 2.2], since the
cylinders and balls considered in the corresponding argument do not
touch T". The final conclusion (d) of the corollary follows from the fact
that boundary cubes are always refined, that the corresponding balls
B, are always centered on points of I' and from (b)” of Proposition

.24l O

PrROOF OF THEOREM [R. 19 The construction of the map (F'*, F'7)
is done separately on the two manifolds M™ and M~ following the ex-
act same procedure of [16, Section 6.2]. Note that for all L € #* and
for all L € #~ the cylinders Cs,, (pr, 71) which are involved in the cor-
responding argument have empty intersection with I' and enjoy the rel-
evant estimates once we identify our parameters ag, e, an, My, Ny, Ce,
Ch, €1 with the parameters eq, da, Ba, Mo, No, Ce, Cp,mg in [16]. This
procedure defines F* on M™\T and F~ on M~ \T'~. However, using
the height bound in the boundary cylinders Cyrsg,, (P}, , 1) of (c)” in
Proposition it is easy to see that F'* (resp. F~) on MT\T (resp.
M~\T) can be extended to a unique Lipschitz map on the whole M*
(resp. M™) by setting F(z) = Q [z] (resp. (Q — 1)[xz]) for every
relNM* (rtesp. TN M), O

PROOF OF PROPOSITION [R.201 We follow literally the proof of [16],
Proposition 3.1] given in [16], Section 7.1]. Note in particular that all
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the cylinders involved in the argument of that proof do not intersect T',
because the cubes H and L involved in the statement of Proposition
[8.20] are all non-boundary cubes. O

PRrROOF OF COROLLARY 8.21] Again we can repeat word by word
the proof of [16, Corollary 3.2] given at the end of [16] Section 7.1],
since all the cubes involved in the argument are necessarily non-boundary
cubes. 0

8.8. Proof of Proposition [8.23]

The proof follows the one of the corresponding statement in [16],
namely [16, Proposition 3.4], with one minor adjustment, which is
needed because our excess is not exactly the excess of [16] (namely here
we minimize only among planes contained in 7,%). The adjustment
goes as follows. Note first that we know that a cube H € #° must
be a non-boundary cube. In fact the very same argument given in
Proposition [8.24] shows the following simple fact:

LEMMA 8.33. For any fized i € N, if €1 is chosen sufficiently small,
then for every H € #'¢ the chain of ancestors H = H; C Hj_; C ... C
H;_; consists all of non-boundary cubes (and in particular j —i < Ny).

The proof given in [16], Section 7.3] of [16], Proposition 3.4] is then
based on the following two facts:
(a) If H € #°, then the chain of ancestors H = H; C L =H;_, C
... C Hj_g consists all of non-boundary cubes;
(b) The following inequality holds:

min E(T, By, 7) > 2722 min E(T, By, 7), (8.81)

for some positive dy: correspondingly M, will have to be chosen
large depending on such ds.

The first condition is covered by Lemma [8.33] As for the second con-
dition, observe that we actually have

min E(T,By,7) = E(T,By) > 27*"*E(T,By)

TrCTpHE

=272 min E(T,Bg, 7). (8.82)
TCTp 2
We now want to show that will indeed follow from (8.82)), pro-
vided 0y = /2. In order to apply the argument of [16] Section 7.3]
we then just need M to be sufficiently large with respect to ae, which
is indeed one of the requirements of Assumption [8.6]
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Proof of First of all, in order to simplify our notation, for
every ¢ € X we denote by p, the orthogonal projection onto 7,X.
Moreover, if 7 is an m-dimensional (oriented) plane, we let 7 be the
unit m-vector orienting it. Consistently, we denote by f(p) the unit
m-vector orienting the approximate tangent plane of 7" at p (which
exists for ||T||-a.e. p).

Next, clearly

E(T,B;) > minE(T, By, 7). (8.83)

So, we need a reverse inequality between E(7', By ) and min, E(T, By, 7).
We select thus a 7 which attains the latter minimum. Notice that we
have the following inequality

m/lg Py, (7) = T(q)*d|I Tl (9)

2 R = 2
< T /B 10 (7) = Py (Tl AT 0

: r RoN2
AHED) /B [Pou (1)) = T(@)dlI Tl (0)

<CoE(T,By)+Cy sup |pp, — Pyl
qeXNBy

< CoCe€1£(H)2i2ae + é&lg(H)2 s

where Cj is a geometric constant and the constant C' depends only
upon My. In particular, since Ce is assumed to be sufficiently large
compared to My and Ny, we conclude

1 / N2 2-2
e [ Pe(™) = T(Q d|T(q) < CoCeerC(H)™ .
[T1(Ba) Jn,, P

We next use the obvious inequality |1—|p,,, (7)]] = [|T(q)| =Py, (7)|] <

IT(q) — Py, (7)] to infer
11— [Py ()] < CoCeerl(H)* >

Observe also that |p,, (7)| is necessarily smaller than 1, because p,,,
is a projection. We thus reach

1 — CoCeerl(H)* 2% < |p,, (T)] < 1. (8.84)

In particular, since e; is assumed to be small with respect to C., we
have |p,, (7)| > 3. Consider now the m-dimensional plane «’ which is

oriented by p,,, (7)/|pp, (7)|. Clearly 7’ C T, 5. Moreover, since T(q)
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has norm 1 whereas p,, (7) has norm at most 1, we have the pointwise
inequality

2 1

= ppu (7T

T(q) — 7' = |T(q) ppH(?

G

We can thus repeat the computations above to conclude

[Py (F)E(T, B) < [ppy, (7)[E(T, B, ')

= St o, [T~ | ATl
< o /B Tiq) - ppH<ﬁ>|2d||T||<q(>8. .

Next, arguing as few lines above

(/B @) =P dHTI|<q>> 1/2

< (/BH |PpH(f(Q)) — ppH<ﬁ-’)|2 d”T“(q))l/z
+ (/BH oy (T(q)) — f(q)PdHTH(q))l/Q

1/
< (/BH Py (T(g) - ppH(ﬁ)IQdHTH(Q)) T Gl (6475)™) 20 (H)

(8.86)
Combining the latter inequality with (8.85]) and with
1 ~
_— T — 2 d||T
oGy o P T@) P, PP AIT )
1 -

< T(q) —7*d|T

< sy J, [T AT

— E(T,By, ) = minE(T, By, 7), (8.87)

we reach the inequality

Jun

1

Dy, (F)|E(T, Byy) < min E(T, By, 7) + C (mjn E(T, By, ﬁ)) * 2 0(H)
+ Cel(H)?, (8.88)
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where C' depends only upon My. By Young inequality we thus deduce
that

Py, (R)|E(T,By) < 2% min E(T, By, 7) + Cey((H)?

where C' depends on Mj and a,. Since H € #'°,
E(T,Bp) > Cee  ((H)* 2%,
hence, by also using (8.84]) and that ¢(H) <1,
ca C
(1 = CoCet1)E(T,By) <22 minE(T, By, 7) + EK(H)Q%E(T, By),

e
1.e.
C

(1 - CyCe — EK(H)2%> E(T,By) < 2% minE(T,By, 7).

Since the constant C' depends only on My, choosing Ny sufficiently large
(which implies that ¢(H)?® < 272@No jg sufficiently small) and then
g1 small we deduce that

2% E(T,By) < min E(T, By, 7) . (8.89)

Combining (8.82)), (8.83)) and the latter inequality we conclude
min E(T, By, 71) > 2 %E(T,By) > 2 2t*E(T,By)

> 27 e min E(T, By, 7), (8.90)
thus (8.81)) holds with d; = ae/2 as promised.



CHAPTER 9

Monotonicity of the frequency function

In this chapter we establish the monotonicity of a suitable frequency
function at a collapsed point. We assume therefore that 0 € I' is a
collapsed point and that Assumption holds. In particular we fix
a center manifold M = M* U M~ as in Theorem R.13] and an M-
normal approximation as in Theorem [8.19 We will indeed consider
two different frequency functions: one related to the “left side” of the
approximation and the other one related to the “right side”. Without
loss of generality we will carry on our discussion on M.

REMARK 9.1. By our construction M™ is the graph of a map ¢ :
74 D B — 7y, where we assume that m is the tangent plane to 7" in
0 € I'. For convenience we can extend " to a C® map ¢ on the whole
ball By N my. When referring to ¢+ we will then drop the superscript
+, but we will keep the notation M™ for that portion of the extended
graph {(z,¢(z)): x € By(0,7m)} which lies over Bf". The graph of the
function ¢ on the whole By (0, my) will instead be denoted by M. Note
that in this setting the projection p : p~1(M™) — MT is of class C**,
cf. with Assumption [8.16]

9.1. Frequency function and main monotonicity formula

In order to define our main quantities, we start with the following
simple lemma which is the curvilinear version of Lemma [4.25

LEMMA 9.2. There exists a continuous function dt : MT — R*
which belongs to C*(M™\ {0}) and satisfies the following properties:
(a) d*(x) = distye (2, 0) + O(distaer (2, 0)%) = 2] + O(|z[*);

(b) |Vd*(x)| = 140(d"), where V is the gradient on the manifold
M;

(c) AV2d*(z) = g+ O(d™), where V? denotes the covariant Hes-
sian on M (which we regard as a (0,2) tensor) and g is the
induced metric on M as a submanifold of R™*™;

(d) Vdt(z) € T,T forallx €T, i.e.

vdt it =0 on T, (9.1)
173
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where it denotes the outer unit normal to M™ inside Mv
In particular this implies

V2dH(z) = é(g ~Vd* (2) ® Vd* (x)) + O(1) (9.2)
and
adr =" Lo (9.3)

where A denotes the Laplace-Beltrami operator on M, namely the trace
of the Hessian V2. Moreover:

(S) All the constants estimating the O(-) error terms in the above
estimates can be made smaller than any given n > 0, provided
the parameter €1 in Assumption 1s chosen appropriately
small (depending on n).

On the “left side” there exists an analogous functiond™ : M~ — R*
satisfying the properties corresponding to (a), (b), (c), (d) and (S).

PROOF. For the sake of simplicity we focus on the “right side” and
we drop the subscript + from the function d. As noted in Remark
we can extend M™ to a C® manifold M such that T ¢ M is a O3
submanifold of M passing through the origin. Hence there exists a C?
regular map Z: U X (=6,0) — /T/l/, U c R™ ! with the properties that

(1) Z(0) = 0 and D=Z(0) = 0;
(2) = is a local parametrization of M and i 5 U =(y,0) is a
local parametrization of I';
(3) On=(Y',0) L Tyl forally’ € U.
Hence, if g := Z#§ is the pullback metric of Mon U x (—0,9), we have

9i(y) = 05+ O(yl*),  Okgiy = O(lyl),
and similarly for ¢. In particular this implies that dist(Z(y),0) =
ly| + O(]y|?) on M*. We claim that d(x) := |Z~(x)| has the desired
properties. We will check (a) - (¢) using the coordinates associated to
the map =. Since

2= _ij i yiyj - 2

VAP (E()) = 970id0;d = g7 (y) 7 = 1+ Oyl’)

we have that (b) is satisfied. For the Christoffel symbols we have
% (y) = O(lyl) since dig;; = O(ly|). Hence (c) follows, because
1, 1 1
§V2d(:(y))ij = 581‘3‘652 - §Ffj@kd2 = 6;; + O(ly]*) = 945 (v) + O(ly*) .
Concerning (d) we just note that, by (3), we have ¢""(y’,0) = 0 for
all y' € U, hence g99;d € R™ x {0} for all ¥’ € U and Vd(Z(y)) =
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E4(g0;de;). Equations and are now simple consequences
of (c¢) and (b).

Claim (S) follows easily from a closer inspection of the above argu-
ment. U

We now fix a cutoff function

1 for0<t < %
p(t):=< 2(1—¢t) for 1 <t<1 (9.4)
0 for t > 1.
and define
d+
DarN') = [ o (ﬁ) IDN*P(x) (9.5)
M+ r

How V)= [ o (T war@p s, o0

where all integrals are taken with respect to the standard volume form

on M+.|I| The frequency function is then defined as the ratio

rDy g+ (NT, 1)
Lya+ (NT,r) = — 200
¢7d+( ) T) H¢>,d+ (N-i-’ 7”)

Analogously we define Dy 4~ (N7, 7), Hyq-(N~,7) and Iy 4 (N~ ,7).
The main theorem of this chapter is then the following counterpart
to Theorem where we use the notation

C* ={y eBy:p(y) € MT and |y — p(y)| < dist(y,I")*?}

for the horned neighborhoods of M¥ in which T is supported (compare
with Corollary [6.4] and Theorem [8.13] (e)).

THEOREM 9.3. Let T, ¥ and I" be as in Assumption|8.16] and con-
sider ¢ and d as above. Then:
(a) either TLCT equals Q [M™] in a neighborhood of 0, in which
case we set 17 = +o0;
(b) or there is a positive number I such that

]8_ = llﬂ)l I¢,d+ (N+, 7”) . (97)

The corresponding statements hold on the left side for the current
TLC™ and the frequency function 1y~ (N, 1).

IThe convention of omitting the volume form in the integrals taken over M
and M~ will be used systematically in the rest of the paper.
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9.2. Poincaré inequality

From now on, in order to simplify our notation, we drop the sup-
scripts + from N and d and the subscripts d and ¢ from H, D and
1.

We notice here the following simple consequence of the fact that
N|r vanishes identically.

PROPOSITION 9.4. There is a geometric constant C' such that
H(r) < CrD(r) for all sufficiently small r. (9.8)
In particular
I(r)>C™! for all sufficiently small r. (9.9)

Moreover,

/ IN|? < Cr*D(r) for all sufficiently small 7. (9.10)
{d<r}nm+

Proor. We start noticing that, for r sufficiently small, we can
assume

1
5 < |vdl <2 (9.11)

and that the domains {d = r} N M™ and {d < r} "M are diffeomor-
phic to the corresponding half-sphere and half-ball in R = {z; > 0},
with uniform controls on the first derivative of the diffeomorphism and
its inverse. In particular we have the trace Poincaré inequality

/ Np<os VP <es [ DN,
{d=s}nM+ {d<s}nM+ {d<s}nm+

because |N| vanishes identically on T
Integrating the latter inequality, using the coarea formula and ((9.11]),
we achieve

Hr) = —[ égb’ (%) (/{d:s}mw |Vd||N|2> ds
) ([ 123 @
— C’r‘[ </{ds}mw \DN\2|Vd]1> ¢()

,
+Croé (= / DN|?
T¢<2> {d<r/2}mM+| |
)

IN
|
Q
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Next, the inequality is a trivial consequence of . More-

over, and (9.11)) give

/ IN|? < Cr*D(r).
{r/2<d<r}inM+

On the other hand

/ INP < cr‘Z/ IDN? < Cr2D(r)
{d<r/2 M+ {d<r /2 M+

follows from the usual Poincaré inequality since | V| vanishes identically
on I'. Thus (9.10)) can be achieved summing the last two inequalities.
O

9.3. Differentiating H and D
We compute here the derivatives of H and D.

PROPOSITION 9.5. If D and H be as in the definitions of Section

[9.1], then
D'(r) = /qﬁ( ) )|DN|2 (9.12)
H'(r) = ( " +O(1)) H(r)+2E(r), (9.13)
where

—%/cb' (@) Z:NZ.(I) - (DN;(x)Vd(z)).

PROOF. The identity (9.12)) is an obvious computation. In order
to compute H' we first use the coarea formula on embedded manifolds
to write

// }s 2) IV d(@) IN () dH (@) ds
N /0 ; ﬁdrt}\Vd( D)|NP(z)dH™ N (z) di.  (9.14)

J/

-~

=:h(rt)

In order to compute h'(t) we consider that v(x) = %3\ is orthogonal

to the level sets of d in M™ and it is parallel to I'. Thus, using the
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divergence theorem on M™ we obtain

h(t+¢) — h(t) = / IN[2Vd- v dHm!
{d=t+e}nM+

—/ INI’Vd-vdH™ !
{d=t}nM+

_ / div (|N[2Vd(x))
{t<d<t+e}nM+

- 2 N;(x) - (DN;(z)Vd(x
/{t<d<t+s}ﬁM+ Z ( ) ( ( ) ( ))

i

T / INPA(x).
{t<d<t+e}nM+

Dividing by e, taking the limit (and using the coarea formula once
again) we conclude

R (t) :/ |Vd|™ <2§ 'N; - (DN;VMd) + yNPAd) dH™ .
{d=t}nMm+ i
(9.15)

Differentiating (9.14)) in r, inserting (9.15)) and using that, if ¢(d(x)/r) #
0, then d( ) = O(r), we conclude

/ 4, wal®
:2E@~)--/¢’ (T) IN[2Ad(z

(9.16)

ZN (DN,Vd) + |N| Ad)) dH™ ' do

2E(r) — —/(b (d(f)> N2 (—_+O( )) (9.17)
B0 + (T+O< )) H(r). 0

9.4. First variations

In order to derive the two key identities leading to the monotonicity
of the frequency function we will use the first variations of the currents.

LEMMA 9.6. Let T, ¥ and I be as in Assumption |8.160. Then,
provided €1 s sufficiently small, we have that
(a) CtNC =Ty
(b) TLB, =T" + T~ where T* =T C*;
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(©) IT[|(By) = |77[(By) + [ T7[|(B1);

(d) OTTLB, =Q[I'] and 0T .By = —(Q — 1) [I] ;

(e) For any current ST such that spt(S*) € ¥ N B, and S* =
O(T*LBy) we have that ||T*||(B1) < ||S*||(B,).

PROOF. Statement (a) is obvious. Statement (b) is a consequence

of Corollary and of Theorem [8.13|(c)&(d). Statement (c) comes
directly from (a), (b) and the fact that || 7||(I') = 0. Statement (e) can
be inferred from (c) and (d): for instance, if ST is as in the statement
then (T~ + S*) = 9(T'_B;) and by minimality of T

17N (B + 1T [(B1) = [T(By) < (|77 + S™[(B1)
< ST + 177 [(By).

The proof of point (d) follows the same idea of the proof of Corollary
[1.10] Indeed, first remark that 971 (B;\I') = 0, thus spt(97+)NB; C
I'. Let r be a retraction of a neighborhood of T" onto I'. Since 0T LB,
is a flat chain supported in T, Federer’s flatness theorem, cf. [23]
Section 4.1.15], implies that R := ry(0T*_B;) = 07" LB;. On the
other hand, since 9(0T"1_B)L. By = 0, we also have Rl B; = 0 and
we conclude from the Constancy Theorem, cf. [23], Section 4.1.7], that
R = ¢[I']LB; for some ¢ € R. Thus 0T+ = ¢[I']L By.

Fix a point p € I' N B; and recall that, from Theorem and
Theorem [8.13) (e), at every p € T' N By there is a unique tangent cone
to T and it is T, = Q [7(p)*], where 7(p) is tangent to T,M, by
Theorem , and 7(p)T is the inner half portion of 7(p), where we
consider M™ as a manifold with boundary I". Hence

1im 0((1,,),T") = 0(Q [x(n)*]) = QLT
Since we also know that
}ai_r)%a((bpm)ﬁT%_) = li_%(bp,r)ﬁ(c [T]LBy) = c[T,17,
then we conclude ¢ = ). A similar argument holds for 7. 0

LEMMA 9.7. Under the same assumptions and with the same nota-
tions of Lemmal9.6, for all X € C1(By,R™™) which are tangent to T,
we have that

) = - [ Xie) Hrl) AT @) (919)

where X is the component of X orthogonal to ¥ and ﬁT(x) is the
mean curvature vector of (3.1). Analogously

5T (X) = — / X (2) - Hpl(r) d|T)| ().



180 9. MONOTONICITY OF THE FREQUENCY FUNCTION

ProOF. This proof follows the same ideas of Section Without
loss of generality, we focus on T". Since T is stationary with respect
to variations which are tangential to I' and ., we have the identity

5TH(X) = / X(z) - Br(x) d|T*|(2)

for all X € C1(B,) tangent to I', where Hy is defined in (3.1)) (cf. for
instance [35 Lemma 9.6]). Note next that, by the explicit formula for

Hr in 1), Hr(z) is orthogonal to 7,3, which in turn contains the
tangent plane to T at x. Thus in the integral of the right hand side we
can substitute X with X+ U

In what follows we let p : p~*(M™) — M™ be the retraction of
a normal neighborhood of M™ to M™. In this section we will use
Lemma [9.7] with two specific choices of vector fields:

e the outer variations, where X,(p) := ¢ <_d(pr(p)) (

) p—p([D)
e the inner variations, where X;(p) := =Y (p(p)) with

1, (d\ Vd?
e 1
2 <r> NZE (5:19)
Note that Y tangent is to M and to I'.
Consider now the map F(p) := >, [p + N;(p)] on M* and the current
T associated to its image, cf. [I5]. By Lemmal9.7],

STr(X,) = (Tr(X,) — 0T*(X,)) +6T*(X,)

(. J

Vv
o
Errg

Fri — / X (@) - Hy(w)d|T||(x) -

Errg
Since X is also tangent to I', by Lemma (9.7, we write

0Tr(X;) = (0Tr(X;) — 0T7(X5)) +6T7(X)

7

Err
(©.18) i 7
Frri, — / XH(2) - () d| T (2) -
Errf

Hence
6T r(X;) = Err’ + Errt .
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9.4.1. Outer variation. The following proposition holds (for the
proof, see [15, Theorem 4.2]).

ProPOSITION 9.8 (Expansion of outer variations). Let ¢ := ¢ (@

and denote by A and H g the second fundamental form and the mean
curvature of M™, respectively. Then

ST(X,) = /W (1PN + (N D) : D)

3
- Hy,moN)+ S Err® 9.20
Qf elwnoN)+3 Ex (0

o
Err¢

where
Eusg| < C [ Jll AN (0.21)
M+
usg) <€ [ (lel(IDNPIN|A + DN
M+
+ Dl (IDNFIN| + [DNIINPA])). (9.22)

9.4.2. Inner variation. Consider the one-parameter family of biLip-
schitz homeomorphisms =, of M™ generated by —Y. We observe that
X, is then the infinitesimal generator of the one-parameter family of
biLipschitz homeomorphisms ®. of p~!(M) defined by

Ec(p) ==V (p(p)) +p—p(p).

Therefore, we can follow the computations of [15] Theorem 4.3] to
prove a suitable Taylor expansion for the inner variation. In what fol-
lows, we will denote by DMY the (1,1) tensor which expresses the
covariant derivative of the vector field Y (which is tangent to M), in
particular, when Z is a vector field tangent to M, D}'Y is the projec-
tion onto T'M of the standard euclidean derivative DY . Accordingly
divyY will denote the trace of DY namely

divyY = Z<DMY(€Z')7 ei)

i=1
where eq, ..., e, is an orthonormal frame of T M. Note that, in par-
ticular,

divaY =Y (De,Y,e;).

=1
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PROPOSITION 9.9 (Expansion of inner variations). The following
formula holds?

DN|? L
0T r(X;) :/w (ZDNj . (DN;DMY) — | : | div g y) +) Errl,
J

J=1

(9.23)

where

Err! = Q ((Hm,mo N)divamY + (DyH,moN)),  (9.24)
M+

By < C [ AP (IDY[IVE + YI|V] D). (9.25)
M+
e < [ (IVIIAIDNE(N| + D)

+|DY[(|A]INPIDN| + [DNT*)) . (9.26)

The proof of the previous theorem follows literally the same com-
putations of [15] Section 4.3]. The only subtle point is that in the final
part of that proof the integration by parts needed to handle the term
Jo in [15, Eq. (4.17)] is valid in our context because the vectorfield Z,
on which the integration by parts is performed, vanishes on I'.

9.5. Key identities

In this section we use the Taylor expansions of the first variations to
derive the key identities which lead to the monotonicity of the frequency
function. We introduce therefore the quantity

1 d d

T2 M+

2Recall that each Nj is a map taking values in R™*" and thus we understand
DNj as a map from T’M into R™*™. More precisely, if N; = (le, cey N;”Jr") is
the expression of IN; into its components and if Z is a vector field tangent to M,
then

DN;(Z) = (DxNj,...,DzN"*").
With DN jDMY we then understand the following map on T M:
DN;DMY(Z) = DN;(DMY(2)) = (Dpmy )N}, ... Dprsy (zyNJ"*™) .
Accordingly, the scalar product DN; : (DN;DMY) is given by
DN; : (DN;DMY) = (De,Nj, Dpmy(e,)Nj) = Y De, Nf Dpry e,y NF
¢ kL

where eq,..., e, is an orthonormal frame on T'M.
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PROPOSITION 9.10. The following two inequalities hold

|D(r) — E(r)] < Z |Err?| (9.27)

(Z |Err’ |> (9.28)

PRrROOF. For the first identity it suffices to check that

’D'm - (m_Q +0(1)) D(r) — 2G(r)

r

| (#IDNE+ 3@ Dg) : DN,) = D) - E(r).

which is an obvious computation. For the second identity we need to
show that

/ 2> " DN; : (DN;DMY) — |DN[*divp Y
=rD'(r) — ((m —2) +O(r))D(r) — 2rG(r)

Recalling the definition of Y in (9.19)), that is

1 (d\ Vd
V=26 (=) 22
2¢ (7") |Vd|?’
we easily compute, using Lemma [9.2] (b) (c) and (9.2)

d d\ Vd ® Vd 1 d\ V2d?
pMy = S (&) Y42 YD S, (0) 1O
¢(> vaE 2 ()|w|2

T
d\ 2(dv2dvd) ® Vd)
¢ <‘> I

(Yo (pom. o

where we recall that ¢ is the metric induced on M by the Euclidean
ambient manifold. In particular

i) =26 () 46 () tm+ 0.

Hence, using also that, on {¢ # 0}, d = O(r), we obtain



184 9. MONOTONICITY OF THE FREQUENCY FUNCTION

/ 2> " DN; : (DN;DMY) — |DN[*divp Y
M+ -
J
2 J(d\ d )
= = ) == |DN,;Vd
() i 2 1PNVl

+ /M+ ¢ (g) (2 —m +O(r))|DN|? — /M+ o (g) DNP

= —2G(r) = ((m =2)+ O(r)D(r) + rD'(r),

which concludes the proof.

9.6. Estimates on the error terms

9.6.1. Families of subregions. In order to estimate the various
error terms we select an appropriate family of subregions of Zf :=
{pemng :d(p(p)) <r}) . First of all we introduce a suitable family of
cubes in the Whitney decomposition:

DEFINITION 9.11. The family 7 C # consists of :

(i) all L € #© U #™ which intersect %,;
(ii) all L € #© which are domains of influence of some L' € #™
intersecting Z,f, i.e., L' € # (L) (cf. Definition [8.22)).

Next, for any L € T note that
sep(L, B}) :=inf{l¢—p|: g€ L,pe B} <3vml(L).

For each such L we define an appropriate “satellite” ball B(L) with
the following properties:

(A) B(L) has radius comparable to ¢(L) (say ¢(L)/4));
(B) the concentric ball with twice the radius is contained in Z;};
(C) B(L) is close to L (comparably to ¢(L)).

If Byry2(c(L)) C A, then we simply set B(L) = Byr)a(c(L)).
If instead Byr)2(c(L)) ¢ 2, , we then use the following selecting
procedure.

(i) First consider a point ¢ € 9%, at minimum distance from L.
(ii) Observe that, since L € #/, it is a non-boundary cube. Thus
dist(q, ) > ¢(L) and in particular d(¢(q)) = r.
(iii) Let v be the exterior unit normal to 0%, at ¢ and let g, :=
¢(L)

49— 30
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(iv) Recalling claim (S) in Lemma and the estimates on ¢
we see that 0%, \ 7 is locally convex and that the principal
curvatures of 0%, \ v can be assumed to be all smaller than
2. Since {(L) < r, this implies that Byp)2(qr) C B We
finally set B(L) := Byr)/a(qr)-

DEFINITION 9.12. Given a cube L € T, the ball B(L) chosen above
will be called the satellite ball of L.

Note that, by simple geometric arguments and by the properties of
d, we can assume that

lqr — c(L)] < 5¢/mé(L) and dist(L, qr) < 4v/ml(L). (9.30)
We next select a suitable countable subfamily 7 of 7 with the
property that, for any pair of distinct H, L € .7, the corresponding
balls B(L) and B(H) are disjoint. We denote by S the supremum
of £(L) for L € T. We start selecting a maximal subfamily Z; in T
of cubes L with ¢(L) > S/2 such that the corresponding balls B(L)
are pairwise disjoint. We then add to 77 a maximal subfamily 7
in 7 of cubes L with S/4 < ((L) < S/2 such that the balls B(L/)
corresponding to L' € 7 U % are all pairwise disjoint. We proceed
inductively with the selection of the family .7, C T such that:
(i) it consists of cubes with side 275719 < ¢(L) < 27*8;
(ii) the balls B(L') with L' € S U...U J,_; U .9 are pairwise
disjoint;
(iii) % is maximal among the families satisfying (i) and (ii).
Z is the union of all the .7;. A simple geometric argument and
ensures that
(Cov) If H € T, then there is L € .7 such that the distance between
H and L is at most 20y/m¢(L) and even though there might
be more than one L, we fix for each H an arbitrary choice of
an L with such a property.
Therefore we can partition 7 into (disjoint!) families 7 (L) with L € 7
with the property that for each H € T (L), the distance between H and
L is at most 20y/m{(L) and ¢(H) < 2{(L). For each L € .7 we denote
by # (L) the family of cubes

U »#E)u{H}.
HeT(L)
Furthermore we denote by U(L) the following region in M™*:

U @w#H).

Hew (L)
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From now on we fix an enumeration {L;} of .7 and we denote:

e by U; the corresponding regions U(L;) N B} ;
e by B’ the regions ®(B(L;));
e by /; the scale ¢(L;).

where, here and in the following, we set

Bf =M'n{d<r}.

9.6.2. Lower and upper bounds in the subregions. First of
all observe that

< inf ¢ (9.31)

p~1(BY)

Cc

b
;

d(p(p))

~21)). In particular

for a geometric constant ¢ (recall that ¢(p) = ¢(

4 .
sup ¢ — j{l(a p<C—-<C inf o,

p~1(U;) p i) r p~1(B?)
which leads to
sup ¢ < C inf ¢, (9.32)
p1(U) p~1(B)

where C'is a geometric constant. Since we have p~ (U;)NM™ = U; and
the same for B, the above estimates, when restricted to M™, become:

2
= <inf 9.33
e <infy (9.33)
and
supp < C'inf . (9.34)
U; B

Observe that
max{((H): H e #(L;)} <C¥;

and

> ummm <o

Hew (L)

Thus, as a consequence of the estimates in Theorem [8.19|and Corollary
8.17| (b) (namely, applying the corresponding estimates in each cube
in #(L;) and summing the respective contributions) we achieve the
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following;:
Lip (N‘ui) < Ceftist (9.35)
INllcowy + sup—|p—p(p)| < Ce/”"g™ (9-36)
pespt(TH)Np 1 (Us)
IT* = Trll(p™' (Uh)) < Ceyromgrraror (9.37)
/ IDN|? < Ce 2200 (9.38)
U;
InoN| < C€1€f+m+7L + C'/ |N|?ter
Mi ui
(9.39)

Note in particular that (9.39)) follows from choosing a = 1 in (8.15)) and
V=L

The second important ingredients in order to estimate the various
error is the following lemma.

LEMMA 9.13. Under the assumptions of Theorem for a suffi-
ciently small r the following inequalities hold:

m—+2+2a .
51;@ " it e <CD(r) (9.40)

€1 Ze;"““% <C B+|DN|2 < C(D(r)+rD'(r)), (9.41)

for a geometric constant C. Moreover we have

grsupl; < C(rD(r))4m+31+ah and € sup ( jP(g)(pgi) < CD(T)W )
7 i P 3
(9.42)

PROOF. First of all observe that every cube L; € 7 belongs to
either #® or to #'©. For every cube L; € 7 N#®, as a consequence
of Corollary [8.21, we must have L; N B # (. Hence B® C M N
Cymecry(pr,) and therefore Proposition [8.20(S3) applies. Recalling
that G(N(z),Q [no N(x)]) < |NJ|, for every cube L; € 7 N #" we
can estimate

INJ? > coe)/m e+ +2em (9.43)
B
By estimate (8.16]) in Proposition , for every L, € T NW*e we

have

/ ©|DN|? > coe 0272 inf o = coe 7727 2% inf . (9.44)
Bi Bt p~1(BY)
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Summing the last two inequalities over 4, using that {B'} are disjoint
and contained in {d < r}NM™ and the simple observation that 2+ay, >
2 — 2a,, we easily conclude

£m+2+2ah inf < C / N 2 DN 2 .
6122:1 Jinf ¢ <G Bﬁ(l >+ ¢IDNP)
Thus, (9.40) can be inferred from (9.10)).
Note that, analogously, for L; € .7 N #'¢ we have also
/ |IDN? > coe £ 2720 (9.45)
B

Arguing as above with ((9.45) in place of (9.44) and exploiting that
2+ an > 2 — 2a,, we conclude

m+2+4+2a 2
€1Z£i hSCO/Bj—|DN|
Since ¢'(t) = —2 on [1/2, 1], clearly
/ DN < rD'(r).
{r/2<d<r}nmM+

On the other hand we trivially have

/ IDN2 < D(r).
{d<r/2}nM+

Thus, (9.41)) follows easily.
Finally the second estimate of (9.42)) is a direct consequence of
(19.40) and the first follows combining (9.40) with (9.31]). O

9.6.3. Estimates on the error terms. We are ready to prove the
main estimates on the various error terms appearing in the inequalities
of Proposition [9.10] We first introduce the auxiliary term

S(r) = /¢ (g) |N|?. (9.46)
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PROPOSITION 9.14. There are positive numbers C and T such that

|Exrrg| + |Errg| + |Err| < CD(r)t" (9.47)
|Err§| < CS(r) < Cr*D(r) (9.48)
|Err2| < CS(r) + CD(r)"*" < Or*D(r) + CD(r)**7

(9.49)

|Err’ | + |Errg| + |Exr’| < CD(r)"(D(r) +rD'(r)) (9.50)
|Errh| < CrD(r) (9.51)
|Erri| < CrD(r) + CD(r)(D(r) +rD'(r)). (9.52)

PROOF. Since af, is independent of ae, ay, (compare Theorem|[8.19)),
we can choose e, o such that

%2404},24@6.

We let 7 < ae < ap < a1,/8.

Proof of (9.47). Recalling that ||¢||csx < 051/2, which in turn
implies || Ha||coom+y < 061/2, we get from (9.39))

¢ < C / ol Hye |l o N|
M+

©39) o
< Ce) Z <83p¢51€§+m+ 2 C/u © |N|2+C“L)
i\ i

(©-39) o
< 051/22<1£f¢gle§+m+ el /u ¢1N|2+QL>
i\ 7

: m 167 (6]
< Cel*y <1é1fg061€§+ Hen 04 / gp]N|2)
i\ 7
(19-40) & (9.42])
< op) oy [ GNP,
B¢

where in the last line we have used also that the intersection of distinct
domains U; has zero measure. Using (9.10) we conclude

|Err¢| < CD(r)".
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Concerning Err§, from Proposition and recalling that |Dy| < g we
get

i) < [ o IDNPIN|+ IDNF) +Cr ! [ [DNFIN
B,

N

~~ -~

11 [2

+Cr! / IDN||N|*.
Bt

J/

-~

I3

We estimate separately the three terms:

L < (sup|N\ —l—sup]DN]Q)/ | DN|?
Bt Bt Bt
< C'sup (sup]N| + Lip (N|u>> / ©|DN|?
( U; ’ B
(9-35) & (9-36)

Csupf?aL /B+ ©|DN*> < CD(r)**7.

Moreover, recalling that ag, > 4a,

(9-35) & (9.36)) 1
— 2m 1
12 < Cr 1 E 51/ +aL€j+ah+aL / \DNP
j Ui

19.38)
_ 1+1/2m+ar, ym+3+ap+or, —2a
< 1 7 ntoL e
< Cr E €] ¢
J
19.33) 19.40) & (9.42)
<

£m+2+70‘h' f < D 147
C; : inf — < CD(r)T,

and
L < C’r_125'f"‘€]°."“/ N[22 or—lp(ry/ N2
; 2 Bf

< CrD(r)"",

provided 7 > 0 is sufficiently small.
Recalling that

Err = 6(Tp — TT)(X°),

we can estimate

Brr?] < / DX d| Ty — T .
p~1(Bh)
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Since

|IDX,(p)| < C (m + 90(19)> ,

r
we can estimate

|Errd] < CZ/ ) (ww@)) d|Tp =T

(9.36)&(9.37)
-S- C Z /2m€1+ah + Sup (p +aL £m+2+aL
j P~ (U))
E31)&[E32) [5.40) & (7.42)
< C Z mf 90 €1+o¢L€m+2+o¢ < CD(?”)1+T '

— P
J

Proof of (9.48). Since |[Ap]lco < C||¢llc2 < Ce)”, it follows
easily that

Eug| < OS(r) <€ [ |NP.
B
Thus the estimate follows from ((9.10)).
Proof of (9.49). Recall that

it = — [ X+ Hn(a) T (0),

where ﬁT(x) is the trace of the second fundamental form Ay of X
restricted to the tangent space T'(x) to the current T" at z. For further
use we introduce the notation A(\) for the trace of Ay, on the m-plane

oriented by the m-vector X. In particular Hy(z) = h(T(x)). We can
therefore write

/ (X2, h(T))d|Tr]

~~ ~~
Il 12

[Erg| <

0|l As]l, / XHdIT* - T .

J/

(9.53)

Recall that ||As|o < 51 Since | X°(p)| < Co(p(p)), the second term
is estimated by C'D(r)*™ by arguing as in the bound for Err§. As for
the first term note that

X, (0)] < e(p(@) P52 (0 — P(0)| < Co(p(p) | Asllolp — P(p)I* -

Hence, using the Lipschitz bound for N to pass the integration on the
domain B;", we conclude

(9.10)
I < C/g0|N|2 =CS(r) ? Cr*D(r).
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We now estimate the error terms coming from inner variations.
First let us record here the following easy consequence of (9.19) and
(19.29):

Y (p)| < ¢(p(p)) d(p(p)) [DY|(p) < Cly(p(p))- (9.54)

Proof of ([9.50). By Proposition [0.9]

Bl < €[ (Hul+IDHu)noN <C [ InoN]
Bt Bf
< z(%é?“* Y 'N'M>
j U
< Z(aQ e /+£;‘L/ \N|2>
J J
(19.41)&(9.42))
CDGY (D) +rD'(r) +CDGY [ NP
B;
< CD(r)"(D(r) +rD'(r)).

Using (9.54) and Proposition
Euxj| < C' | (DN + [DNPIN| + [DN|INP).
B;

The third integrand can be treated like I3 in the estimate of Err§ and
thus can be bounded by Cr?D(r)'*7. As for the first two we argue as
follows:

E39 4
[ (DNP + NP T S [ D
Bf j U;

J

2 ooy /,3+ |DNJ> < CD(r)"(D(r) +rD'(r)).

Concerning Err, using again (9.54), we estimate

(937
Engl < O ITe-TT(pTIW)) = O et
J j
(9-41) & (9-42)
<

CD(r)(D(r) +rD'(r)) . (9.55)
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Proof of (9.51). By Proposition and once more ((9.54)),

|Erry| < C/B+ |N|2+C’r/go|N||DN|

-
gc/ |N|2+r2/ IDN] S CrD(r).
B

Proof of (9.52)). Arguing as for Err®, we write

B < \ o EendTe | +Casl, [ 1T~ Tl

J/

Ja
(9.56)
The term J; can be estimated arguing exactly as for the term /5 in
and we get Jo < CrD(r)7 (recall also ((9.54])).
In order to treat the first term we proceed as in [17, Section 4.3].
Denote by v,...,v an orthonormal frame for 7,2+ of class C%%

(cf. [15, Appendix A]) and set 2 (X \) = — Y 1 (Do, v;(p), vi) whenever

VIA ... AUy = X is an m-vector of T,% (with vy, ..., v, orthonormal).
For the sake of simplicity, we write

W (p) == hi(Tr(p)) and h(p):=>_ W (p)v(p),

l
W (p(p)) == b (M*(p(p)) and h(p(p)) := > _ W (p(p))v;(p(p))

where M (p) denotes the m-vector orienting 7, M. Consider the expo-
nential map exp(p) : Tp( 2 — X and its inverse ex;(lp). Recall that:

e the geodesic distance dx(p, ¢) is comparable to |[p — ¢| up to a
constant factor;

e v; is C*% and || Dvj|gra < 081/2,
* exp(y and ex . are both 0>
— 1
and ||d exp(p)||ctiao + ||1d exp(lp)Hcl,aO < 61/2;
o W] < Ol As]loo < Cey*;
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where all the constants involved are geometric. We then conclude that

h(p) — h(p(p)) = Z(Vj(p) —v;(p(p)))W (p)

+Zy] — 1 (p(p)))
:ZD[/]- cex | (p) 1Y (p) + O(lp — p(p)|*)
- ) ) - o) (0.57

On the other hand, X;(p) = Y (p(p)) is tangent to M™ in p(p) and
hence orthogonal to h(p(p)) and (X;(p),v;(p(p))) = 0 for all j. Thus

using (9:57)

(Xi(p), h(p)) = (Xi(p), h(p) — h(p(p)))
= (Y(p(p), Dv;(p(p)) - ex, ) ()Y (p) + O (rlp — p(p) ) -

J

(9.58)

Recalling that p € spt(Trg), we can bound |p — p(p)| < |N(p)| and
therefore conclude the estimate

(Xi(p), hlp)) = Z<Y(p(p)),DVj(p(p)) ex, ) () (p) + O(rIN[*(p(p))) -

(9.59)

We now use the area formula for multivalued maps and the Taylor
expansion for the area functional in [I5] Theorem 3.2]. Recalling that
p(Fi(z)) = x we get

I = / (X, h(p))d|T5 ]| =

YV h(E@)IE@)H" ()

l

| Y@ D) - ex (@)W (P o)

j:l =1

+C’r/<p(|N|2—|— IDN|?)
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Using the Taylor expansion for ex; ! at = (and recalling that F(z)—x =
N;(z)) we conclude

Q
Do (Fie))| < [dexs (o N(x))| +O(NP?)
< ClnoN(z)|+ C|NJ.

Crgo&ti/2|v\ for
61/2. We thus

Next consider that [(Y, Dv; - v)| < Crel|As|/co|v]

|
every tangent vector v and |W/(F(z))] < C||As]|co
conclude with the estimate

<
<

7 < Calr/mnom ror /¢<|N|2+ IDNP2).

Using the Poincaré inequality and the same argument as for Err{, we
conclude

Jy < CrD(r)"" + CrD(r). O

9.7. Proof of Theorem [9.3]

First of all notice that, if D(r) = 0 for some r, then N = Q [0]
on Bf. This means that no cube of #© U #® intersects @j ={p e
7y : d(e(p)) < r}. On the other hand from Corollary we easily

conclude that no cube of # intersects the region @;2 (observe that

no cube L € # is a boundary cube and thus, if it intersects @;2, we
have ((L) < r). In particular, B:r/z is contained in the contact set and
thus there is a neighborhood of 0 where T'* coincides with @ [M™].
Thus, without loss of generality we can assume that D(r) > 0.
Notice that for the same reason we can assume that there is a sequence
of radii r; | 0 such that H(r;) > 0. More specifically, we claim that
there is a radius r( sufficiently small for which, for all » < ro, H(r) > 0
and all the estimates of the previous sections apply. Indeed, let |p, ro|
be a maximal interval over which H # 0. On this interval we compute

the derivative of log I(r) using (9.13]):
D'(r) B H'(r) _ o)+ 2—m  D'(r) B 2E(r)

Do)~ H(r) - "D T H)
(9.60)

d 1
%logl(r) = ;—i—

Next, by (0.27), (9.47), (0.43) and (0.49),
ID(r) — E(r)| < C(D(r)"™7 +CS(r)) < C(D(r)"*" +r2D(r)). (9.61)
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Note that
D(r) <) / DN "< C) a2 < OpP2ee Y i
i U j j

Recalling that all L;’s are disjoint and contained in By, /m,, we easily
conclude that D(r) < Cr™*2=2e_1In particular, (9.61]) implies

D(r)(1—=Cr™) < E(r) < D(r)(1+Cr"). (9.62)
Assuming 7 is sufficiently small, we infer
@ < E(r) <2D(r). (9.63)

In particular, inserting (9.62)) in , we obtain
2—m D'(r) 2E(r) _OD’(T)(S(T) + D(r)*T)
r E(r) H(r) D(r)? '

Using (9.28), (9.50), (9.51) and (9.52),
2G(r)  2EB(r) CD’(?")(S(T) + D(r)**T)
E(r)  H(r) D(r)?

5
1 .

_ _E Errt
rE(r) — | rr]]

2G(r)  2EB(r) CD’(T)(S(T) + D(r)+7)

dir log I(r) > O(1)+
(9.64)

d
—log I > 1
Llogl(r) = O(1)+

> O(1) +

E(r) H(r) D(r)?
B (B
e e D%SQT ‘ (9.65)

By Cauchy-Schwartz G(r)H(r) > E(r)?>. Moreover, we have already
estimated —D(r) > —C'r. Inserting the latter inequalities in (9.65)) and
integrating, we obtain

log Ar) > —C(r"—=s")=C(D(r)" — D(s)") — C’/T
(o)

D(

; S(r)  S(s) "y
>-or+0 (55 -505) O [ pejder O

(o)
T(s) 0)25(0) do
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for every p < s < r < 19. Recall that S(o) < Co?D(0) for every
o €]p,ro[. Moreover,

(o) = — / %p’ (g) N2 < CH(o) £ CoD(o).

In particular, we conclude

R
log T0s) > _Cr7. (9.67)
From the latter inequality we conclude immediately that I(s) is uni-
formly bounded and thus that H(p) = lim, , H(r) cannot vanish if
p > 0. Since ]p,ro[ is a maximal interval on which H is positive, we
conclude that it is positive on the whole ]0, 7.
Furthermore, it follows directly from that the limit

o Yim T
I = 17%1] (r)

exists. Finally, from (9.9) we conclude Iy > 0.






CHAPTER 10

Final blow-up argument

In this chapter we conclude the proof of Theorem [1.6] In particular
we show that alternative (b) in Theorem cannot hold. This leaves
alternative (a), which therefore shows that, under the assumptions of
the theorem, the origin is in fact a regular boundary point. On the other
hand, such point was a generic collapsed point of an area-minimizing
current which was later suitably rescaled and translated in order to
fulfill the Assumption [8.16]

The core of the argument is to derive a suitable contradiction to
the linear theory with a blow-up of the approximating (Q — %)—map
(NT,N7). In order to state our main theorem we introduce the fol-
lowing notation.

Recall that M is the union of M™ and M~ and is, therefore, a C-!
submanifold. Moreover M coincides with the graph of the functions
¢ and ¢~ on the domains By and B;. In order to simplify the
notation we denote by ¢ the map on B; which coincides with both on
the respective domains. In particular we are ready to define suitable

multivalued maps
A () = ) [AF @]

given by the formulas
N7 (2) = o (N (2, 07(2))) |

where we recall that s« is the plane ToX N TypM+ = {0} x R™ x {0}.
Observe that the pair (AC, A7) is a (Q — 1)-valued function with
interface (y,0). We next define

o) = [ DA P+ [ DA =01+ ()

and the corresponding rescaled multivalued functions

AE(x) = Y [ o) )]

DEFINITION 10.1. The domains of the rescaled functions A(E are
divided by (suitable) rescalings of v, which in turn are converging to

199
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the (m — 1)-dimensional plane Tyy. For this reason we introduce the
notation B (and B, ) for the intersection of the domain of (" (re-
spectively of A(,) with the disk B,(0, 7).

Note that the regions B, which are subsets of the domains of the
maps A*, coincide with the sets Bfr. Observe that a simple conse-
quence of the estimates in the previous chapter is that

D(r) < Ceyrmt?—20e (10.1)
Lip(AF|p,) < Ce™rox. (10.2)

We are now ready to state the key step of our final contradiction
argument.

THEOREM 10.2. If alternative (b) in Theorem[9.4 would hold in any
of the two regions C*, then, up to a subsequence, the pair (A}, A)
would converge in By locally strongly in L? and in energy to a (Q — %)
Dir-minimizer (N §, N ) which collapses at the interface (Tyy,0) such

that
(1) (Ag, N o) is nontrivial;
(ii) no N T =0.

REMARK 10.3. Observe that, although the notation 9\[3E might sug-
gest that the “blow-up” map is unique, namely independent of the se-
quence {ry}x, we do not claim such uniqueness, nor we need it for our
purposes.

By convergence in energy we mean that for every R € (0, 1)

lim /|D9\[,Tk|2+/ DA | —/ \DN0+|2+/ | DA |?
k=oo \ JB# B B} B,

R

Since by Theorem any (@ — 1) Dir minimizer (A, ALy ) which
collapses at the interface must satisfy

Ng=Q[noa] and Ny=(@Q-1)[non,],

the two properties (i) and (ii) above are incompatible. In particular we
conclude

COROLLARY 10.4. Alternative (a) in Theorem must hold for
both TLCt and T1LC™, i.e. 0 is a boundary regqular point for the current
T.
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10.1. Asymptotics for D(r)

LEMMA 10.5. Under the assumptions of Theorem for every
A€ (0,1) one has

00 > limsupM > hminfM >0. (10.3)
10 Q)(T) rl0 Q)('f’)

Observe that (i) in Theorem is then a simple consequence of
the above lemma and convergence in energy.

PROOF. Observe that, since Tp.M = m, and N* are orthogonal to
M, we easily conclude that

@i(r):(1+0(r))/ |IDN=|%. (10.4)

B
Furthermore, if one among I;” and I is oo, then the corresponding

energy vanishes identically. Thus, under the assumption that they are
finite, it suffices to show

-1
oo > lim sup (/ |DNi|2) / IDN*|?
r}0 BF Bt

Ar

-1
> lim inf (/ \DNiP) / IDN*|? > 0. (10.5)
rl0 B} BT

Ar

To fix ideas consider the case of N* and notice that, in the notation
of the previous chapter, we must simply show

oo > limsup D(r) ' D(\r) > limiénfD(r)*lD()\r) >0. (10.6)
rl0 T

Observe that the quantities D and H defined in and are

integrals over (portions of) the “right center manifold” M™. Hence,

from now on we use a more consistent notation for the remaining com-

putations of this chapter, namely D" and H" (and analogously I*

and ET). In order to prove the desired estimate notice first that, by

Proposition [9.5, and (9.62) we have

2 10g (H—“) _ 2B o)

dr rm—1 H+(r) 2(1 +O(r") I (r)+0(1)

T
Next, by choosing r sufficiently small, we can assume that

+
% <(A+0@))IH(r) <2If.
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Thus, integrating the inequality above between s and ¢ > s, we con-

clude
m—1+I m—1+41
oCl—s) (T o < H*(t) < s (L o '
s ~ Ht(s) — s

Since D)

. rDT(r) |

W) T
we can argue as in Corollary (c) to conclude ((10.6). O

10.2. Vanishing of the average
In this section we wish to show that

LEMMA 10.6. Under the assumptions of Theorem we have

liH(g(/ moail+ [ \nom)zo. (10.7
9 \J5; B

Indeed we have the stronger estimate

lim Q)(T)_lr_(HTI) (/ |mo A" —|—/ Ino 9\[‘|> (10.8)
Bt By

rl0
< lim p(r)~ 7)1 (/ X e +/ Imo N_|> =0.
(10.9)

for any 7' smaller than the parameter T of Proposition [9.1])

Notice that (ii) in Theorem is then a trivial consequence of the
lemma and of Lemma [10.5]

PROOF. In view of the same considerations as in the proof of Lemma

10.5] in order to show ((10.7)) it suffices to show that, under the condition
that alternative (b) holds,

1 D (r)'/2 1
: T |
}‘141)1’[1) Tm/2+1D+(7“)1/2 \/B;F |T’ON | - }‘IE)I(l) rm/2 TD(T) /VB;L |’l’]oN | - O
(10.10)
where we are using the notation of the previous chapter. By ((10.1)) and
(110.4),

D+ 1/2
lim % = 0. (10.11)

We now claim that

147
/ ImoNT| < COr (/ \DN*P) : (10.12)
B Bt
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where C' and 7 are as in Proposition [0.14] The latter inequality, to-
gether with (10.1 %, clearly implies ((10.9). Moreover the combination of
1

(10.11}) and [10.12) implies (10.10)). Hence the proof of the lemma will
(10.12

be concluded once we show ((10.12]). To this aim, with the notation of
the previous chapter, we estimate

moN* <3 [ monty.
/Bﬁr ; U,
Applying (8.15) with a = r we easily conclude
/ InoNT| < Crzglggrurﬂu/? + Q/ |N* 2o
Bt " T Bt
s j s
On the other hand, using (9.36)), (9.41]) and (9.42)) we then conclude

147 T
oNT| < Cr DNT|? +€ DNT|? NT]2.
n
B;F B r B B

Combining the above estimates with the Poincaré inequality

/ ’N+‘2 S 07’2/ ’DN+‘2
Bt B

we then conclude the proof of (10.12]) and of the Lemma. O

10.3. Minimality and convergence in energy

In this section we complete the proof of Theorem [10.2] In order
to be consistent with our notation on the domains of the functions
Nf, we let Bng denote the intersections of the domain of definitions
of the blow-up maps A F with the disk B,.(0,7). By the Rellich-
Kondrakov embedding we know that we can extract a subsequence
(A, A, ) converging locally strongly in L?(B;) to some (Q — 3)-map
(A&, A y)- The fact that the latter collapses at the interface (Tyy,0)
comes from trace theory (cf. for instance [13], [29]). Observe that, by

semicontinuity of the Dirichlet energy we have

lim inf (/ |D9\[:F|2+/
k—o0 B n k _

|D9\£:k|2>
Tk Brk,R

> [ P [P (10.13)
Bt B

0,R (;,R
for every R € (0, 1).

Assume without loss of generality that the inferior limit on the

left hand side is actually a limit. Choose now any (Q — %) competitor
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(u™, ™) with interface (Tyy, 0) which coincides with (A&, Aly) on By\
Br. We now want to show that, for any given positive n > 0,

lim (/ |D:7v;:|2+/ |D9v;:|2>§/ |Du+|2+/ |Du™[*41.
k—o0 B k — K B+ B~

jk,R B, r 0,R 0,R
(10.14)
Clearly this will show both the convergence in energy (by choosing u* =
ALE) and the local minimality of Al ¥. Hence the proof of Theorem m
will be concluded once we show ((10.14)).
Without loss of generality we can assume that 1 o u® = 0. Indeed,
recall that n o A’ = 0 and thus, since

[ ot [ SIpe - now,

> [ut — m o u®] would be a better competitor with zero average.
It is convenient to introduce the energy difference

Zk::/ |D£7\[j;\2—|—/ DA |? —/ |Du+|2+/ |Du™|* ],
Bt B B By,

Tkl Lt 0,1
so that our claim reduces to

lim &, <n.

k—o0

Note also that we can assume that E, > 0 otherwise there is nothing
to prove, in particular

/ |Du+|2+/ |Du_|2 < lim / |D9\[;fk|2—|—/ |D9\[T_k|2 =1,
BT BT k—o0 B} BI ,

0,1 0,1 Tk>
(10.15)
where the last equality follows by the normalization of Ni.

Our first step is then to produce a new (@ — 1)-map (fﬁ[z,f[;)
with interface (7, 0) and satisfying the following four properties:

(a) (A(;,A(}) coincides with (9\4*, A(~) outside B, ;
(b) the Lipschitz constants Lip(A(;) converge to 0 as k — oo;
(c) the following inequality holds for the energy:

/ \Dﬁ(ﬁ\%/ \Dﬁck\zs/ | DACT|?
Bt B B

Tk Tk Tk

+/ | DA |? + r,ﬁ‘m@(rk) (—zk + g) : (10.16)
B,

(d) InoA| < Clmoat|;



10.3. MINIMALITY AND CONVERGENCE IN ENERGY 205

First, by Lemmal we can choose a sequence of approx1mants (u j _)
which converge in energy to (u*,u”) in By, satisfy n o u = 0 and

with Lipschitz constant controlled by 7,
Lip(uj) < j.
Next, choose a sequence of diffeomorphisms ®, of B; which converges

in C' to the identity and maps the rescalings v,, = rk_lv onto Tyy.
We then define

Note that
m lim [ |Dub = lim [ [D(u o )P :/ | Du|?
k—00 j—o0 [ gt 2 k—oo [ p+ BE
Tkl T 0,1
(10.17)
and
lim lim G*(u, N(,,) = 0. (10.18)

k—o0 j—00 B;i,l\@;l(B(:)tR)

Using the interpolation Lemma [£.9] and proceeding as in Section [4.1.4]
we obtain (Q — 3)-maps (w;fk, w;,,) with the following properties for a
sufficiently large k£ and small A:

(al) (w;,w;,) coincide with (u* Uy ufk) on @' (Bg(0,m)) and with
(AL, N, ) outside By, (0, ) for some R < s < 1 such that

;. (Br(0,70)) C By, (0,m);
(b1) The Lipschitz constant of (w,ij, wy ;) s estimated asﬂ

1
T s G(uh k)

L1p( ) < C(Llp(?\[fk) + Lip(uij) +
BE\®, 1(Bi )

< C(Lip(a) + Lip(uf)

1 + ).
X gy P70

o.n)

'Here we are using the simple inequality IfllLeey < |[EI7Uflloisy +
diam(E)Lip(f)
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(c1) The energy of (w;,w;,) can be estimated as

| b [ iDup

Tkl TE,1

0,R

0,R

+/’ \DNEP+/ﬁ DA [P
B} 1\Bs, (0,m0) B, 1\Bs;, (0m0)

e / (1D + |DACE2)
B} \®; ' (Br(0,m))

+C{/ (I1Dus > + |DAC,, [2)
B, \@; ' (Br(0,m))

C
+X I 1 QQ(UIIWN;«:>
Brk,l\q)k (BR(Oyﬂ'O))
C —_ p—
Y gz(uj,ky Nrk)

A B, 1\ (BR(0,m0))

§/+ ‘D?\C;UQ—{-/ |D9\[;€\2+Z—zk+oj,k(1). (10.19)
. _

Tkl Tl
where

g g o(1) =0

and we have chosen A < 7 (recall also ((10.15])).
(d1) [nowy| < ClnoalE|. This can be easily seen as follows: first

of all we can subtract the average from N}k , and interpolate
it to 0, which is the average of the competitors ujc, hence we
can interpolate between the maps (u™,u~) and the average-
free part of (9\[;;, AL, ): a simple inspection of the proof of
Lemma shows that this can be done while keeping the
average of the interpolation equal to 0. Hence we can add
back the average to the resulting maps in order to get w,f.
Note that in estimating the Dirichlet energies we are using the
crucial fact that the Dirichlet energy of a multivalued map
equals the sum of the Dirichlet energies of its average and

average-free part.
Next we set

A (@) = D [r D) (wh )il )|

i
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and
S S+
NJ' - Nj,k’j

for k; appropriately large. Observe that (ﬂj,ﬁ[]—) clearly satisfies
property (a). Moreover,

Lip(ﬁ[fk) < OLip(A*) + Crk_m/2ﬂ)(rk)1/2j +Cn o k(1)
In particular, taking into account (10.1]) and ((10.2)),
Lip(fi[jfk) < Onpleftrit + 051/27’,5%]‘ + Cn_lr;mhﬂ)(rk)lhj
+ 077_10]'7],3(1).

Thus, choosing first j large and then k; much larger, we achieve (b).

Finally (10.16]) follows from ((10.19)).

We next define a suitable Lipschitz map A between a neighborhood
U of the origin in ¥ onto a neighborhood of the origin in TpX. Fix
therefore z € U N Y. First of all we define x € 7y = Ty M as the only
point such that (z,¢(z)) = p(z), where p is the projection onto M.
Next, we let 3¢ := TpX N Ty ML and we define y := p,, (2 — p(z)). We
then set A(2) := (z,y) € ToX and A"(2) = y.

We partition U into U™ and U~ according on whether p(z) belongs
to M™ or M~. So, we can regard A as two maps AT and A~ which are
C%* on the corresponding domains and which agree on the common
boundary UT N U~ = p~}(T') N U. Observe that the differentials of
A* at the origin are the identity in both cases. Thus, using the inverse
function theorem, we can find two inverse maps ¥+ defined on B () x
B’r(%O)- . .

We are thus ready to define the competitor maps (N;7, N, ) in the
form

Nt (2, () = ¥5(a, A (7)) — (2, p(2))
namely
Nz () = > [ W5 (@, (A)iw) — (@, 0(2))]
Observe that
A (%)) = Po (Ni(2, () -

We thus conclude easily that:

(a2) (N, N;7) coincide with (N*, N7) outside of Cy,, N M;

(b2) the Lipschitz constants of N on Cy,, N M converge to 0;
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(c2) for k large enough we have the energy comparison

/ DN + / DN
CQTk ﬂ./\/l+ CQrk nM—

3
< / |IDN*|? +/ |IDN™ > + D(ry,) (—fk + —”) .
Cap, MM+ Car, NM— 4
(10.20)

(d2) |n o NE| < C|n o N*|, since on p~*(B,,) we have 0 = 5o
N i (2)) = oy (0 © Ni(, 0())).
Now we consider the current Si in Cs,, induced by the multi-valued
map

B, p@) = Y [(@.e@) + (Vi e(@)]
Observe that, since Sy, = T on Cy,, \ C,,, arguing as for the estimate
in (9.55)) we easily conclude that
1471
IDNk!2> :

In turn, using Lemma [10.5] we can control the right hand side with
D(rx)*7. In particular, for a suitable o, € (7%, 2r%)

|Se=T(C2,\Cr,) < € ( [ e |
C

3ry, M+ C4Tk nM—

M(@((Sk — T)L Coy)) < Z(r)'*.

Tk

In particular, by the isoperimetric inequality we conclude the existence
of a current Z;, with 07, = 0((Sx — T)_C,, ), spt(Zx) C ¥ and such
that

M(Z) < C’f’;m/(m_l)Q)(rk)m(l—l-T)/(m—l)

@(Tk)1+T

m
Tk

S C@(Tk)H_T ( )ml S O@(Tk)l+T;

where we used the bound D(r) < Cr™m*272% (compare the argument
leading to (9.63)). In particular, the current
Ty = SiL.Co, + TLR™™\ Cy,) + Z

is an admissible competitor to check the minimality of 7', since it co-
incides with 7' outside a compact set and it has boundary [I']. In
particular we conclude that

M(SLC,,) > M(TLC,,) — CD(ry)' "™ (10.21)
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Next, since T' coincides with T on a large set (compare with (9.55))
using again the same estimate as above, we conclude also

M(SiL C,,) > M(Tp+ L C,,) + M(Tp- L C,,) — CD(r) 7.

On the other hand, since F' and F}, coincide outside of C,,, we can
write

M(T+ L Cp,) + M(Tp- L Cy,)) 2 M(Tr+ 1 Cp) + M(Tp- L Cy,)
— CD(r). (10.22)

Using now the Taylor expansion in [15, Theorem 3.2] we easily conclude
that
1
M(Tpi L C,, ) — / IDN*2 — QH™(C,, 1 M)
2 Cr, NM*

<C (Imo N¥| +|NT+ [NT[[DN*[* + |[DN*]%).
Cr NMT

By the estimate on |N*| and Lip(N*), we have
/ IN*[|[DN*|? + |[DN*P
Cr NM+

1+7
E D))
< C </ |DN+|2) < C@(T’k>1+7,
C

2y, nM+

where in the last inequality we have also used Lemma [10.5 By the
Poincaré inequality (and Lemma |10.5])

/ |N+|2 < C’TZ/ |DN+|2 < C’ri@(m).
Cr,,NM*

Cr, NM+

Finally, by Lemma [10.6]
/ o N*| < Crod(r) .
Cr NM*

We thus conclude

1
M(TF+ LCQTk) — 5/0 o ‘DNJFP _ QHm(C%“k N M+)
2'rkﬁ

<CriD(ry) + CD(rg)'t7. (10.23)
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Similarly,
1
M(Ty L Cyy, ) — 5/ IDN"2 = (Q — 1)H™(Cay, A M)
CQTkﬁM7
< CriD(ry) + CD(rp)' 7. (10.24)

Observe next that the similar Taylor expansions hold for F,f replacing
F*, namely

1 N
M(T;+ L Cyry) — 5/ IDN > — QH™(Caypy N MT)
CZ,,»kﬁ./\/lJr
<Crio(ry) + o(1)D(ry), (10.25)
and

1 N
M(Ty Co) =5 [ IDNEE = (@ DR (€ M)
27y, -

< CriD(ry,) + o(1)D(ry,) . (10.26)
Indeed:

e the linear term is estimated in the same way using |7 o N, ,;t| <
Cln o Nil;
e the quadratic term is estimated by the Poincaré inequality and

[ pmips [ DRP <o),
C, NM+ Cr NM-

since we can assume without loss of generality that £, > —2;

e finally |[NJ||DN,|> + |DNF|? = o(1)|DN,f 2. Indeed, by (b2)

Lip(N,") = o(1) and sup,c s+ [Ny ()| < CriLip(Ny) = o(r),
Tk

since N,' is vanishing on I

Inserting the Taylor expansions ((10.23))—(10.26)), we conclude

/‘ m@f+/ DN |
Cp,NM+ Cr, NM~

2/ |DN+|2+/ IDN™|? — o(1)D(r,) . (10.27)
C,, M+ Cp M~
Combining now ({10.20) and ((10.27)) we achieve
3
D(ry) <—£k + Z”) > —o(1)D(ry) .

Dividing by D(rx) and choosing k large enough we achieve the desired
inequality £, < 7.
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