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Abstract

Let Σ be a smooth Riemannian manifold, Γ ⊂ Σ a smooth closed
oriented submanifold of codimension higher than 2 and T an integral
area-minimizing current in Σ which bounds Γ. We prove that the set
of regular points of T at the boundary is dense in Γ. Prior to our
theorem the existence of any regular point was not known, except for
some special choice of Σ and Γ. As a corollary of our theorem

• we answer to a question of Almgren (cf. [5]) showing that, if
Γ is connected, then T has at least one point p of multiplicity
1
2
, namely there is a neighborhood of the point p where T is a

classical submanifold with boundary Γ;
• we generalize Almgren’s connectivity theorem showing that

the support of T is always connected if Γ is connected;
• we conclude a structural result on T when Γ consists of more

than one connected component, generalizing a previous theo-
rem proved by Hardt and Simon in [27] when Σ = Rm+1 and
T is m-dimensional.
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CHAPTER 1

Introduction

Consider a smooth complete Riemannian manifold Σ of dimension
m + n̄ and a smooth closed oriented submanifold Γ ⊂ Σ of dimension
m − 1 which is a boundary in integral homology. Since the work of
Federer and Fleming (cf. [24]) we know that Γ bounds an integer
rectifiable current T in Σ which is mass minimizing.

Starting with the pioneering work of De Giorgi (see [9]) and thanks
to the efforts of several mathematicians in the sixties and the seventies
(see [25, 10, 4, 37]), it is known that, if Σ is of class C2,a for some a >
0, in codimension 1 (i.e., when n̄ = 1) and away from the boundary Γ,
T is a smooth submanifold except for a relatively closed set of Hausdorff
dimension at most m − 7. Such set, which from now on we will call
interior singular set, is indeed (m− 7)-rectifiable (cf. [36]) and it has
been recently proved that it must have locally finite Hausdorff (m−7)-
dimensional measure (see [33]).

In higher codimension, namely when n̄ ≥ 2, Almgren proved in
a monumental work (known as Almgren’s Big regularity paper [5])
that, if Σ is of class C5, then the interior singular set has Hausdorff
dimension at most m− 2. Subsequently Chang proved in [8] that such
set is indeed discrete when m = 2. In fact Chang’s paper is missing
one substantial step of the proof, which was completed only recently by
the first author in a series of joint works with Emanuele Spadaro and
Luca Spolaor, cf. [20, 21, 19, 18]. The latter papers are based on a
revisitation of Almgren’s theory, due to the first author and Emanuele
Spadaro (cf. [13, 15, 14, 16, 17]), which simplifies Almgren’s proof
introducing several new ideas. The latter works are indeed one of the
starting points of this paper.

Both in codimension one and in higher codimension the interior
regularity theory described above is, in terms of dimensional bounds
for the singular set, optimal:

• The celebrated paper by Bombieri, De Giorgi and Giusti [6]
(see [22] for a very short proof) shows that Simons’ cone {x2

1 +
x2

2 +x2
3 +x2

4 = x2
5 +x2

6 +x2
7 +x2

8} is an area-minimizing current
of dimension 7 in R8 with an isolated singularity.
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10 1. INTRODUCTION

• Federer’s calibration theorem shows that any holomorphic sub-
variety of a Kähler manifold induces an area-minimizing cur-
rent: in particular the holomorphic curve {(z, w) ∈ C2 : z2 =
w3} is a 2-dimensional area-minimizing current in R4 with an
isolated singularity.

The main purpose of this paper is to study the regularity of the
minimizers at the boundary. In the rest of the note we will always
assume that such boundary is the integer rectifiable current naturally
induced by some oriented submanifold Γ and we will use the notation
JΓK for it. As it is customary in the literature, we take advantage of
Nash’s isometric embedding theorem and we consider Σ as a subman-
ifold of some Euclidean space Rm+n. In particular we can regard any
integer rectifiable current T in Σ as an integer rectifiable current in
the Euclidean space whose support spt(T ) is contained in Σ: hence T
minimizes the mass among all currents S which are supported in Σ and
such that ∂S = JΓK.

Definition 1.1. A point x ∈ Γ is a boundary regular point for
T if there exist a neighborhood U 3 x and a regular m-dimensional
submanifold Ξ ⊂ U ∩ Σ as in Definition 1.1 (without boundary in U)
such that spt(T ) ∩ U ⊂ Ξ. The set of such points will be denoted by
Regb(T ) and its complement in Γ will be denoted by Singb(T ).

Analogously, the set of interior regular points and interior singular
points will be denoted by Regi(T ) and Singi(T ).

We further subdvide Singb(T ) into two categories. We will say that
x ∈ Singb(T ) is of crossing type if there is a neighborhood U of x and
two currents T1 and T2 in U with the properties that:

• T1 + T2 = T and ∂T1 = 0;
• x ∈ Regb(T2).

If x ∈ Singb(T ) is not of crossing type, we will then say that x is a
genuine boundary singularity of T .

Remark 1.2. Notice that Singb(T ) is closed in Γ. Moreover, the
Constancy Lemma has the following simple consequence. Let p ∈ Γ
be a regular point and Ξ. Assume the neighborhood U is sufficiently
small, so that U ∩ Ξ is diffeomorphic to an m-dimensional disk. Then
the following holds:

• Γ∩U is necessarily contained in Ξ and divides it in two disjoint
regular submanifolds Ξ+ and Ξ− of U with boundaries ±Γ;
• there is a positive Q ∈ N such that

T U = Q
q
Ξ+

y
+ (Q− 1)

q
Ξ−

y
.
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We define the density of such points p in Γ ∩ U as Q − 1
2

and we

denote it by Θ(T, p) = Q− 1
2
. Later (in Definition 3.1) we will define,

as customary, the density at every boundary point p as the limit, as
r ↓ 0, of the ratio between the mass of the current in a ball of radius
r (denoted by ‖T‖(Br(p))) and the m-dimensional volume of an m-
dimensional disk of radius r (denoted by ωmr

m). The two definitions
clearly agree on regular points.

Of particular interest are those regular points where Q = 1: at such
points there is a neighborhood U where the current T is a classical
submanifold with multiplicity 1 and with boundary Γ∩U . Such points
will be called in the rest of the note density 1

2
points or one-sided points .

In contrast, the regular points where Q > 1 will be called two-sided .
Note that, when p is a one-sided point only Ξ+ ∩ U is determined
(and coincides, in fact, with the support of the current in U): Ξ− ∩ U
can be chosen to be any “smooth continuation” of Ξ+ ∩ U across the
boundary Γ∩U . On the other hand when p is two-sided then the whole
submanifold Ξ ∩ U is determined by the current T and coincides with
its support in U .

The first boundary regularity result is due to Allard who, in his
Ph.D. thesis (cf. [1]), proved that, if Σ = Rm+n̄ and Γ is lying on the
boundary of a uniformly convex set, then every point p ∈ Γ is regular
and has multiplicity 1

2
. In his later paper [3] Allard developed a more

general boundary regularity theory from which he concluded the above
result as a simpler corollary. In particular Allard’s theory establishes,
among other things, the following two facts:

(a) if p ∈ Γ is a point where the density Θ(T, p), defined as

limr↓0
‖T‖(Br(p))
ωmrm

, equals 1
2
, then p belongs to Regb(T );

(b) if there is some wedgeW of opening angle smaller than π whose
tip contains p and such that spt(T ) ⊂ W then Θ(T, p) = 1

2
and

thus p ∈ Regb(T ). 1

In contrast to (b), a boundary point p ∈ Γ with density Q+ 1
2

for some
Q ∈ N \ {0} is not necessarily a regular point.

Suitable generalizations of (a) and (b) can be proved in more general
ambient manifolds Σ and they imply full boundary regularity under
geometrically interesting assumptions: a simple example is given when
Γ lies on the boundary of a geodesic ball of sufficiently small radius.
However, even when Σ = Rm+n̄, Allard’s theory implies the existence

1A wedge W ⊂ Rm+n̄ with opening angle ϑ is a set which can be mapped via
a suitable rigid motion to {(x, y) ∈ Rm × Rn̄ : |y| ≤ x1 tan ϑ

2 }; the tip of W is the

set {(x, y) : |y| = x1 = 0}.
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of relatively few boundary regular points for general submanifolds Γ;
in particular (b) above can be guaranteed for an appropriate subset of
those points where Γ coincides with its convex envelope, for the proof
see [28].

In the codimension one case Hardt and Simon proved later in [27]
that the set of boundary singular points is empty, hence solving the
boundary regularity problem when n̄ = 1 (although the paper [27] deals
only with the case Σ = Rm+n̄, its extension to a general Riemannian
ambient manifold should not cause real issues). A major problem that
Hardt and Simon have to face compared to Allard is that under their
assumption two-sided boundary points may occur, as it is witnessed by
the following example.

Example 1.3. Let Γ be the union of two concentric circles Γ1 and
Γ2 contained in a given 2-dimensional plane π0 ⊂ R2+n̄ and having the
same orientation. Then the area-minimizing current T in R2+n̄ which
bounds Γ is unique and it is the sum of the two disks bounded by Γ1

and Γ2 in π0. In particular T has density 3
2

at every point p which
belongs to the inner circle, see Figure1.

q

p
1

2

Figure 1. p is a two-sided point while q is a one-sided point.

Nonetheless, an outcome of the Hardt-Simon boundary regularity
theorem is that, if Γ contains a two-sided point p, then the connected
component Γ′ which contains p arises from a situation like the one
described in Example 1.3. Therefore the presence of regular two-sided
points is very rare: for instance, when Σ = Rm+1, we can immediately
exclude it if we know that no connected component of Γ can be included
in the interior of a real analytic hypersurface.

According to the results described so far, in higher codimension and
for a general ambient manifold Σ we cannot even exclude that the set
of boundary regular points is empty. In particular, in the last remark
of the last section of his Big regularity paper, cf. [5, Section 5.23, p.
835], Almgren states the following open problem:
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Question 1.4 (Almgren). “I do not know if it is possible that the
set of density 1

2
points is empty when Γ is connected.”

We will see in the next chapter that such question is equivalent to
ask the existence of at least one regular boundary point.

The interest of Almgren in Question 1.4 is motivated by an impor-
tant geometric conclusion: in [5, Section 5.23] he shows that, if there
is at least one density 1

2
point and Γ is connected, then spt(T ) is as

well connected and the current T has (therefore) multiplicity 1 almost
everywhere, in other words the mass of T coincides with the Hausdorff
m-dimensional measure of its interior regular set.

In this note we fill the aforementioned gap in the literature, proving
the first general boundary regularity theorem without any restrictions
on the codimension, on the ambient manifold Σ or on the geometry of
Γ. Since it will be used repeatedly throughout the paper, we isolate
the assumptions of our main theorem for further reference.

Assumption 1.5. Let a0 ∈]0, 1]. Consider a C3,a0 complete Rie-
mannian submanifold Σ ⊂ Rm+n with dimension m + n and Γ ⊂ Σ
a C3,a0 oriented submanifold without boundary. Let T be an inte-
gral m-dimensional area-minimizing current in B2 ∩ Σ with boundary
∂T B2 = JΓ ∩B2K, namely such that

(AM) M(T ′) ≥ M(T ) for every integer rectifiable current T ′ with
∂(T − T ′) B2 = 0 and spt(T − T ′) ⊂ Σ ∩B2.

Theorem 1.6. Let T,Σ,Γ be as in 1.5. Then Regb(T ) is dense in
Γ ∩B2.

Of course by rescaling and translating, the ball of radius 2 centered
at 0 can be replaced by any ball Br(p).

It can be easily shown that boundary singular points can occur when
Γ is a Ck curve in R4 for any k, cf. [42]. Such examples are isolated
and can be both of crossing type or genuine boundary singularities. A
typical construction of the latter goes as follows. We identify R4 with
C2, we take a holomorphic subvariety with a singularity, as for instance
Λ := {(z, w) ∈ C2 : w3 = z3k+1}, and then we consider a suitable Ck

closed (real) curve Γ lying in Λ and passing through the singularity of
Λ. In the specific case {(z, w) ∈ C2 : w3 = z3k+1}, a Γ of interest is
defined so that:

• its projection on the plane π = {w = 0} contains an open
segment σ = {w = 0, Im z = 0,−r < Re z < r};
• it bounds a disk D ⊂ Λ;
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• the intersection of D with the cylinder {|z| < r} covers once
the half disk {w = 0, Im z < 0, |z| < r} and twice the half disk
{w = 0, Im > 0, |z| < r}.

T := JDK is then the unique area-minimizing current which bounds
JΓK, while 0 is an isolated genuine boundary singular point.

Below we will show examples where Singb(T ) has the same (Haus-
dorff) dimension of the boundary. Nonetheless the theorem above does
not seem optimal from at least two points of view: first of all our
example leaves open the possibility that Singb(T ) has zero (m − 1)-
dimensional measure; secondly the singularities of the example are
all of crossing type. Indeed it is tempting to advance the following
conjecture, which in view of the examples known so far seems rather
reasonable.

Conjecture 1.7. Let T,Σ,Γ be as in 1.5. The Hausdorff dimen-
sion of the set of genuine singular points is at most m− 2.

When m = 2 we cannot however expect that genuine singular points
are isolated.

Theorem 1.8. There are:

(a) A smooth closed simple curve Γ ⊂ R4 and a mass minimiz-
ing current T in R4 such that ∂T = JΓK and Singb(T ) has a
genuine boundary singularity which is an accumulation point.

(b) A smooth 1-dimensional closed submanifold Γ1 ⊂ R4 (con-
sisting of two disjoint simple curves) and a mass minimizing
current T1 in R4 such that ∂T1 = JΓ1K and Singb(T1) has Haus-
dorff dimension 1.

Moreover the proof of (a) can be easily modified to provide an ex-
ample of a two dimensional mass minimizing current for which there
exists a sequence of interior singular points accumulating towards the
boundary. This shows that the (interior) regularity results for two di-
mensional mass minimizing currents in [8, 13, 15, 14, 16, 17] are
actually optimal, see Remark 2.3. The proof of (b) is essentially con-
tained in [30].

The example of Theorem 1.8 is related to a previous one of Gul-
liver2 given in [26]. In both examples there is a boundary branch point
where the surface has an infinite order of contact with a plane. In
view of Gulliver’s surface, White in [42] stated that “Proving partial

2Gulliver’s example is a minimal immersed disk in the 3-dimensional space.
It is obviously not a minimizer as a current, but it is not known whether it is a
solution of the Douglas-Radó problem.
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regularity for integral currents at C∞-boundaries seems to be much
harder”. In the case of real analytic curves White proved in [42] that
there is no branching boundary point for any solution of the Douglas-
Radó problem. In view of this he conjectured that the topology of any
area minimizing 2-dimensional integral current is finite if its boundary
is a real analytic curve: combined with his result, White’s conjecture
would then imply that for real analytic curves both the boundary sin-
gular points and the interior singular points are isolated and that the
boundary singular points can only be of “crossing” type, i.e. there is
no genuine boundary singularity.

Even though at the moment we cannot progress further in a finer
analysis of the singularities, as a corollary of Theorem 1.6 we can reduce
it to the analysis of one-sided boundaries.

Theorem 1.9. Let Σ and Γ be as in Assumption 1.5. Assume Γ is
closed and T is an area-minimizing integral current in Σ with ∂T = JΓK.
Let Γ′ ⊂ Γ be a connected component of Γ. If Γ′ ∩ Regb(T ) contains a
point p with multiplicity Θ(T, p) > 1

2
, then

(a) the Hausdorff dimension of Singb(T ) ∩ Γ′ is at most m− 2;
(b) if m = 2, then Singb(T ) ∩ Γ′ consists of finitely many points.

Theorem 1.9 is a consequence of a suitable decomposition of the
current T , which will be stated in the next chapter (cf. Theorem 2.1).
One consequence of the latter result is that the two-sided components
of Γ are, in a suitable sense, “internal to the current”, as in Example
1.3. So, even if Theorem 1.6 is not a full regularity statement as the one
in [27], it is still powerful enough to yield a similar description of the
current T in a neighborhood of the two-sided connected components
of Γ. Moreover, the decomposition Theorem 2.1 leads easily to a full
answer to Question 1.4 and in particular we can show the connectedness
of the support of any minimizer T whose boundary Γ is connected.

Corollary 1.10. Let Σ,Γ and T be as in Theorem 1.9 and assume
in addition that Γ is connected and that both Γ and spt(T ) are compactly
contained contained in B2. Then,

(a) Regb(T ) coincides with the set of density 1
2

points;
(b) the set of interior regular points Regi(T ) is connected;
(c) Θ(T, p) = 1 for all p ∈ Regi(T ) and M(T ) = Hm(Regi(T )) =
Hm(spt(T )).

While Theorem 2.1, Theorem 1.9 and Corollary 1.10 are rather
straightforward consequences of Theorem 1.6 and of the interior regu-
larity theory via well-established techniques in geometric measure the-
ory, the proof of Theorem 1.6 is very long and will occupy essentially
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all the rest of the note. In a nutshell we will develop a suitable counter-
part of Almgren’s interior regularity theory at the boundary in order
to prove it. Such task poses many additional difficulties and in order
to overcome them we introduce several new ideas and tools, some of
which might be useful even for the interior regularity theory.

Our work would have not been possible without the new insight
provided by the papers [13, 15, 14, 16, 17] and by the Ph.D. thesis
of the third author, cf. [29, 30]. In particular the latter contains two
fundamental starting points: a suitable boundary regularity theory for
Dir-minimizing multiple valued map and a fruitful discussion on how
the frequency function estimate of Almgren might fail at the boundary.
Such discussion has been essential to identify the key “estimate” which
underlies the present work.

In Section 2.4 we will give a road map to the proof of Theorem 1.6,
we will discuss the most important ideas which enter into it and we
will point out their relations with Almgren’s big regularity paper [5],
with the works [13, 15, 14, 16, 17] and with [29].
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CHAPTER 2

Corollaries, open problems and plan of the paper

2.1. Indecomposable components of T

We start this chapter by stating and proving our main structure
theorem as corollary of Theorem 1.6.

Theorem 2.1. Let Σ,Γ, T be as in Assumption 1.5 and assume
in addition that Γ and spt(T ) are compactly contained in B2. Let us
denote by Γ1, . . . ,ΓN the connected components of Γ. Then there exist a
natural number N ∈ N, integer multiplicities Qj ∈ N\{0} and currents
Tj such that

T =
N∑
j=1

QjTj , (2.1)

where:

(a) For every j = 1, . . . , N , Tj is an integral current with ∂Tj =∑N
i=1 σij JΓiK and σij ∈ {−1, 0, 1}.

(b) For every j = 1, . . . , N , Tj is an area-minimizing current and
Tj = Hm Λj, where Λ1, . . . ,ΛN are the connected components
of spt(T ) \ (Γ ∪ Singi(T )) = Regi(T ).

(c) Each Γi is
– either one-sided, which means that there is one index o(i)

such that σio(i) = 1 and σij = 0 ∀j 6= o(i);
– or two-sided, which means that:

∗ there is one j = p(i) such that σip(i) = 1,
∗ there is one j = n(i) such that σin(i) = −1,
∗ all other σij equal 0.

(d) If Γi is one-sided, then Qo(i) = 1 and all points in Γi ∩ RegbT
have multiplicity 1

2
.

(e) If Γi is two-sided, then Qn(i) = Qp(i)−1, all points in Γi∩RegbT
have multiplicity Qp(i)− 1

2
and Tp(i) +Tn(i) is area minimizing.

Proof. Let Λ be a connected component of spt(T )\(Γ∪Singi(T )) =
Regi(T ). Since Λ is smooth and connected, by the Constancy The-
orem the multiplicity of T is a constant Q ∈ N \ {0} on Λ. Let
S := Q JΛ ∩ Regi(T )K, where we orient Λ so that S = T in every

17
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sufficiently small neighborhood of every point p ∈ Λ. Observe that
spt(∂S) ⊂ Γ∪Singi(T ). Since Hm−1(Singi(T )) = 0, from [23, Theorem
4.1.20] we then conclude that ∂S = 0 on Rm+n \Γ. Thus spt(∂S) ⊂ Γ.
Let now Γi be a connected component of Γ and let p be a retraction
of a neighborhood U of Γi onto Γi. Since ∂S is a flat chain supported
in Γi, Federer’s flatness theorem, cf. [23, Section 4.1.15], implies that
R := p](∂S U) = ∂S U . On the other hand, since ∂(∂S U) = 0, we
also have ∂R = 0 and we conclude from the Constancy theorem, cf. [23,

Section 4.1.7], that R = c JΓiK for some c ∈ R. Thus ∂S =
∑N

i=1 ci JΓiK.
From Theorem 1.6 there is at least one point p ∈ Regb(T )∩Γi. In a

sufficiently small neighborhood V of p, the set spt(T )\Γi consists of at
most two connected components which are regular submanifolds and
which we call Ξ+ and Ξ−, consistently with the notation of Definition
1.1 and Remark 1.2. Since Λ is connected, we have the following three
alternatives:

(i) p 6∈ Λ;
(ii) Λ contains only one of the two components Ξ±;

(iii) Λ contains both Ξ+ and Ξ−.

However, by the Constancy Lemma, the density of T on Λ must be
constant, whereas, according to Remark 1.2, it differs on the two sur-
faces Ξ+ and Ξ−. For this reason we can exclude the alternative (iii)
and in particular,

• either ∂S V = 0,
• or ∂S V = (Θ(p, T ) + 1

2
) JΓiK V = Q JΓiK V ,

• or ∂S V = −(Θ(T, p)− 1
2
) JΓiK V = −Q JΓiK V .

If we consider the (at most countable) connected components of Regi(T )
we obtain a decomposition as in (2.1) with property (a), except that
we have not yet shown that the number of connected components is
finite. First observe that

M(T ) =
∑
j≥1

QjM(Tj) , (2.2)

and hence we easily see that each Tj must be area-minimizing. Next
observe that each connected component Λj must contain a point at a
fixed positive distance from Γ (otherwise we could retract Tj on Γ). By
the monotonicity formula the mass of each Tj can be bounded from
below with a constant independent of j. Thus from (2.2) we conclude
that the number of Tj’s must be finite.

We now prove (c), (d) and (e): fix Γi and fix a regular point p ∈
Regb(T ) ∩ Γi. If Θ(T, p) = 1

2
, then in a suitable neighborhood V of

p the set (spt(T ) \ Γ) ∩ V coincides with Regi(T ) ∩ V and consists
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of only one connected component, so there is one and only one σij 6=
0. Moreover, for that particular j =: o(i), Qo(i) = 1. In particular,
Regb(T )∩Γi∩ spt(Tj) = ∅ for every j 6= o(i), which proves (d) and the
first part of (c).

Analogously, if Θ(T, p) > 1
2
, then V ∩ spt(T ) \Γ consists of exactly

two connected components with two different multiplicities in the cur-
rent T , namely there must be exactly Λj+ and Λj− from which the two
connected components of spt(T ) \ Γ ∩ V = Regi(T ) ∩ V arise. More-
over the difference of the two multiplicities Qj+−Qj− must necessarily
be 1. As above, since all other σij are equal to 0, at any other point
q ∈ Γi ∩ Regb(T ) there is a neighborhood V which intersects only Λj+

and Λj− . On the other hand it must intersect at least one of them
(otherwise ∂T V = 0) and therefore it must intersect both of them
(otherwise either ∂T V = Qj+ JΓi ∩ V K or ∂T V = −Qj− JΓi ∩ V K,
which is not possible because Qj+ ≥ 2 and Qj− ≥ 1). This completes
the proof of (c) and shows the first part of (e).

In order to complete the proof of (e), consider a Γi which is two-
sided. Denote by S the current Tp(i) + Tn(i). Notice that

M(T ) = Qn(i)M(S) + M(Tp(i)) +
∑

n(i)6=j 6=p(i)

QjM(Tj).

From this it follows easily that S must be area-minimizing. �

2.2. Almgren’s question and proof of Theorem 1.9

We can now use Theorem 2.1 to prove Corollary 1.10 and Theorem
1.9.

Proof of Corollary 1.10. When Γ is connected the decompo-
sition in (2.1) consists necessarily of at most two currents because of
Theorem 2.1(c), depending on whether Γ is one-sided or two-sided. On
the other hand, if Γ were two-sided, the decomposition (2.1) would
consist of two currents T1 and T2 with Q1 = Q2 + 1 ≥ 2. Thus T1

would have boundary JΓK and strictly less mass than T , contradicting
the minimality of T . �

Proof of Theorem 1.9. Consider Γ′ and p as in the statement
and apply Theorem 2.1. Without loss of generality assume Γ′ = Γ1.
By point (d) of Theorem 2.1, Γ1 is necessarily two-sided, therefore
S := Tp(1) + Tn(1) is area-minimizing. Since all points of Γ1 are interior
points of S, we know from the interior regularity theory that S is
regular at p in Γ1, except for a set of points of dimension m− 2 (which
is finite if m = 2). At any point p where S is regular, the boundary
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regularity of Tp(1) and Tn(1) follows easily from the Constancy Theorem
[23, Section 4.1.7]. �

Remark 2.2. It is clear from the proof of Theorem 2.1 and of
Corollary 1.10 that the requirement that Γ and spt(T ) are compactly
contained in B2 can be somehow relaxed, and that suitably local ver-
sions of these results are true. Since however the proof will follow the
same arguments described above, we leave these generalizations to the
interested reader.

2.3. Proof of Theorem 1.8

First of all consider the complex halfplane H := {z ∈ C : Re z > 0}
over which we fix the following determination of the complex logarithm:

Log z = log |z|+ i arctan
Im z

Re z
.

(where arctan : R→ (−π
2
, π

2
) is the usual inverse trigonometric function

on the real axis). Correspondingly we define (again on H) the functions
z−α = exp(−αLog z) for α ∈ (0, 1) and

fk(z) = exp(−z−α) sin

(
Log z +

3− 2k

6
πi

)
for k = 0, 1, 2, 3.

Observe that:

(i) Each fk can be extended smoothly to a C∞ function on H.
Indeed, observe first that there is an holomorphic extension of
fk to C \ {z ∈ R : Im z = 0,Re z ≤ 0}, which, with a slight
abuse of notation, we keep denoting by fk. Such extension is
thus defined on H \ {0}. Hence, in order to prove our claim
it suffices to show that any partial derivative (of any order) of
fk can be extended continuously from H \ {0} to the origin.
We claim in particular that such extension can be achieved
by setting it 0 at the origin. Since ∂zfk = 0 (on H \ {0}), it
suffices to show our claim for any partial derivative ∂`zf . For
the latter we easily have the inequality

|∂`zfk(z)| ≤ C(α, `)|z|−N(α,`)e−Re z−α ≤ C(α, `)|z|−N(`,α)e−c(α)|z|−α ,
(2.3)

where N(α, `), C(α, `) and c(α) = cos(απ
2
) are positive con-

stants.
(ii) Since exp(−z−α) does not vanish on H \ {0}, the zero set Zk

of fk in H \ {0} is given by

Zk =

{
z ∈ H : Log z +

3− 2k

6
πi ∈ πZ

}
,
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namely by

Zk =

{
exp

(
nπ + i

2k − 3

6
π

)
: n ∈ Z

}
. (2.4)

Consider next the function

g(z) =
3∏

k=0

fk(z) .

We then conclude that g is holomorphic on H, it is C∞ on H and its
zero set, which we denote by Z, is given by

Z = {0} ∪
3⋃

k=0

Zk .

Define now the map G : H→ C2 by G(z) = (z3, g(z)). We consider
a smooth simple curve γ ⊂ H which contains a nontrivial segment

σ = [−τi, τ i] (2.5)

on the imaginary axis and we let D ⊂ H be the open disk bounded by
γ. The current T := G] JDK is integer rectifiable and

∂T = G]∂ JDK = G] JγK .

Observe that G(D) is an holomorphic curve of C2, which carries a natu-
ral orientation. If JG(D)K denotes the corresponding integer rectifiable
current, we then have T = Θ JG(D)K, where Θ is the integer-valued
function which at Hm-a.e. point p ∈ G(D) counts the number of
preimages in D, namely Θ(p) = ]{z ∈ D : G(z) = p} (indeed our argu-
ment below will show that Θ equals 1 except for a countable number
of points). It follows from a classical result of Federer (cf. [23]) that T
is an area-minimizing current.

We then claim that

(a) for an appropriate choice of γ, G] JγK = JG(γ)K and G(γ) ⊂
C2 = R4 is a smooth embedded curve;

(b) σ ∩G(Z) is contained in Singb(T ).

Since

G(Z) = {0} ∪
3⋃

k=0

G(Zk) = {0} ∪ {(±ie3nπ, 0) ∈ C2 = R4 : n ∈ Z} ,

we conclude from (b) that Singb(T ) has an accumulation point at the
origin. Thus, because of (a), Γ = G(γ) is a closed curve which satisfies
the claims of the theorem.
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In order to show (a) and (b) consider first that the map G is a
local smooth embedding at every point z ∈ H which is not the origin,
because the differential of z 7→ z3 has full rank everywhere except at
the origin. We next claim that

(c) There is a discrete subset W ⊂ H \ {0} such that the map G
is injective when restricted onto H \ (W ∪ {0}).

In order to show (c) consider first that, if G(z) = G(w), then z3 =
w3. Thus our claim reduces to showing that the map λ(z) := g(z) −
g(e2πi/3z) has a discrete set of zeros on the domain

Λ :=
{
z 6= 0 : z ∈ H and e2πi/3z ∈ H

}
.

By the holomorphicity of λ and the connectedness of Λ, it suffices to
show that λ does not vanish identically on Λ. On the other hand, if
it were λ ≡ 0, then we could extend g holomorphically to a function
g̃ on C2 \ {0} with the property that g̃(z) = g̃(e2πi/3z) for every z.
From the discussion above it follows easily that such a map g̃ could be
extended continuously at the origin and it would thus be holomorphic
on the entire complex plane. On the other hand g̃ has a sequence of
zeros which accumulate to the origin and thus it would be forced to
vanish identically. In particular we would conclude that g vanishes
identically and that one of the fk’s must vanish identically too. By the
very definition of fk this is obviously false.

Having proved (c) we now show the existence of γ as in (a). First
we show that γ can be chosen so that G|γ is injective. As a preliminary

remark, the only point of H which G maps to the origin (0, 0) of C2

is the origin 0 of C, so we just need to show the injectivity of G on
γ \ {0}. Observe that, by (c), we can assume that both G(τi) and
G(−τi) have exactly one preimage in H. Since G is an immersion
on H \ {0}, we can choose τ so that there are two neighborhoods U1

and U2 of, respectively, the endpoints τi and −τi of the segment σ
with the property that G(z) has exactly one counterimage in H for
every z ∈ (U1 ∪ U2) ∩ H. Moreover, a generic γ will avoid the set W ,
which is discrete, and thus we have shown that G is injective on γ \ σ.
Furthermore, we can ensure that all points z in γ \ σ have modulus
strictly larger than τ . Since G(z) = G(w) implies z3 = w3 and hence
|z| = |w|, such a choice enforces that G(γ\σ)∩G(σ) = ∅. It remains to
show that G is injective on σ, but this is easy because, if z, w ∈ σ, then
both z and w are purely imaginary and the equation z3 = w3 implies
z = w.

We next wish to show that G(γ) is a smooth curve. As already
observed, G is an immersion when restricted to H \ {0}. Thus we
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only have to show that G(γ) is smooth in a neighborhood of (0, 0) =
G(0). Observe that, in such a neighborhood G(γ) is given by the points

{(−is3, g(is)) : s ∈] − δ, δ[}, which we can rewrite as {(−is, g(is
1
3 )) :

s ∈]− δ3, δ3[}. We thus have to show that the map

R 3 s 7→ h(s) = g(is
1
3 ) ∈ C

is smooth in a neighborhood of the origin and we will then conclude
that G(γ) is indeed a smooth embedded curve. In fact the map h
is certainly smooth on (−1, 0) ∪ (0, 1). Computing its derivatives we
conclude easily that

|h(`)(s)| ≤ C(`)|s|−N(`)
∑

0≤k≤`

|Dkg(is
1
3 )| ≤ C(`, α)|s|−N(`)e−c(α)|s|−α/3 ,

where we have used the estimate (2.3). In particular

lim
s→0

h(`)(s) = 0

for every ` ∈ N. This shows the smoothness of g in 0.

We finally come to (b). We just have to show that every point
p ∈ G(Z) is singular: since the origin is an accumulation point of G(Z)
and Singb(T ) is closed, the origin will be a singular point as well. Let
p be in G(Z)\{0}, then p = (±ie3nπ, 0) for some n ∈ Z. Let us assume
that p = (ie3nπ, 0) (the other case being analogous) and note that p
has exactly two preimages in H through G, namely

z1 = exp
(
nπ − iπ

2

)
z2 = exp

(
nπ + i

π

6

)
= e2πi/3z1.

Since, as already observed, dGzi has full rank for i = 1, 2, there are
small neighborhoods U1 and U2 of z1 and z2 such that G|U1 and G|U2

are embeddings. Since we have already shown that the set {z : g(z) =
g(e2πi/3z)} is discrete in H \ {0}, up to making the neighborhoods
smaller we have that G(U1)∩G(U2) = {p}. This shows that around p,
G(D) is an immersed surface with boundary and with a “double point”
at p. Thus p belongs to Singb(T ).

Remark 2.3. Note that the curve γ in the above Theorem can be
slightly modified in order to have that G(γ) is still a smooth curve
and that γ bounds a smooth connected open disk D̃ with 0 ∈ ∂D̃ and
σ = (−τi, τ i) \ {0} ⊂ D̃. In particular there is a sequence of points
in Z which are in the interior of D̃ and that accumulates towards {0}.
G(Z) now consist of interior singular points for T̃ := G]JD̃K which
accumulate towards the boundary.
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Remark 2.4. It is not difficult to see that, in the example above,
at any singular point p ∈ G(Z) the tangent cone consists of one two-
dimensional plane Jπ(p)K and a two-dimensional half-plane Jπ+(p)K,
which intersect only at the origin. By slightly modifying the example,
namely by considering the map G(z) = (z3, (g(z))2), we can easily
ensure that the tangent cone at every p ∈ G(Z) is contained in a
single two-dimensional plane π(p). In particular the tangent line to
the boundary curve splits such planes in two halves π−(p) and π+(p):
the tangent cone is then 2 Jπ+(p)K + Jπ−(p)K. On the other hand we
do not know whether it is possible to have a sequence of boundary
branching singularities which accumulate somewhere.

2.3.1. Proof of Statement (b). We now turn to the proof of
statement (b) in Theorem 1.8. The starting point is the following fact,
proved by the third author in [30], where we keep using the notation

H = {z ∈ C : Re z > 0}
for the complex halfplane.

Lemma 2.5 ([30, Lemma 0.1]). There exists a holomorphic function
g : H → C which extends to a smooth function F ∈ C∞(H) and such
that the set

E := {F = 0} ∩ ∂H
is contained in the segment σ := ∂H ∩ {Im z ∈ [−1

2
, 1

2
]} and has Haus-

dorff dimension dimH(E) equal to 1.

Let now γ be a smooth curve contained in H ∩ {|z| ≤ 1} such that

(a) σ ⊂ γ;
(b) γ ∩ {z ∈ H : g(z) = 0} = ∅.

Note that this is possible since {g = 0} ∩H is at most countable. We
denote by D+ ⊂ H the disk bounded by γ. We let

G(z) = (z, F (z))

and S = G] JD+K. Note that G(γ) is a smooth curve. Arguing as in
the proof of Statement (a), we get

∂S = G] JγK = JG(γ)K .

We furthermore let D = {|z| ≤ 1} be the unit disk and R = ι] JDK,
ι : C→ C2, ι(z) = (z, 0). Note that

spt∂S ∩ spt∂R = ∅.
Now the current T1 = R + S satisfies the conclusion of the first of the
claim. Indeed

∂T1 = JΓ1K with Γ1 = G(γ) ∪ {(z, w) : |z| = 1, w = 0}
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and, since the latter union is disjoint, Γ1 is a smooth 1-dimensional
manifold. Furthermore, since both R and S are calibrated by the
Kähler form, so is T1, implying that it is the only mass minimizing
current spanned by JΓ1K. Finally

Singb(T1) ⊃ E × {0},

from which we conclude that dimH(Singb(T1)) = 1.

Remark 2.6. In fact it is easy to see that Singb(T1) = E × {0},
therefore, even though the latter set has Hausdorff dimension 1, it
is a H1-null set. Note also that around points in E, the current S
can be represented by a smooth graph, and thus these are crossing
singularities.

Eventually we remark that by the F. and M. Riesz’ Theorem, [34],
the conclusion of [30] is optimal, meaning that the set E in Lemma
2.5 cannot have positive measure. Hence the above construction can-
not give an example of a 2-dimensional mass minimizing current which
bounds a smooth submanifold and has a boundary singular set of pos-
itive H1-measure.

2.4. Plan of the proof of Theorem 1.6

In this section we outline the long road which will take us finally to
the proof of Theorem 1.6. We fix therefore Σ,Γ and T as in Assumption
1.5.

Reduction to collapsed points. We start in Chapter 3 by re-
calling Allard’s monotonicity formula at the boundary. First of all,
combining it with a suitable variant of Almgren’s stratification theo-
rem, we conclude that, except for a set of Hausdorff dimension at most
m− 2, at any boundary point p there is a tangent cone which is “flat”,
namely which is contained in an m-dimensional plane π ⊃ T0Γ. Sec-
ondly, using a classical upper semicontinuity argument, we will focus
our attention on “ collapsed points”, cf. Definition 3.7: additionally
to the existence of a flat tangent cone, at such points p we know that
there is a sufficiently small neighborhood U where Θ(T, q) ≥ Θ(T, p)
for all q ∈ Γ ∩ U . In particular we will reduce the proof of Theorem
1.6 to proving that any collapsed point is regular, cf. Theorem 3.8 and
Theorem 3.9.

The “linear” theory. Assume next that 0 ∈ Γ is a collapsed
point and let Q − 1

2
be its density. Note that by Allard’s regularity

theory we know a priori that 0 is a regular point if Q = 1 and thus we
can assume, without loss of generality, that Q ≥ 2. Fix a flat tangent
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cone S to T at 0 and assume, up to rotations, that it is supported in
the plane π0 = Rm × {0} and that T0Γ = {x1 = 0} ∩ π0. Denote by
π±0 the two half-planes π±0 := {±x1 > 0} ∩ π0, with the assumption
that S = (Q − 1)

q
π−0

y
+ Q

q
π+

0

y
. It is reasonable to expect that,

at suitably chosen small scales, the current T is formed by Q sheets
over π+

0 and Q − 1 sheets over π−0 , respectively. Taken all together
such sheets form the current T and have boundary JΓK. Moreover,
by a simple linearization argument such sheets can be expected to be
almost harmonic.

Having this picture in mind, it is natural to develop a theory of(
Q− 1

2

)
-valued functions minimizing the Dirichlet energy. Their do-

main of definition is an open subset Ω of Rm which is divided into
two halves Ω± by some smooth (m − 1)-dimensional surface γ ⊂ Ω.
A
(
Q− 1

2

)
-valued map consists then of a pair (f+, f−) where f− is a

(Q − 1)-valued map over Ω− (in the sense of Almgren, cf. [13]) and
f+ is a Q-valued map over Ω+. Such pairs are required to satisfy an
additional assumption: the trace of f+ over γ is obtained from that
of f− by adding a classical single valued map ϕ, which is called the
“interface”, cf. Definition 4.1 for the precise statement. The relevant
problem is then that of minimizing the sum of the Dirichlet energies of
the two maps subject to the constraint that their boundary values on
∂Ω and the interface ϕ are both kept fixed. In Chapter 4 we develop a
suitable existence theory for such objects, cf. Theorem 4.2. Concerning
their interior structure, we can apply all the conclusions of Almgren’s
theory (indeed in this paper we will take advantage of the point of view
developed in [13]).

The correct counterpart of the collapsed situation in Theorem 3.9
must assume, however, that all the 2Q−1 sheets meet at the interface ϕ;
under such assumption we say that the

(
Q− 1

2

)
Dir-minimizer collapses

at the interface, cf. Definition 4.3. The core of Chapter 4 is a suitable
regularity theory for minimizers which collapse at the interface. First
of all their Hölder continuity follows directly from the Ph.D. thesis of
the third author, cf. [29]. Secondly, the most important conclusion
of our analysis is that a minimizer collapses at the interface only if
it consists of a single harmonic sheet “passing through” the interface,
counted therefore with multiplicity Q on one side and with multiplicity
Q− 1 on the other side, cf. Theorem 4.5.

Theorem 4.5 is ultimately the deus ex machina of the entire argu-
ment leading to Theorem 1.6. The underlying reason for its validity
is that a monotonicity formula for a suitable variant of Almgren’s fre-
quency function holds, cf. Theorem 4.15. Given the discussion of [30],
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such monotonicity can only be hoped in the collapsed situation and,
remarkably, this suffices to carry on our program.

The validity of the monotonicity formula is clear when the collapsed
interface is flat. When we have a curved boundary a subtle yet impor-
tant point becomes crucial: we cannot hope in general for the exact
first variation identities which led Almgren to his monotonicity for-
mula, but we can replace them with suitable inequalities. However the
latter can be achieved only if we adapt the frequency function by inte-
grating a suitable weight, cf. Definition 4.13. The idea of “smoothing”
Almgren’s frequency function with a suitable weight is indeed already
present in [17] and in this paper we need to push it much further,
distorting substantially the geometry of the domain.

First Lipschitz approximation. In Chapter 5 we use the linear
theory for approximating the current with the graph of a Lipschitz(
Q− 1

2

)
-valued map and we then show that such approximation is

close to be Dir-minimizing, cf. Theorem 5.5 and Theorem 5.6. The
approximation algorithm is a suitable adaptation of the one developed
in [14] for interior points. In particular, after adding an “artificial
sheet”, we can directly use the Jerrard-Soner modified BV estimates of
[14] to give a rather accurate Lipschitz approximation: the subtle point
is to engineer the approximation so that it collapses at the interface.

Height bound and excess decay. In Chapter 6 we use the Lip-
schitz approximation of Chapter 5 together with the regularity theory
of Chapter 4 to establish a power-law decay of the excess à la De Giorgi
in a neighborhood of a collapsed point, cf. Theorem 6.3. The effect
of such theorem is that the tangent cone is flat and unique at every
point p ∈ Γ in a suitable neighborhood of a collapsed point 0 ∈ Γ.
Correspondingly, the plane π(p) which contains such tangent cone is
Hölder continuous in the variable p ∈ Γ and the current is contained in
a suitable horned neighborhood of the union of such π(p), cf. Corollary
6.4.

An important ingredient of our argument is an accurate height
bound in a neighborhood of any collapsed point in terms of the spher-
ical excess, cf. Theorem 6.5. The argument follows an important idea
of Hardt and Simon in [27] and takes advantage of an appropriate vari-
ant of Moser’s iteration on varifolds, due to Allard, combined with a
crucial use of the remainder in the monotonicity formula. The same
argument has been also used by Spolaor in a similar context in [39],
where he combines it with the decay of the energy for Dir-minimizers,
cf. [39, Proposition 5.1 & Lemma 5.2].
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Second Lipschitz approximation. The decay of the excess
proved in Chapter 6 is used in Chapter 7 to improve the accuracy
of the Lipschitz approximation of Theorem 5.6, cf. Theorem 7.4. In
particular, by suitably decomposing the domain of the approximating
map in a Whitney-type cubical decomposition which refines towards
the boundary, we can take advantage of the interior approximation
theorem of [14] on each cube and then patch the corresponding graphs
together.

As in the case of the interior regularity, this new Lipschitz approx-
imation is of key importance since it coincides with the current up to
an error which is superlinear in the excess.

Left and right center manifolds. In Chapter 8 we use the
approximation Theorem 7.4 and a careful smoothing and patching ar-
gument to construct a “left” and a “right” center manifold M+ and
M−, cf. Theorem 8.13. The M± are C3,κ submanifolds of Σ with
boundary Γ and they provide a good approximation of the “average
of the sheets” on both sides of Γ in a neighborhood of the collapsed
point 0 ∈ Γ. They can be glued together to form a C1,1 submanifold
M which “passes through Γ”: each portion has C3,κ estimates up to
the boundary, but we only know that the tangent spaces at the bound-
ary coincide, whereas we have a priori no information on the higher
derivatives (it must be noted though that, at the end of the argument
for Theorem 1.6, we will conclude that the center manifolds and the
current coincide and that the latter is regular: a posteriori we will
then conclude thatM is indeed C3,κ). The construction algorithm fol-
lows closely that of [16] for the interior, but some estimates must be
carefully adapted in order to ensure the needed boundary regularity.

The center manifolds are coupled with two suitable approximating
maps N±, cf. Theorem 8.19. The latter take values on the normal
bundles of M± and provide an accurate approximation of the current
T . Their construction is a minor variant of the one in [16].

Monotonicity of the frequency function. In Chapter 9 we use
a suitable Taylor expansion of the area functional to show that the
monotonicity of the frequency function holds for the approximating
maps N± as well, cf. Theorem 9.3. In particular we use the first
variations of the current along suitably chosen vector fields in order
to derive the same inequalities which allow to prove Theorem 4.15.
Such inequalities contain however several additional error terms which
must be estimated with high accuracy: our proof follows crucially some
ideas of [17]. Moreover, the “adapted” frequency function introduced
in Chapter 4 plays a central role in the estimate of Theorem 9.3.
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Final blow-up argument. In Chapter 10 we then complete the
proof of Theorem 1.6: in particular we show that, if 0 were a singu-
lar collapsed point, suitable rescalings of the approximating maps N±

would produce, in the limit, a
(
Q− 1

2

)
Dir-minimizer violating the reg-

ularity Theorem 4.5. On the one hand the estimate on the frequency
function of Chapter 3 plays a primary role in showing that the limit-
ing map is nontrivial. On the other hand the properties of the center
manifoldsM± enter in a fundamental way in showing that the average
of the sheets of the limiting

(
Q− 1

2

)
map is zero on both sides.

2.5. Open problems

Clearly, since the size of the boundary singular set in all known
examples is much smaller than what proved in Theorem 1.6, the most
central open question is whether one can improve the “generic bound-
ary regularity” proved in this paper. As already mentioned in the in-
troduction, the most daring conjecture compatible with the examples
known so far is the following:

Conjecture 2.7. Let T,Σ,Γ be as in Assumption 1.5. The Haus-
dorff dimension of the set of genuine boundary singularities is at most
m− 2.

A somewhat milder statement, which would still give a substantial
improvement of Theorem 1.6 is instead

Conjecture 2.8. Let T,Σ,Γ be as in Assumption 1.5. Then
Hm−1(Singb(T )) = 0.

The “linearized problem” discussed in Chapter 4 enjoys a regularity
theorem which is analogous to Theorem 1.6.

Definition 2.9. Let (g+, g−) be a
(
Q− 1

2

)
-valued function with

interface (γ, ϕ) as defined in Chapter 4. A point p ∈ γ is regular if
there are a ball Br(p), Q− 1 functions u2, . . . , uQ : Br(p)→ Rn and a
function u1 : B+

r (p)→ Rn such that

(i) g+ =
∑Q

i=1 JuiK on B+
r (p) and g− =

∑Q
i=2 JuiK on B−r (p);

(ii) For any pair i, j ≥ 2 either the graphs of ui and uj are disjoint
or they coincide;

(iii) For any i ≥ 2 either the graphs of u1 and ui are disjoint or the
graph of u1 is contained in that of ui.

The complement of the regular points in γ is called the set of boundary
singular points. If at a boundary singular point there are maps uj’s
which satisfy (i) and (ii) (but not (iii)), then the singular point will be
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called of crossing type. Singular points which are not of crossing type
will be called genuine boundary singularities.

A point p ∈ Ω\γ is regular if it is an interior regular point for either
theQ-valued map f+ or the (Q−1)-valued map f− (cf. the introduction
of [13] for the precise definition). The complement, in Ω \ γ, is the set
of interior singular points. The union of interior singular points and
boundary singular points will be called the singular set.

Theorem 2.10. Let (g+, g−) be a
(
Q− 1

2

)
-valued function with C3

interface (γ, ϕ) defined over a domain Ω and assume that it minimizes
the Dirichlet energy in Ω ⊂ Rm. Then the set of boundary singular
points is meager.

We do not give a proof of Theorem 2.10: using the tools developed in
Chapter 4, the argument is a simple adaptation of the interior regularity
theory for Q-valued maps, cf. [13]. The conjectures corresponding to
2.7 and 2.8 are then open in the linearized case as well:

Conjecture 2.11. Let (g+, g−) be as in Theorem 2.10. The Haus-
dorff dimension of the set of genuine singularities is then at most m−2.

Conjecture 2.12. Let (g+, g−) be as in Theorem 2.10. The bound-
ary singular set is then a Hm−1-null set and the set of genuine bound-
ary singularities is at most of Hausdorff dimension m− 2.

Recently, in [32] the first author, together with Z. Zhao, proved
that for m = 2 and real analytic boundary data, the set of boundary
singularities is discrete. Even more they were able to show that sin-
gularities are all of crossing type. In particular there are no genuine
boundary singularities. Their proof relies on complex analysis tools and
the Cauchy-Kovalevskaya theorem.

The examples (a) and (b) of Theorem 1.8, combined with a routine
adjustment of the arguments given in [38], see also [30, Corollary 3.5],
to the

(
Q− 1

2

)
-valued setting, gives a ϕ which is not real analytic for

which the above conclusions are indeed false.

Theorem 2.13. There is a real analytic1 γ ⊂ B1 ⊂ R2 passing
through the origin, a C∞ function ϕ : γ → R2 and a 3

2
-map (g+, g−)

with interface (γ, ϕ) which is Dir-minimizing on B1 and whose singular
set has Hausdorff dimension 1.

Conjecture 2.7 is widely open also for real analytic boundary data.
As we already mentioned, the “linear” 2-dimensional case of the conjec-
ture is addressed in [32]. On the other hand, the 2-dimensional “fully

1In fact γ is a segment, in our example.
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non-linear” counterpart of [32] is a well-known conjecture of White, cf.
[42]:

Conjecture 2.14. Let T,Σ,Γ be as in 1.5, let m = 2 and assume
Σ and Γ are real analytic. Then the union of the boundary and of the
interior singular sets is discrete.

Again such conjecture is widely open and in [11] the first three
authors have shown that the conclusion of the conjecture is false when
Σ and Γ are just C∞. A first step in the positive direction is given in
the paper [31] where the third author and Marini prove the uniqueness
of tangent cones at any point p ∈ Γ when the latter is merely C1,α.

Coming back to the case of C∞ boundaries Γ, the example (a) in
Theorem 1.8 shows that Conjecture 2.7 must be taken with a grain of
salt. One reason why Conjecture 2.7 might still be correct is that, while
the accumulation singular point in the example of Theorem 1.8(b) is
a boundary branch point, the singularities accumulating to it are of
“crossing type”, namely points where the minimizer is in fact an im-
mersed surface. If it were possible to produce an example with an
accumulating sequence of branch points, one could conceive to modify
the construction to produce a Cantor-like set of genuine boundary sin-
gularities, possibly disproving Conjecture 2.7. The following question
seems thus a very relevant one:

Question 2.15. Is it possible to produce an example as in Theo-
rem 1.8 with a boundary singular point which is an accumulation of
boundary branch points?





CHAPTER 3

Stratification and reduction to collapsed points

3.1. First variation and monotonicity formula

Here and in the sequel we will denote by AΣ and AΓ the second
fundamental forms of Σ and Γ and we will assume that T is as in
Assumption 1.5.

As usual, given a vector field X ∈ C1
c (B2) we let B2×R 3 (x, t)→

Φt(x) be the flow generated by X, namely each curve ηx(t) := Φt(x)
satisfies the ODE η̇x(t) = X(ηx(t)) subject to the initial condition
ηx(0) = x. We then define the first variation of T along X as

δT (X) :=
d

dt

∣∣∣∣
0

M((Φt)]T ) .

If the vector field X is tangent to spt(∂T ) = Γ and is tangent to the
manifold Σ, we then know that δT (X) = 0. Moreover, it is well known
that if X vanishes on spt(∂T ) but it is not tangent to Σ, then

δT (X) = −
∫
B2

X · ~HT (x) d‖T‖(x)

where the mean curvature vector ~HT can be explicitly computed from
the second fundamental form AΣ. More precisely, if ~T (x) = v1∧. . .∧vm
and vi are orthonormal, then

~HT (x) =
m∑
i=1

AΣ(vi, vi) (3.1)

(see for instance [35]). In this section we derive a similar formula
for variations along general vector fields X, namely not necessarily
vanishing on the boundary. As a consequence we also get Allard’s
monotonicity formula at the boundary, with precise error terms. We
summarize all these conclusions in the next theorem. These are in
fact classical facts, under our assumption. Since however it is not
easy to pin-point precise references for our statements in the literature,
we include a short derivation from similar (more general) statements
proved in other articles.

33
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Definition 3.1. For every point p ∈ B2, the density of T at p is
defined as

Θ(T, p) := lim
r↓0

‖T‖(Br(p))

ωmrm
,

whenever the latter limit exists.

We then consider the functions

Θi(T, p, r) := exp (C0‖AΣ‖0r)
‖T‖(Br(p))

ωmrm
, (3.2)

Θb(T, p, r) := exp (C0(‖AΣ‖0 + ‖AΓ‖0)r)
‖T‖(Br(p))

ωmrm
, (3.3)

where C0 = C0(m,n, n̄) is a suitably large constant.

Theorem 3.2. Let T be as in Assumption 1.5.

(a) If p ∈ B2 \Γ, then r 7→ Θi(T, p, r) is monotone on the interval
(0,min{dist(p,Γ), 2− |p|});

(b) if p ∈ B2∩Γ, then r 7→ Θb(T, p, r) is monotone on (0, 2−|p|).

Thus the density exists at every point. Moreover, the restrictions of the
map p 7→ Θ(T, p) to Γ∩B2 and to B2\Γ are both upper semicontinuous.

If X ∈ C1
c (B2,Rn), then we have

δT (X) = −
∫
B2

X · ~HT (x) d‖T‖(x) +

∫
Γ

X · ~n(x) dHm−1(x) (3.4)

where ~HT is the vector field in (3.1) and ~n is a Borel unit vector field
orthogonal to Γ.

Moreover, if p ∈ Γ and 0 < s < r < 2 − |p|, we then have the
following precise monotonicity identity

r−m‖T‖(Br(p))− s−m‖T‖(Bs(p))−
∫
Br(p)\Bs(p)

|(x− p)⊥|2

|x− p|m+2
d‖T‖(x)

=

∫ r

s

ρ−m−1

[∫
Bρ(p)

(x− p)⊥ · ~HT (x)d‖T‖(x)

+

∫
Γ∩Bρ(p)

(x− p) · ~n(x) dHm−1(x)

]
dρ , (3.5)

where Y ⊥(x) denotes the component of the vector Y (x) orthogonal to

the tangent plane of T at x (which is oriented by ~T (x)).

In this chapter we in fact only need (a) and (b), which are proved
in [2] and [3], and some consequences of the monotonicity formula for
which less precise versions are sufficient: in particular many of the
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statements needed can be easily derived from [3] and for this reason
we postpone the proof of Theorem 3.2 to the last section.

Note that at any p ∈ Regb(T ) the density equals Q− 1
2
, where the

positive integer Q is as in Remark 1.2. Moreover we recall the following

Theorem 3.3 (cf. [3, Theorem 3.5 (2)]). Θ(T, p) ≥ 1
2

for every
p ∈ Γ.

Definition 3.4. Fix a point p ∈ spt(T ) and define

ιp,r(q) :=
q − p
r

∀ r > 0 .

We denote by Tp,r the currents

Tp,r := (ιp,r)]T ∀ r > 0 .

We recall the following consequence of the Allard’s monotonicity
formula, cf. [3]. From now on, given any smooth oriented submanifold
of Rm+n like Γ and Σ, we will use the notation TpΓ and TpΣ for the
tangent space to the manifold at the point p (which will be always
identified with a linear oriented subspace of Rm+n).

Theorem 3.5. Take p ∈ spt(T ) and any sequence rk ↓ 0. Up to
subsequences Tp,rk is converging locally to an area-minimizing integral
current T0 supported in TpΣ such that

(a) T0 is a cone with vertex 0 and ‖T‖(B1(0)) = ωmΘ(T, p);
(b) if p ∈ spt (T ) \ Γ, then ∂T0 = 0;
(c) if p ∈ Γ, then ∂T0 = JTpΓK.

Moreover ‖Tp,rk‖ converges, in the sense of measures, to ‖T0‖.

Definition 3.6. Any cone T0 as in Theorem 3.5 will be called a
tangent cone to T at p. A tangent cone T0 will be called flat if spt(T0)
is contained in an m-dimensional plane.

Note that a flat tangent cone at a point p ∈ spt(T ) \ Γ is neces-
sarily a positive integer multiple of JπK for some m-dimensional plane
π contained in TpΣ: this is a consequence of the Constancy Theorem
and of (b) above. For p ∈ Γ a flat tangent cone has instead the form
Q Jπ+K + (Q − 1) Jπ−K, where Q ≥ 1 is an integer, π = π+ ∪ π− is an
m-dimensional plane contained in TpΣ and ∂ Jπ+K = JTpΓK = −∂ Jπ−K.
The latter is again a consequence of the Constancy Theorem taking
into account that, by (b), ∂T0 = JTpΓK.

Definition 3.7. A point p ∈ Γ will be called a collapsed point if

(i) there exists a flat tangent cone to T at p;
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(ii) there exists a neighborhood U of p such that Θ(T, q) ≥ Θ(T, p)
at every q ∈ Γ ∩ U .

The first main point of this chapter is to show how standard regu-
larity theory implies that

Theorem 3.8. If Regb(T ) is not dense in Γ then there exists a
collapsed singular point.

The proof of Theorem 1.6 will then be reduced to the following
statement:

Theorem 3.9. A collapsed point is always a regular point.

All the remaining chapters will in fact be devoted to prove it.

Observe that at collapsed points the density Θ(T, p) equals Q − 1
2

for some positive integer Q. The case Q = 1 of the above theorem
is indeed a consequence of Allard’s boundary regularity theorem for
varifolds. Moreover, if p is a point where Θ(T, p) = 1

2
, then by Theorem

3.3 assumption (ii) in Definition 3.7 is automatically satisfied and in
fact the theory of [3] shows that even (i) holds necessarily. Therefore,
multiplicity 1

2
points are always regular:

Theorem 3.10 (Allard’s boundary regularity theorem). All points
p ∈ Γ with Θ(T, p) = 1

2
are regular points.

Finally, it is worth noticing the following two consequences of our
analysis, which we will also prove in the last section of this chapter:

Corollary 3.11. For every α > 0 at Hm−2+α-a.e. p ∈ Γ there is
a flat tangent cone, and hence Q = Θ(T, p)+ 1

2
is a positive integer. At

Hm−1-a.e. p ∈ Γ any flat tangent cone takes the form Q Jπ+K + (Q −
1) Jπ−K, where the plane π is the unique plane containing TpΓ and the
vector ~n(x) appearing in (3.4) (with the natural orientation).

Finally, by the very same arguments of [35, Theorem 35.3 (1)] and
a simple analysis of two dimensional tangent cones at the boundary,
one of the conclusions of the above corollary can be strengthened as
follows.

Corollary 3.12. For every α > 0 and Hm−3+α-a.a. p ∈ Γ,
Θ(T, p) + 1

2
is a positive integer.

3.2. Stratification

Definition 3.13. Let p ∈ Γ and T0 be a tangent cone at p. The
spine Spine(T0) is the set of vectors v ∈ TpΓ such that (τv)]T0 = T0,
where τv(q) := q + v.
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We recall that the following conclusions are simple consequences of
the monotonicity formula, cf. for instance [43, Sections 3 & 5].

Lemma 3.14. Spine(T0) is a vector space and we have the following
characterizations:

(a) v ∈ Spine(T0) if and only if Θ(T0, 0) = Θ(T0, v);
(b) v ∈ Spine(T0) if and only if (ιv,r)]T0 = T0 for every r > 0.

Definition 3.15. Given a point p ∈ Γ, an area-minimizing current
T with boundary ∂T = Γ and a tangent cone T0 of T at p, the building
dimension Bdim(T0) is the dimension of Spine(T0). We stratify the
boundary Γ according to the maximum of the building dimension of
the tangent cones at the given point:

Sj(T,Γ) := {p ∈ Γ : Bdim(T0) ≤ j for every tangent cone T0 at p} .

The following stratification result holds, cf. [43, Theorem 5] (note
that by definition Spine(T0) ⊂ TpΓ).

Theorem 3.16. S0(T,Γ) is at most countable, the Hausdorff di-
mension of each stratum Sj(T,Γ) is at most j and

S0(T,Γ) ⊂ S1(T,Γ) ⊂ . . . ⊂ Sm−1(T,Γ) = Γ .

We close this section proving the following elementary but useful
lemma.

Lemma 3.17. If Bdim(T0) = m− 1 then T0 is flat.

Proof. Fix a tangent cone T0 to T at p of maximal building dimen-
sion m− 1 and observe that Spine(T0) = TpΓ. By a well-known result
of Federer (cf. [23, Section 5.4.8]) there exists a one-dimensional area-
minimizing current S in (TpΓ)⊥ such that T0 = JTpΓK×S. Note in par-
ticular that ∂S = J0K and there exist `+

1 , . . . , `
+
Q−1, `

+
Q and `−1 , . . . , `

−
Q−1

oriented half lines with endpoint at 0 such that

∂
q
`±j

y
= ± J0K ,

S =

Q∑
i=1

q
`+
i

y
+

Q−1∑
j=1

q
`−j

y
(3.6)

and

‖S‖ =

Q∑
i=1

∥∥q`+
i

y∥∥+

Q−1∑
j=1

∥∥q`−j y∥∥ , (3.7)

cf. Figure 3.2.
In particular

q
`+
i

y
+

q
`−j

y
is an area-minimizing current without

boundary for every i, j. But then we conclude the existence of a single
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`+
3

`+
4

`+
1 = `+

2

`−1 = `−2 `−3

Figure 1. An example of current S and oriented lines
`±j when Q = 4: the arrows represent the oriented tan-

gent to the lines. Note that pairs of lines `+
j , `

+
k and

`−j , `
+
j might coincide: in the example we have `+

1 = `+
2

and `−1 = `−2 . However the support of any line `+
j can

intersect the support of any line `−k only at the origin,
otherwise (3.7) would be violated.

one-dimensional vector space `ij such that spt(
q
`+
i

y
+

q
`−j

y
) = `ij.

Since this has to be valid for any choice of (i, j), we then also conclude
that the `ij coincide all with a single line `. Hence spt(T0) ⊂ TpΓ + `,
which shows the flatness of T0. �

3.3. Proof of Theorem 3.8

Fix an area minimizing current T with boundary ∂T = JΓK and
assume that Singb(T ) has nonempty interior, which we denote by G.
Define

Ci :=
{
p ∈ Γ: Θ(T, p) ≥ i− 1

2

}
∩G .

Recall that, by upper semicontinuity of the density, Ci is relatively
closed in G. Let Di be the interior of Ci and Ei := Di \ Ci+1. If p is
not in

⋃
i≥1Ei, then fix the natural number i ≥ 1 such that

i− 1
2
≤ Θ(T, p) < i+ 1

2

and observe that therefore p ∈ Ci \Di. The latter is a relatively closed
meager subset of G and thus we conclude that G \

⋃
iEi is the union



3.4. PROOFS OF THEOREM 3.2 AND COROLLARIES 3.11 AND 3.12 39

of countably many closed meager subsets of G. By the Baire Category
Theorem

⋃
i≥1Ei cannot be empty.

This means that at least one Ei is not empty and, being relatively
open in Γ, by the stratification Theorem 3.16 we conclude that Ei
contains a point p /∈ Sm−2. By the Lemma 3.17 there is at least
one flat tangent cone T0 at p, which in turn implies the existence of
a positive integer Q such that Θ(T0, p) = Q − 1

2
. Observe that p ∈

Ei ⊂ Ci \ Ci+1 and, hence, Q = i. Being Ei relatively open in Γ,
there is a neighborhood U of p such that U ∩ Γ ⊂ Ei ⊂ Ci. Therefore
Θ(T, q) ≥ Θ(T, p) for every q ∈ U ∩Γ. Thus p is a collapsed point. On
the other hand p ∈ G, namely it is a singular point. �

3.4. Proofs of Theorem 3.2 and Corollaries 3.11 and 3.12

Statement (a) is the classical monotonicity formula, which in fact
holds in a much more general situation, see for instance [2, Theorem
5.1(1)]. Statement (b) follows from Allard’s monotonicity formula at
the boundary for varifolds, see [3, Theorem 3.4(2)]1. The upper semi-
continuity of the restriction of the density on the two sets Γ and B2 \Γ
is then a standard consequence, see for instance [35, Corollary 17.8].

Since T is stationary with respect to variations which vanish on Γ
and are tangential to Σ, we have the usual identity

δT (X) = −
∫
B2

X · ~HT (x) d‖T‖(x) for all X ∈ C1
c (B2 \ Γ),

cf. for instance [35, Lemma 9.6]. Thus we can apply [3, Lemma 3.1]
to the integer rectifiable varifold naturally induced by T to conclude
δT = ~HT‖T‖ + δTs where δTs is a singular Radon measure supported
in Γ. By the Radon-Nikodým decomposition, if we denote by ‖δTs‖ the
total variation of δTs we conclude the existence of a unit Borel vector
field ~n such that

δT (X) = −
∫
B2

X · ~HT (x) d‖T‖(x) +

∫
Γ

X · ~n(x) d‖δTs‖(x) (3.8)

for all X ∈ C1
c (B2). Note next that, by the explicit formula for ~HT in

(3.1), ~HT (x) is orthogonal to TxΣ and in particular it is orthogonal to
the tangent plane to T at x. Thus in the first integral of the right hand
side of (3.8) we can certainly substitute X with X⊥.

1For an alternative approach, similar to the one used for proving Theorem 4.15
we refer the reader to [12, Section 4]
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Moreover, according to [3, Section 3.1], ‖δTs‖ satisfies the following
upper bound for any positive ψ ∈ Cc(B2):∫

Γ

ψ d‖δTs‖ ≤ lim
h→0

1

h

∫
{x:dist(x,Γ)<h}

ψ(x)d‖T‖(x).

Hence it follows easily from the existence and boundedness of the den-
sity Θb(T, p) that ‖δTs‖ = θHm−1 Γ for a locally bounded Borel func-
tion θ with 0 ≤ θ(p) ≤ C(m)Θb(T, p)

Now, we know from the previous sections that at Hm−1-a.e. p there
exists a flat tangent cone Sp = Q Jπ+K+(Q−1) Jπ−K, where π contains
TpΓ. On the other hand we know from the convergence of the currents
together with the convergence of the respective total variations that
the varifolds induced by (ιp,r)]T converge to the varifold induced by
Sp. Thus, by continuity of the first variation, we conclude that

δSp(X) = lim
r↓0

δ(ιp,r)]T (X) .

On the one hand simple computations lead to the identity

δSp(X) =

∫
TpΓ

ν ·X dHm−1 ,

where ν is the unique unit vector contained in π which is orthogonal
to TpΓ and is compatible with the orientations of π and TpΓ. On the
other hand, by a simple rescaling argument

lim
r→0

δ(ιp,r)]T (X) =

∫
TpΓ

θ(p)~n(p) ·XdHm−1 (3.9)

at Hm−1-a.e. p. We thus conclude ~n(p) = ν, and θ = 1. This argument
proves the identity (3.4), but it shows as well the validity of the last con-
clusion of Corollary 3.11: if we fix a point p where (3.9) holds, we have
actually shown that, for any flat tangent cone Q Jπ+K+ (Q−1) Jπ−K at
that point, the vector ~n(p) must belong to π−, which uniquely deter-
mines the pair (π+, π−). Since Q is uniquely determined as Θ(T, p)+ 1

2
,

we conclude that any flat tangent cone at p is determined by ~n(p). The
identity of (3.5) is then a consequence of [7, Eq. (31)]. Finally, the
first assertion of Corollary 3.11 is a consequence of Theorem 3.16 and
of Lemma 3.17.

To prove Corollary 3.12, by Theorem 3.16 it suffices to show that
the density is a half integer at every point p ∈ Sm−2(T,Γ): the latter
claim follows if we can show that every boundary area-minimizing cone
T0 with building dimension m − 2 satisfies the property that Θ(T0, 0)
is a half-integer. The latter property is in effect of the following char-
acterization.
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Lemma 3.18 (Characterization of 2 dimensional area minimizing
cones with boundary). Let T0 be an integral 2-dimensional locally area-
minimizing current in R2+k with (ι0,r)]T0 = T0 for every r > 0 and
∂T0 = JΓ0K, where Γ0 = {(x, y) ∈ R2 × Rk : x1 = |y| = 0}, Then

T0 =
q
π+

y
+

N∑
i=1

θi JπiK

where

(a) π+ is a closed oriented half-plane;
(b) the πi’s are all oriented 2-dimensional planes which can only

meet at the origin;
(c) the coefficients θi’s are all natural numbers;
(d) if π+ ∩ πi 6= {0}, then π+ ⊂ πi and they have the same orien-

tation.

Proof. Let | · | : R2+k → R+ be the Lipschitz map (x, y) 7→ |(x, y)|
and consider the 1-dimensional integral current S := 〈T0, | · |, 1〉. Recall
that, since T0 is a cone,

T0 B1 = S×× J0K ,
T0 = lim

r↑∞
(ι0,r)] (S×× J0K) ,

Note moreover that, by the usual formula on the boundary of slices,

∂S = 〈∂T0, | · |, 1〉 = Je1K− J−e1K , (3.10)

where e1 = (1, 0, . . . , 0). By [23, 4.2.25] we have

S =
N∑
j=0

θj JγjK ,

where γj is a simple Lipschitz curve, θj ∈ N and γj 6= γi for i 6= j and

M(S) =
N∑
j=0

θjM(JγjK), M(∂S) =
N∑
j=0

θjM(∂ JγjK) . (3.11)

From the second identity in (3.11) and from (3.10) we conclude that
there is precisely one i for which ±∂ JγiK = Je1K − J−e1K, whereas all
the other curves γj’s are closed. Without loss of generality we assume
that such i is 0 and note that θ0 = 1, so that we can write

S = Jγ0K +
N∑
j=1

θj JγjK . (3.12)
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Consider now the currents Zj = limr↑∞(ι0,r)](θj JγjK×× J0K) and ob-
serve that:

T0 = Z0+
N∑
i=1

Zi, M(T0 BR) = M(Z0 BR)+
N∑
i=1

M(Zi BR) ∀R > 0 .

(3.13)
In addition Singi(T0) must be empty, otherwise it would have dimension
at least 1. Thus all the γj’s are disjoint great circles for j = 1, . . . , N
and γ0 is half of a great circle. This gives (a), (b) and (c), where we let
π+ be the half-plane containing γ0 and πj be the plane containing γj.
Note next that if π+ ∩ πj contains one point p besides the origin, then

• If p 6∈ Γ0, then π+ must be a subset of πj because otherwise p
would be an interior singular point of T0;
• If p ∈ Γ0, then S0 +Sj is, by (3.11), an area minimizing 2-dim.

cone with boundary JΓ0K and it has building dimension 1; thus
by Lemma 3.17 we have again π+ ⊂ πj.

We thus conclude that π+ ⊂ πi. The fact that both have the same
orientation follows finally from the second identity in (3.13). �



CHAPTER 4

Regularity for
(
Q− 1

2

)
Dir-minimizers

As explained in the introduction the second important step in the
proof of Theorem 1.6 is the understanding of its “linearized” version.
This requires the study of the boundary regularity of Dir-minimizers
Q-valued map subject to a particular type of boundary condition, see
Definition 4.1 and Remark 4.33 below.

We assume the reader to be familiar with the theory of Q valued
maps as it is presented in [13, 15, 29]. We just recall here that a
Q-valued map is a map u : Ω ⊂ Rm → AQ(Rn) where

AQ(Rn) :=

{
Q∑
i=1

JPiK : Pi ∈ Rn, ∀ i = 1, . . . , Q

}
can be thought as the set of Q-tuples of unordered points in Rn.
AQ(Rn) can be easily given the structure of a metric space via the
following definition: given F1, F2 ∈ AQ(Rn) with F1 =

∑
i JPiK and

F2 =
∑

i JSiK we define their distance as

G(F1, F2) := min
σ∈PQ

√√√√ Q∑
i=1

∣∣Pi − Sσ(i)

∣∣2 ,
where PQ denotes the group of permutations of Q items.

Throughout all the chapter we will consider an open set Ω ⊂ Rm

together with a hypersurface γ dividing Ω in two disjoint open sets Ω+

and Ω−.

Definition 4.1. Let ϕ ∈ H
1
2 (γ,Rn) be given. A (Q − 1

2
)-valued

function with interface (γ, ϕ) consists of a pair (f+, f−) with the fol-
lowing properties:

(i) f+ ∈ W 1,2(Ω+,AQ(Rn)) and f− ∈ W 1,2(Ω−,AQ−1(Rn));
(ii) f+|γ = f−|γ + JϕK.

Its Dirichlet energy is defined to be the sum of the Dirichlet energies
of f+ and f−.

43
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Such a pair will be called Dir-minimizing if any other
(
Q− 1

2

)
-

valued function with interface (γ, ϕ) which agrees with (f+, f−) outside
of a compact set K ⊂ Ω has bigger or equal Dirichlet energy.

Ωγ

ϕ f+
2

f+
1

f−1

Ω− Ω+

Figure 1. A 3
2
-valued function with interface (γ, ϕ): the

function f+ is the 2-valued map
q
f+

1

y
+

q
f+

2

y
and f−

coincides with the (classical) single-valued f−1 .

Although the definition makes sense also for Q = 1, notice that,
in that case, the pair (f+, f−) consists of a single-valued function f+

and its Dir-minimality is equivalent to the harmonicity of f+. In this
chapter we will focus on the nontrivial case Q ≥ 2.

The first result of this chapter is a “soft” existence theorem for(
Q− 1

2

)
-valued Dir-minimizers.

Theorem 4.2. Given a
(
Q− 1

2

)
-valued function (g+, g−) with in-

terface (γ, ϕ) on a bounded Lipschitz domain Ω, there exists a
(
Q− 1

2

)
Dir-minimizer (f+, f−) with interface (γ, ϕ) such that f+ = g+ on
∂Ω+ \ γ and f− = g− on ∂Ω− \ γ.

A particular class of
(
Q− 1

2

)
-valued functions with interface (γ, ϕ)

are the ones with collapsed interface.

Definition 4.3. A
(
Q− 1

2

)
-valued function with interface (γ, ϕ)

is said to collapse at the interface if f+|γ = Q JϕK.

Remark 4.4. Observe that (f+, f−) collapses at the interface if
and only if f−|γ = (Q− 1) JϕK.

The main theorem of this chapter is the following:

Theorem 4.5. Let ϕ : γ → Rn be of class C1,α, γ be of class C3,
Q ≥ 2 and (f+, f−) be a

(
Q− 1

2

)
-valued Dir-minimizer with interface
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ϕ f+
2

Ωγ

f+
1

f−1

Figure 2. A 3
2
-valued function which collapses at the

interface (γ, ϕ).

(γ, ϕ). If (f+, f−) collapses at the interface, then there is a single-
valued harmonic function h : Ω → Rn such that f+ = Q Jh|Ω+K and
f− = (Q− 1) Jh|Ω−K.

Note that the above theorem is the “linearized” version of Theorem
3.9. Note also that we are requiring C3 regularity of γ, this seems
to be due to our method of proof more then to a serious technical
obstruction, see Section 4.2.5 below. However Theorem 4.5 is enough
for our purposes because the boundary data Γ is assumed to be of class
C3,a0 in Assumption 1.5.

4.1. Preliminaries and proof of Theorem 4.2

In this Section we prove existence of Dir-minimizing (Q− 1
2
)-valued

functions.

Proof of Theorem 4.2. Take a minimizing sequence (f+
k , f

−
k )

with interface (γ, ϕ) and f±k = g± on ∂Ω± \ γ. It is simple to see
that f±k enjoy a uniform bound in L2(Ω±). For instance, consider the
bi-Lipschitz embeddings

ξQ : AQ(Rn)→ RN(Q,n), ξQ−1 : AQ−1(Rn)→ RN(Q−1,n)

of [13, Theorem 2.1]. Then it suffices to bound the L2 norm of ξQ ◦f+
k ,

ξQ−1◦f−k and the latter bounds are a simple consequence of the classical

Poincaré inequality using the uniform H
1
2 -bound for the restriction of

ξ ◦ f±k to ∂Ω± \ γ.
By [13, Proposition 2.11] we can extract a subsequence (not rela-

beled) such that f+
k and f−k converge strongly in L2 to W 1,2 functions

f+ and f−, respectively. By continuity of the trace operator (cf. [13,
Proposition 2.10]) the pair (f+, f−) has interface (γ, ϕ) and coincides
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with (g+, g−) on the boundary of Ω. By lower semicontinuity of the
Dirichlet energy (cf. [13, Section 2.3.2]),

Dir(f+,Ω+) + Dir(f−,Ω−) ≤ lim inf
k→+∞

(
Dir(f+

k ,Ω
+) + Dir(f−k ,Ω

−)
)
.

This obviously implies that (f+, f−) is one of the sought minimizers.
�

Next we record the following continuity property for
(
Q− 1

2

)
Dir-

minimizers which collapse at the interface. The property is a direct
consequence of the main result in [29]. Note that, from now on, for
every metric space (X, d) and any map f : Ω → X we will use the
notation [f ]β,K for the Hölder seminorm of the restriction of f to the
subset K ⊂ Ω, more precisely

[f ]β,K := sup
x,y∈K,x6=y

d(f(x), f(y))

|x− y|β
.

Theorem 4.6. If γ is of class C1 and ϕ of class C0,β, with β > 1
2
,

then there exist a positive constant C = C(m,n, γ,Q) and a positive
constant α = α(m,n,Q, β) with the following property. Consider a(
Q− 1

2

)
Dir-minimizer which collapses at the interface (γ, ϕ). Then

the following estimates hold for every x ∈ Ω+ ∪ γ, respectively x ∈
Ω− ∪ γ, and every 0 < 2ρ < dist(x, ∂Ω):

[f±]α,Bρ(x)∩Ω± ≤ Cρ1−n
2
−α (Dir(f±, B2ρ(x) ∩ Ω±)

) 1
2

+ Cρβ−α[ϕ]β,γ∩B2ρ(x) .

An outcome of the proof of Theorem 4.6 in [29] is the following
compactness statement:

Lemma 4.7. Let (f+
k , f

−
k ) be a sequence of

(
Q− 1

2

)
Dir-minimizers

in Ω which collapse at the interfaces (γk, ϕk) and satisfy the following
assumptions:

(i) lim supk→+∞
(
Dir(f+

k ) + Dir(f−k )
)
<∞;

(ii) γk is converging in C1 to a hyperplane γ;
(iii) ϕk is converging1 in C0,β to a constant function ϕ for some

β > 1
2
.

Then there exists a subsequence (not relabeled) and a
(
Q− 1

2

)
-valued

function (f+, f−) with interface (γ, ϕ) such that

(a) f±k → f± in L2(K) for every compact set K ⊂ Ω±.

1By this we mean that for every k there is a C0,β extension ϕ̃k of ϕk
∣∣
γk

to the

whole Rm such that the sequence {ϕ̃k} converges to a constant function
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(b) Dir(f±,Ω± ∩ Ω′) = limk Dir(f±k ,Ω
±
k ∩ Ω′) for every Ω′ ⊂⊂ Ω,

where Ω±k denote the two open domains in which Ω is subdi-
vided by γk;

(c) f+ is Dir-minimizing in Ω+ and f− is Dir-minimizing in Ω−.

In turn we can take advantage of a standard blow-up argument to
upgrade Lemma 4.7 to the following more general statement, where
the convergence in (c) is to a general hypersurface γ and we conclude
additionally that the limiting (f+, f−) is Dir-minimizing as a

(
Q− 1

2

)
map.

Theorem 4.8. Let Ω be bounded and let (f+
k , f

−
k ) be a sequence of(

Q− 1
2

)
Dir-minimizers in Ω which collapse at the interfaces (γk, ϕk)

and satisfy the following assumptions:

(i) lim supk→+∞
(
Dir(f+

k ) + Dir(f−k )
)
<∞;

(ii) γk is converging in C1 to a hypersurface γ;
(iii) ϕk is converging in C0,β to a function ϕ for some β > 1

2
.

Then there exist a subsequence (not relabeled) and a
(
Q− 1

2

)
-valued

function (f+, f−) with interface (γ, ϕ) such that the conclusions (a)
and (b) of Lemma 4.7 apply. Moreover (f+, f−) is a

(
Q− 1

2

)
Dir-

minimizer which collapses at the interface.

Before coming to the proof of the latter theorem we need two im-
portant technical ingredients.

4.1.1. Interpolation lemma. The following technical lemma al-
lows to “glue” together two different functions and will be instrumental
to several proofs:

Lemma 4.9 (Interpolation). Let U ⊂ Rm be a domain with smooth
boundary ∂U and let γ ⊂ Rm be a smooth interface that intersects ∂U
transversally and divides U into two subdomains U±. Then for every
compact subset K ⊂ U there exist constants C, λ0 > 0 depending on

• m,Q, K,
• the C2 regularity of U and γ,
• and min{|Tx∂U − Txγ| : x ∈ γ ∩ ∂U},

such that the following holds.
Let (f+, f−), (g+, g−) be two

(
Q− 1

2

)
-valued maps in U with in-

terface (γ, ϕ|γ) for some ϕ ∈ W 1,2(U). Additionally we assume that
(f+, f−) collapses at the interface. Then for every 0 < λ < λ0 there
exist open sets K ⊂ Vλ ⊂ Wλ ⊂ U and a

(
Q− 1

2

)
-valued map (ζ+, ζ−)

in Wλ \ Vλ with the following properties:
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(a) ζ±(x) =

{
f±(x), if x ∈ ∂W±

λ

g±(x), if x ∈ ∂V ±λ
;

(b) ζ has interface (γ, ϕ|γ);
(c) the following estimate holds∫

W±λ \Vλ
|Dζ±|2 ≤ Cλ

∫
U±\K

(
|Df±|2 + |Dg±|2 +Q|Dϕ|2

)
+
C

λ

∫
U±\K

G(f±, g±)2. (4.1)

If in addition f and g are Lipschitz then ζ can be chosen to satisfy

Lip(ζ±) ≤ C

(
Lip(f±) + Lip(g±) +

1

λ
sup

x∈U\K
G(f±, g±)(x)

)
. (4.2)

Remark 4.10. If U = B1 ⊂ Rm, we can take any λ0 ≤ 1
4

and we
may assume that Vλ = Bs−λ and Wλ = Bs for some s ∈]1 − λ0, 1[,
while the constant C in the estimates depends only on m,n,Q. Fur-
thermore, with an obvious scaling and translation argument, we can
get a corresponding statement for U = Br(x).

Proof. We divide the proof in some steps:

Step 1: Choice of ”cylindrical” coordinates around ∂U : We may
assume that there is a smooth function d such that:

• U = {d > 0};
• 0 is a regular value of d.

In particular there is η > 0 such that

|∇d(x)| > η in a neighborhood of U ′ of ∂U . (4.3)

As it will be customary in the sequel, we will use the symbol pπ to
denote the orthogonal projection onto a plane π. By assumption γ
intersects ∂U transversally: hence, possibly choosing η > 0 and U ′

smaller, we can also assume

|pTxγ(∇d(x))| ≥ η ∀x ∈ γ ∩ U ′ . (4.4)

In order to simplify our notation from now on we will set (∇d(x))T =
pTxγ(∇d(x)).

The inequalities above imply that we can define a smooth vectorfield
X in a neighborhood V of ∂U with the following properties:

(A) |X| = 1 and 〈∇d(x), X(x)〉 > η
2

for all x ∈ V ;

(B) X = (∇d(x))T

|(∇d(x))T | for all x ∈ V ∩ γ.
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Let ψ : V × [−t0, t0]→ Rm be the flow generated by X. Hence the map

(y, t) ∈ ∂U × [−t0, t0] 7→ ψ(y, t)

gives a parametrization of a neighborhood V ′ of ∂U with the additional
property that

ψ(y, t) ∈ γ for all (y, t) ∈ γ ∩ ∂U × [0, t0]. (4.5)

Possibly decreasing t0, we may assume that ψ(∂U×]0, t0[) ⊂ U \K.

Step 2: Reduction to ϕ = 0. Instead of considering f, g directly, we
look first at the two functions

f̃± :=
∑
i

q
f±i − ϕ

y
, g̃± :=

∑
i

q
g±i − ϕ

y
.

Note that they satisfy the same assumptions of f and g but with in-
terface (γ, 0). Furthermore, one readily checks that

|Df̃±|2(x) ≤ 2|Df±|2(x) + 2Q|Dϕ|2(x) (4.6)

and similarly for g̃. Additionally we have that

G(f̃±, g̃±) = G(f±, g±).

Step 3: Choice of Vλ ⊂ Wλ and definition of ζ̃ for f̃ , g̃. Define next

f̄±(y, t) := f̃±(ψ(y, t))

ḡ±(y, t) := g̃±(ψ(y, t)) and

ϕ̄(y, t) := ϕ(ψ(y, t) .

Set now λ0 := t0, let λ be a positive number smaller than λ0 and select
the natural number N such that Nλ ≤ t0 < (N+1)λ. For our purposes,
by making t0 slightly smaller, from now on we can assume λ = t0

N
.

Consider the disjoint intervals Ij := [(j − 1) t0
N
, j t0

N
[ for j = 1, . . . , N .

Then there must be at least one j ∈ {1, . . . , N − 1} such that∫
(∂U)±×Ij

|Df̄±|2 + |Dḡ±|2 ≤ 8λ

∫
(∂U)±×[0,t0]

|Df̄±|2 + |Dḡ±|2∫
(∂U)±×Ij

G(f̄±, ḡ±)2 ≤ 8λ

∫
(∂U)±×[0,t0]

G(f̄±, ḡ±)2 .

If ϕ 6= 0 we require additionally that∫
(∂U)±×Ij

|Dϕ̄|2 ≤ 8λ

∫
(∂U)±×[0,t0]

|Dϕ̄|2 . (4.7)
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Fix such a j and define

Vλ := U \ψ
(
∂U × [0, jt0/N ]

)
Wλ := U \ψ

(
∂U × [0, (j− 1)t0/N ]

)
,

so that

Wλ \ Vλ = ψ
(
∂U×](j − 1)t0/N, jt0/N ]

)
.

We consider the Almgren embedding ξQ : AQ(Rn) → RN(Q,n) (resp.
ξQ−1 : AQ−1(Rn) → RN(Q−1,n)) and the retraction ρQ : RN(Q,n) →
ξQ(AQ(Rn)) (resp. ρQ−1) as in [13, Theorem 2.1]. We then define the
functions ζ̄+ as

ζ̄+(y, t) = ξ−1
Q ◦ ρQ

(
jλ− t
λ

ξQ(f̄+(y, t)) +
t− (j − 1)λ

λ
ξQ(ḡ+(y, t))

)
.

and analogously for ζ̄−. Finally, we set ζ̃(x) := ζ(ψ−1(x)). The esti-
mates (4.1) and (4.2) are then routine calculations for the case ϕ = 0.

Hence, it remains to check that (ζ̃+, ζ̃−) has interface (γ, 0) , namely
that

ζ̄+(y, t) = ζ̄−(y, t) + J0K whenever x = ψ(y, t) ∈ γ.

Fix thus (y, t) ∈ ∂U×](j − 1)λ, jλ] such that x = ψ(y, t) ∈ γ and

observe that, since f̄+(y, t) = f̃+(x) = Q J0K, f̄−(y, t) = f̃−(x) =
(Q− 1) J0K, and ξQ(Q J0K) = 0, we have

ζ̄+(y, t) = ξ−1
Q ◦ ρQ

(
t− (j − 1)λ

λ
ξ(ḡ+(y, t))

)
.

and the same for ζ̄−. Note next that ξQ(AQ(Rn)) is a cone and in fact

ξQ

(∑
i

JλTiK

)
= λξQ

(∑
JTiK

)
.

We therefore conclude

ζ̄+(y, t) =
∑
i

s
t− (j − 1)λ

λ
(ḡ+)i(y, t)

{
.

and the same for ζ̄−(y, t). Since ḡ+(y, t) = ḡ−(y, t) + J0K we conclude
as well that ζ̄+(y, t) = ζ̄−(y, t) + J0K.

Step 4: The general case. To conclude the proof we finally define

ζ±(x) :=
∑
i

r
ζ̃±i (x) + ϕ(x)

z
.

One readily checks that ζ satisfies the claimed boundary values and
has interface (γ, ϕ). Using once again (4.6) for ζ and exploiting also
(4.7), we obtain the estimates (4.1) and (4.2). �
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4.1.2. A simple measure theoretical lemma. The second tech-
nical ingredient is the following simple measure theoretic fact.

Lemma 4.11. Let µ be a Radon measure supported in a C1 k-
dimensional submanifold M of some Euclidean space. Set

A :=

{
x ∈ spt(µ) : lim inf

r→0

µ(Br(x))

rk
> 0

}
and

B :=

{
x ∈ spt(µ) : lim sup

r→0

µ(Br(x))

µ(B2r(x))
≥ 2−k

}
.

Then µ(M \ A) = 0 = µ(M \B).

Proof. Since the statements can be easily localized, by a C1 change
of variable we can assume that M = Rk. By Radon-Nikodým Theorem
we can decompose µ as

µa + µs = fdx+ µs

where dx is the k-dimensional Lebesgue measure, f is a nonnegative
L1 function and µs is a singular measure with respect to Lebesgue.
Moreover, for µs-a.e. x we have

lim
r→0

µ(Br(x))

ωkrk
=∞

and for µa-a.e. x we have

lim
r→0

µ(Br(x))

ωkrk
= f(x) > 0 .

Combining the above facts one immediately gets that µ(Ac) = 0.
To prove the second claim assume by contradiction that there exists

ε0 > 0 such that the set

Bε0 =

{
x ∈ spt(µ) : lim sup

r→0

µ(Br(x))

µ(B2r(x))
≤ 2−k(1− 2ε0)

}
has positive measure. Since for all x0 ∈ Bε0 there exists r0 such that

µ(Br(x0)) ≤ 2−k(1− ε0)µ(B2r(x0)) for all r ∈ (0, r0],

one easily get that, for all  ≥ 1

µ(B2−jr0(x0))

2−kjrk0
≤ (1− ε0)l

µ(Br0(x0))

rk0
.

Hence, letting j →∞, Bε0 ⊂ A, a contradiction with µ(Bε0) > 0. �
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Remark 4.12. Note that, as a consequence of the above Lemma,
for µ-a.e. x there exists a vanishing sequence {rj} such that

lim
j→∞

µ(Brj(x))

µ(B2rj(x))
≥ 2−k.

Recall moreover that µ(∂Bs(y)) 6= 0 for only countably many radii s.
Since

lim
s↑r

µ(Bs(x)) = µ(Br(x)) ,

we can choose sj < rj so close to rl to ensure

lim
j→∞

µ(Bsj(x))

µ(B2sj(x))
= lim

j→∞

µ(Brj(x))

µ(B2rj(x))
≥ 2−k.

and at the same time enforce the additional property µ(∂B2sj(x)) =
0 = µ(∂Bsj(x)).

4.1.3. Proof of Theorem 4.8: Compactness. : Let (f+
k , f

−
k )

be a sequence of
(
Q− 1

2

)
- Dir-minimizers satisfying the assumption

of the theorem. As in the proof of Theorem 4.2, we can extract a
subsequence such that f±k converges strongly in L2 to a W 1,2 function
f± with Dir(f±,Ω±) ≤ lim infk Dir(f±k ,Ω

±
k ). It remains to prove that,

when Ω′ ⊂ Ω we actually have

Dir(f±,Ω± ∩ Ω′) = lim
k→∞

Dir(f±k ,Ω
±
k ∩ Ω′) .

The argument is the same for f+ and f− and for simplicity we focus
on f+.

Possibly passing to a further subsequence, we may assume that the
sequence of Radon measures µk defined by µk(A) := Dir(f+

k , A ∩ Ω+
k )

converges, weakly? in the sense of measures, to some µ. By lower semi-
continuity of the Dirichlet energy there is then a nonnegative “defect
measure ν” such that

µ(A) = Dir(f+, A ∩ Ω+) + ν(A) for all Borel A ⊂⊂ Ω.

The goal is to show that ν = 0 and we therefore assume, by contra-
diction, that ν > 0. Observe that ν must be supported in γ, because
in the interior of Ω+ we can appeal to [13, Proposition 3.20]. We can
then apply Lemma 4.11 (with M = γ) and the Remark 4.12 to find
that at ν-a.e. point x0 ∈ spt(ν) there is a sequence rj ↓ 0 such that:

lim inf
l→∞

ν(Brj(x0))

ωm−1r
m−1
l

≥ α > 0, ν(Brj(x0)) ≤ (2m−1 + o(1))ν(Brj/2(x0)),

ν(∂Brj(x0)) = 0 = ν(∂Brj/2(x0)).
(4.8)
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Moreover, since ν is singular with respect to the Lebesguem-dimensional
measure, we also have

µ(Brj(x0))

ν(Brj(x0))
= 1 + o(1)

for ν-a.e. x0.

We thus fix an x0 and a sequence rj with the properties above
and also assume, after applying a suitable rotation, that the blow up
ιx0,rj(γ) converges to the hyperplane γ0 = {xm = 0}. We next consider
the sequences2

gj(x) =
f+(x0 + rjx)(
rm−2
j ν(Brj(x0)

) 1
2

and hj(x) =
f+
k(j)(x0 + rjx)(

rm−2
j ν(Brj(x0)

) 1
2

,

where we have chosen k(j) sufficient large such that

max{|µk(j)(Br(x0))− µ(Br(x0))| : r = rj, rj/2} ≤ 2−lrm−2
j ν(Brj(x0)) ;∫

Brj (x0)∩Ω+
k(j)
∩Ω+

G(f+
k(l), f

+)2 ≤ 2−lrm−2
j ν(Brj(x0)) .

Furthermore the choice of k(j) ensures that

Dir(hj,Ω
+
k(j) ∩B1) =

µk(l)(Brj(x0))

ν(Brj(x0))
= 1 + o(1)

and ∫
B1∩{xm>0}

G(gj, hj)
2 ≤ 2−j .

Note that hj and gj are
(
Q− 1

2

)
Dir minimizers which collapse at

their interfaces (γ̃j, ϕ̃j) and (γ̂j, ϕ̂j), respectively, where γ̃j := ιx0,rj(γ),
γ̂j := ιx0,rj(γk(l)) and

ϕ̃j(x) =
ϕ(x0 + rjx)(

rm−2
j ν(Brj(x0)

) 1
2

and ϕ̂j(x) =
ϕk(l)(x0 + rjx)(
rm−2
j ν(Brj(x0)

) 1
2

.

Note that, as l → ∞, γ̃j, γ̂j → γ0 in C1. Moreover ϕ̃j, ϕ̂j → ϕ(x0) in
Cβ, since, thanks to (4.8),

[ϕ̂j]β,γ̂j∩B1 =
rβj [ϕk(l)]β,γk(l)∩Brj (x0)(
rm−2
j ν(Brj(x0))

) 1
2

≤
rβj

αr
1
2
j

[ϕk(l)]β,γk(l)∩Brj (x0)

and β > 1
2

(and similarly for ϕ̃).

2In order to simplify our formulas, we will use the following abuse of notation:
if f =

∑
i JfiK is a multivalued map and λ is a classical real valued function, we

will denote by λf the map x 7→
∑
i Jλfi(x)K.
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We are therefore in the situation of Lemma 4.7 and thus we can
find functions h and g such that, passing to a subsequence, hj → h and
gj → g. Furthermore, by condition (B) above, h = g.

Let us show that this is a contradiction and thus conclude the proof.
Indeed, on the one hand,

Dir(g,B1 ∩ {xm > 0}) ≤ lim inf
l→∞

Dir(f+, Brj(x0))

ν(Brj(x0))
= 0

and, on the other hand, due to the conclusions of Lemma 4.7,

Dir(h,B 1
2
∩ {xm > 0}) = lim

j
Dir(hj, B 1

2
∩ ιx0,rj(Ω

+
k(j)))

= lim
j→∞

µk(j)(Brj/2(x0))

ν(Brj(x0))
= lim

j→∞

µ(Brj/2(x0))

ν(Brj(x0))
≥ 2−(m−1) .

4.1.4. Proof of Theorem 4.8: Minimality. We now come to
the second part of the theorem, namely to the claim that (f+, f−)
is a

(
Q− 1

2

)
Dir-minimizer. This requires a suitable modification of

the same argument given in [13, Proposition 3.20]. We assume by
contradiction that (f+, f−) is not a minimizer and let (g+, g−) be a
suitable competitor, which coincides with (f+, f−) outside of a compact
set K. First of all we notice that we may assume that, by Sard Lemma,
we can find an open set U ⊂ Ω that contains K and intersects γ
transversally.

Thus we have that (g+, g−) = (f+, f−) on ∂U , that g+|γ = JϕK +
g−|γ and that

Dir(g+) + Dir(g−) ≤ Dir(f+) + Dir(f−)− 4c

for some positive c. For each k we let Φk be a diffeomorphism which
maps U onto itself and γk ∩ U onto γ ∩ U . Clearly this can be done
so that ‖Φk −Φ‖C1 → 0, where Φ is the identity map. Thus, from the
convergence in energy of (f+

k , f
−
k ) to (f+, f−) we conclude that, for a

sufficiently large k,

Dir(g+ ◦ Φk) + Dir(g− ◦ Φk) ≤ Dir(f+
k ) + Dir(f−k )− 3c .

Observe that each pair (g+ ◦ Φk, g
− ◦ Φk) has interface (γk, ϕ ◦ Φk),

where ‖ϕ ◦ Φk − ϕk‖C0,β → 0.
In particular, since β > 1

2
, we can fix first ϕ̃ ∈ W 1,2(U) such that

ϕ̃|γ = ϕ. Furthermore, since ‖ϕ ◦ Φk − ϕk‖H1/2(γk) → 0, there is a

sequence of classical W 1,2 functions κk on U such that

• κk = ϕ ◦ Φk − ϕk on γk;
• ‖κk‖W 1,2 → 0.
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This implies that
∫
U
|D(ϕ̃◦Φk−κk)|2 is uniformly bounded. We consider

the maps

h±k :=
∑
i

q
g±i ◦ Φk − κk

y
.

Observe that (h+
k , h

−
k ) have interfaces (γk, ϕk), that G(f±k , h

±
k ) → 0

strongly in L2(U± \K) and that, for k large enough,

Dir(h+
k ) + Dir(h−k ) ≤ Dir(f+

k ) + Dir(f−k )− 2c .

Let us apply the interpolation Lemma 4.9 to the maps (f+
k , f

−
k ), (h+

k , h
−
k )

and the set K ⊂ U . We obtain, for each λ > 0, interpolation maps
(ζ+
k , ζ

−
k ) defined on K ⊂ V k

λ ⊂ W k
λ ⊂ U . We can now define competi-

tors to (f+
k , f

−
k ) on W k

λ by

u±k :=

{
ζ±k on (W k

λ )+ \ V k
λ

h±k on (V k
λ )+.

Using (4.1) one readily checks that, for k sufficiently large and λ > 0
sufficiently small,

Dir(u+
k ) + Dir(u−k ) ≤ Dir(h+

k ) + Dir(h−k ) + Dir(ζ+
k ) + Dir(ζ−k )

≤ Dir(f+
k ) + Dir(f−k )− 2c+ Dir(ζ+

k ) + Dir(ζ−k )

≤ Dir(f+
k ) + Dir(f−k )− c.

This contradicts the minimality of (f+
k , f

−
k ).

4.2. The main frequency function estimate

We start this section by introducing the frequency function and
deriving the main analytical estimate of the entire chapter.

Definition 4.13. Consider f ∈ W 1,2
loc (Ω,AQ(Rn)) and fix any cut-

off φ : [0,∞[→ [0,∞[ which equals 1 in a neighborhood of 0, it is non
increasing and equals 0 on [1,∞[. We next fix a function d : Rm → R+

which is C2 on the punctured space Rm \{0} and satisfies the following
properties:

(i) d(x) = |x|+O(|x|2);
(ii) ∇d(x) = x

|x| +O(|x|);
(iii) D2d = |x|−1(Id− |x|−2x⊗ x) +O(1).

We define the following quantities:

Dφ,d(f, r) :=

∫
Ω

φ

(
d(x)

r

)
|Df |2(x) dx

Hφ,d(f, r) := −
∫

Ω

φ′
(
d(x)

r

)
|∇d(x)|2 |f(x)|2

d(x)
dx .
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The frequency function is then the ratio

Iφ,d(f, r) :=
rDφ,d(f, r)

Hφ,d(f, r)
.

H obviously makes sense when φ is Lipschitz. When φ′ is just a
measure we understand H as an integral with respect to the measure φ′

in the variable d(x)/r and this also makes sense because the integrand is
bounded and continuous on the support of φ′. Of particular interest is
the case when φ is the indicator function of [0, 1[ and d(x) = |x|: then
D(r) is the Dirichlet energy on Br(0), H(r) is the integral

∫
∂Br
|f |2

and I is the usual frequency function defined by Almgren. In the
sequel, if we do not specify φ and d, we then drop the subscripts and
understand that the claims hold for all cut-off functions φ and all d as
in Definition 4.13. If instead we require some more assumptions on φ
or d (for instance a certain regularity) we then leave the cut-off φ or
the function d in the subscripts.

Remark 4.14. Note that if a function d satisfies (i), (ii) and (iii)
in Definition 4.13 with certain implicit constants, than the function
dr(x) = d(rx)/r satisfies the same assumptions with the same constants
(actually smaller). Moreover dr(x)→ |x| in C2

loc(Rm \ {0})∩C0
loc(Rm).

∂Ω

0

Ω

Figure 3. The domain Ω. f in Theorem 4.15 collapses
to Q J0K on ∂Ω.

Theorem 4.15. Let Ω ⊂ Rm be an open set of class C3, with
0 ∈ ∂Ω. Then there is a function d satisfying the requirements of
Definition 4.13 such that the following holds for every φ as in the same
definition.
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If f ∈ W 1,2(Ω ∩B1,AQ(Rn)) satisfies

(i) f |∂Ω∩B1 ≡ Q J0K;
(ii) Dir(f) ≤ Dir(g) for every g ∈ W 1,2(Ω∩B1,AQ(Rn)) such that

g|∂(Ω∩B1) = f |∂(Ω∩B1);

then, either f ≡ Q J0K in a neighborhood of 0, or the limit limr↓0 Iφ,d(f, r) <
+∞ exists and it is a positive finite number.

Remark 4.16. In fact the conclusion of Theorem 4.15 holds for
every d which, additionally to the requirements of Definition 4.13, has
the property that ∇d is tangent to ∂Ω. The existence of such a d is
then guaranteed by a simple geometric lemma, cf. Lemma 4.25.

Remark 4.17. Note that if (f+, f−) is a
(
Q− 1

2

)
-function which

collapses at its interface (∂Ω∩B1, 0), then f+ satisfies the assumptions
of Theorem 4.15.

4.2.1. H ′ and D′. In this section we compute H ′ and D′. Since
there is no possibility of misunderstanding, we omit to specify the de-
pendence of D,H, I on f .

Proposition 4.18. Let φ and d be as in Definition 4.13, assume
in addition that φ is Lipschitz and let Ω be as in Theorem 4.15. If
f ∈ W 1,2(Ω ∩ B1,AQ(Rn)) satisfies condition (i) of Theorem 4.15,
then the following identities hold for every r ∈]0, 1[:

D′(r) = −
∫
φ′
(
|d(x)|
r

)
|d(x)|
r2
|Df |2 dx ; (4.9)

H ′(r) =

(
m− 1

r
+O(1)

)
H(r) + 2E(r) , (4.10)

where

E(r) := −1

r

∫
φ′
(
d(x)

r

)∑
i

fi(x) · (Dfi(x) · ∇d(x)) dx (4.11)

and the constant O(1) appearing in (4.10) depends on the function d
but not on φ.

Remark 4.19. It is possible to make sense of the identities above
even when φ is not Lipschitz. In that case, using the coarea formula
appropriately, it is possible to see that the right hand sides of the
two identities (4.9) and (4.10) are in fact well-defined for a.e. r and
that both D and H are absolutely continuous. Hence, if formulated
appropriately, the proposition is valid for every d and φ as in Definition
4.13, without any additional regularity requirement on φ. This will,
however, not be needed in the sequel.



58 4. REGULARITY FOR
(
Q− 1

2

)
Dir-MINIMIZERS

Proof. The identity (4.9) is an obvious computation. In order to
compute H ′ we first use the coarea formula to write

H(r) = −
∫ ∞

0

∫
{d=ρ}

ρ−1φ′
(ρ
r

)
|∇d(x)||f |2(x) dHm−1(x) dρ

= −
∫ ∞

0

φ′(σ)

σ

∫
{d=rσ}

|∇d(x)||f |2(x) dHm−1(x)︸ ︷︷ ︸
=:h(rσ)

dσ . (4.12)

In order to compute h′(t) we note that ν(x) = ∇d(x)
|∇d(x)| is orthogonal to

the level sets of d and we use the divergence theorem to obtain

h(t+ ε)− h(t) =

∫
{d=t+ε}

|f |2∇d · νdHm−1 −
∫
{d=t}

|f |2∇d · νdHm−1

=

∫
{t<d<t+ε}

div (|f |2∇d(x)) dx (4.13)

=

∫
{t<d<t+ε}

2
∑
i

fi(x) · (Dfi(x) · ∇d(x)) dx

+

∫
{t<d<t+ε}

|f |2∆d(x) dx

Dividing by ε, taking the limit (and using again the coarea formula)
we conclude

h′(t) =

∫
{d=t}

|∇d|−1

(
2
∑
i

fi · (Dfi · ∇d) + |f |2∆d

)
dHm−1 .

(4.14)
By the properties of d, we have that

∆d =
m− 1

d(x)
+O(1).
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Differentiating (4.12) in r, inserting (4.14) and using that if φ(d/r) 6= 0
then d = O(r) we conclude

H ′(r)

= −
∫ ∞

0

φ′(σ)

∫
{d=σr}

1

∇d|

(
2
∑
i

fi · (Dfi · ∇d) + |f |2∆d

)
dHm−1 dσ

= 2E(r)− 1

r

∫
φ′
(
d(x)

r

)
|f |2∆d(x) dx

= 2E(r)− 1

r

∫
φ′
(
d(x)

r

)
|f |2

(
(m− 1) +O(r)

d(x)

)
dx (4.15)

= 2E(r) +

(
m− 1

r
+O(1)

)
H(r) . �

Remark 4.20. Observe that the assumption f = Q J0K on ∂Ω has
been used only in deriving (4.13): without that condition we would
have the additional term

−
∫
∂Ω∩{t<d<t+ε}

|f |2∇d · n

where n is the outward unit normal to ∂Ω. Note in particular that we
could drop the assumption f = Q J0K and add instead the requirement
that ∇d is tangent to ∂Ω.

4.2.2. Lower bound on H.

Lemma 4.21. Assume φ is identically 1 on some interval [0, ρ[.
Under the assumption of Theorem 4.15 there exist constants C0 and
r0, depending only on the C1-regularity of Ω, on ρ and on d (but not
on φ), such that

H(r) ≤ C0rD(r) for all r ≤ r0. (4.16)

Proof. If we introduce the usual scaling fr(x) := f(rx) and dr(x) =
r−1d(rx), then

Hφ,dr(fr, 1) = rm−1Hφ,d(f, r) and Dφ,dr(fr, 1) = rm−2Dφ,d(f, r) .

Observe also that for r ≤ 1 the C1 regularity of the boundary of Ωr :=
{x/r : x ∈ Ω} improves compared to that of Ω and dr satisfies the same
properties of d with better bounds on the errors, see Remark 4.14. By
taking r0 sufficiently small we can assume that

B%r/2 ⊂ {dr < %} ⊂ B2%r for all r ≤ r0 and % ≤ 1. (4.17)
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Let us assume without loss of generality that r0 = 1. If we define the
“distorted balls”

B∗ρ := {x : d(x) < ρ},
the inclusions above imply that they are comparable to the Euclidean
ones up and thus we can transfer most estimates of the last sections
to these new balls. Let us now extend f to be identically 0 outside on
Ω \B∗1 so that we can consider the integrals in the definitions of H(1)
and D(1) as taken over the whole B∗1 .

By a standard approximation procedure we can assume that φ is
smooth. Let 0 < ρ̄ < 1

4
be such that φ is identically 1 on [0, ρ̄]. Then,

as a particular case of Theorem 4.6 we have

[f ]α,B∗ρ̄∩Ω ≤ CDir(f,B+
4ρ̄ ∩ Ω)

1
2 ≤ CD(1)

1
2 ,

where α = α(m,n,Q) and C = C(m,n,Q, ρ̄) and in the last inequality
we have also used (4.17). Of course the same estimate extends trivially
to Bρ̄ \ Ω, where the function vanishes identically. Thus∫

∂B∗ρ̄

|∇d(x)||f |2(x) dx =

∫
∂B∗ρ̄

|∇d(x)|G(f(x), f(0))2 ≤ CD(1) .

(4.18)
On the other hand, using the coarea formula

H(1) = −
∫ 1

ρ̄

φ′(r)

r

∫
{d=r}

|∇d(x)||f |2(x′) dx′ dr = −
∫ 1

ρ̄

φ′(r)

r
h(r) dr ,

(4.19)
where h ≥ 0 is as in (4.12). Integrating by parts we get

H(1) ≤ C

∫
∂B∗ρ̄

|f |2 +

∫ 1

ρ̄

φ(r)(r−1h′(r)− r−2h(r))

≤CD(1) +

∫ 1

ρ̄

φ(r)
h′(r)

r
dr

(4.14)
= CD(1) + C

∫
B∗1\B∗ρ̄

φ(d(x))

d(x)

(
|Df |2 + |f |2

)
≤ CD(1)

+ C

∫
B∗1\B∗ρ̄

φ(d(x))|f |2(x) dx . (4.20)

where the constants depend only on ρ̄ and d, but not on φ. The proof
will be concluded if we can show that∫

B∗1\B∗ρ̄
φ(d(x))|f |2(x) ≤ CD(1) (4.21)
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To this end note that for ρ̄ ≤ r ≤ 1 the function |f |2 vanishes on a non
trivial part of B∗r (namely B∗r \ Ω). Hence by the (m− 1)-dimensional
Poincaré inequality on ∂B∗r∫

∂B∗r

|f |2 ≤ C

∫
∂B∗r

|D|f |2| ≤ C

∫
∂B∗r

|f ||Df |.

Hence, the function h′ defined in (4.14) satisfies:

|h′(r)| ≤ C

∫
∂B∗r

|f ||Df |

Since φ(t) ≥ φ(r) for ρ̄ ≤ t ≤ r ≤ 1, using again the coarea formula we
can now estimate

φ(r)h(r) ≤ φ(r)h(ρ̄) + φ(r)

∫ r

ρ̄

|h′(t)| dt

≤ CD(1) +

∫ r

ρ̄

φ(t)|h′(t)| dt

≤ CD(1) + C

∫
B∗1\B∗ρ̄

φ(d(x))|f ||Df |(x) dx .

Integrating in r and using Young’s inequality we obtain∫
B∗1\B∗ρ̄

φ(d(x))|f |2(x) dx

≤CD(1) + C

∫
B∗1\B∗ρ̄

φ(d(x))|f ||Df |(x) dx

≤CD(1) +
C

ε
D(1) + Cε

∫
B∗1\B∗ρ̄

φ(d(x))|f |2(x) dx .

Choosing ε appropriately we get (4.21) and thus we conclude the proof.
�

Corollary 4.22. Assume φ is identically 1 on some interval [0, ρ[.
Unless f ≡ Q J0K in a neighborhood of 0, the following lower bound for
the frequency function holds:

lim inf
r↓0

I(r) ≥ C0 > 0 ,

where C0 depends only on the C1 regularity of Ω, on ρ and on d.

4.2.3. Outer variations. We now derive the first interesting iden-
tity relating D and E, which is proved variationally using a perturba-
tion of the map in the target.
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Lemma 4.23 (Outer variation). Let Ω and f ∈ W 1,2(Ω∩B1,AQ(Rn))
be as in Theorem 4.15. Then D(r) = E(r) for every 0 < r < 1, where
E(r) is defined in (4.11).

Proof. We first assume φ to be Lipschitz. Consider the family

gε(x) :=
∑
i

r
fi(x) + εφ

(
d(x)
r

)
fi(x)

z

and observe that on ∂Ω we have f(x) = Q J0K and so gε(x) = Q J0K.
Therefore each gε is a competitor and we conclude

d

dε

∣∣∣
ε=0

∫
Ω∩B1

|Dgε|2 = 0 .

Hence

0 =

∫
φ

(
d(x)

r

)
|Df(x)|2 dx

+
1

r

∫
φ′
(
d(x)

r

)∑
i

(Dfi(x) : ∇d(x)⊗ fi(x)) dx

= D(r)− E(r) .

For a general φ it suffices to use a standard approximation argument.
�

4.2.4. Inner variations. We now derive the second key identity,
which uses perturbations of the domain. To this end consider a com-
pactly supported vector field Y which is tangent to ∂Ω (i.e. such that
such that Y (x) · ν(x) = 0 for all x ∈ ∂Ω, where ν denotes the outward
unit normal to ∂Ω). Let Φt the one-parameter family of diffeomor-
phisms generated by Y , namely Φt(x) = Φ(x, t) where{

∂tΦ(x, t) = Y (Φ(x, t))

Φ(x, 0) = x .

Obviously Φt maps Ω into itself and, more importantly, maps ∂Ω into
itself. In particular we have the following lemma.

Lemma 4.24 (Inner variation). Consider a modified distance func-
tion d as in Definition 4.13 such that ∇d(x) · ν(x) = 0 for every
x ∈ ∂Ω ∩ B1, where ν denotes the outward unit normal to Ω and fix a
Lipschitz φ as in the same same definition. Let

Y (x) = φ

(
d(x)

r

)
d(x)∇d(x)

|∇d(x)|2
.
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and let Φt be the flow generated by Y . Then

InV :=
d

dt

∣∣∣∣
t=0

∫
|D(f(Φt(x))|2 = 0 . (4.22)

In particular, if we define

G(r) := −1

r

∫
φ′
(
d(x)

r

)
d(x)

r|∇d(x)|2
∑
i

|Dfi(x) · ∇d(x)|2 dx ,

we conclude

D′(r)−
(
m− 2

r
−O(1)

)
D(r)− 2G(r) =

InV

r
= 0 , (4.23)

where the constant O(1) depends on d and Ω but not on φ. In particular
the latter identity holds even for a general φ as in Definition 4.13.

Proof. (4.22) is obvious by the minimality of f , because Φt(∂Ω) =
∂Ω. We thus just need to prove the identity between the left hand side
of (4.23) and InV in (4.22). Note that, by standard computations (cf.
[13])

InV = 2

∫ ∑
i

Dfi : DfiDY −
∫
|Df |2div Y . (4.24)

Hence, by the properties of d, we compute

DY = φ′
(
d

r

)
d

r
|∇d|−2∇d⊗∇d+ φ

(
d

r

)
D
(
|∇d|−2d∇d

)
= φ′

(
d

r

)
d

r
|∇d|−2∇d⊗∇d+ φ

(
d

r

)
(Id +O(d))

= φ′
(
d

r

)
d

r
|∇d|−2∇d⊗∇d+ φ

(
d

r

)
(Id +O(r)) ,

and

div Y = φ′
(
d

r

)
d

r
+ φ

(
d

r

)
(m+O(r)) .

Plugging the latter identities in (4.24) and recalling the formula (4.9)
for D′, we conclude the proof. �

4.2.5. A good function d. In this section, relying on the C3 reg-
ularity of ∂Ω we construct a modified distance function whose gradient
is tangent to ∂Ω. We believe that the same result can be achieved
with less regularity of ∂Ω, namely C2, however since we will not need
this in the sequel, we stick to C3 regularity, where the proof is rather
straightforward.
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Lemma 4.25. Let Ω be a C3 domain such that 0 ∈ Ω and T0∂Ω =
{xm = 0}. Then there is a continuous function d : Ω → R+ which
belongs to C2(Ω \ {0}) and such that

(a) ∂Jd(x) = ∂J |x|+O(|x|2−|J |) for every multiindex J with |J | ≤
2;

(b) ∇d is tangent to ∂Ω.

Proof. Consider normal coordinates on a sufficiently small tubu-
lar neighborhood Uδ of ∂Ω and construct a diffeomorphism between Uδ
and a tubular neighborhood Vδ of a suitable subset of Rm−1×{0} with
the properties that:

• Φ ∈ C2, Φ(0) = 0 and DΦ|0 = Id;
• Φ(∂Ω) ⊂ Rm−1 × {0};
• For every p ∈ ∂Ω and every vector ν normal to ∂Ω at p,
DΦ|p(ν) is normal to Rm−1 × {0}.

The existence of such diffeomorphism follows easily from our assump-
tions. Define then d(x) := |Φ(x)|. It is obvious that d(x) = |x| +
O(|x|2). Computing the first and second derivatives we get, using Ein-
stein’s summation convention,

∂id =
Φk∂iΦ

k

|Φ|
=

xi
|x|

+O(|x|) (4.25)

∂2
ijd =

∂jΦ
k∂iΦ

k

|Φ|
+

Φk∂ijΦ
k

|Φ|
− Φk∂iΦ

kΦl∂jΦ
l

|Φ|3

= |x|−1δij − |x|−3xixj +O(1) . (4.26)

In particular (a) follows easily.
Next, consider a vector v orthogonal to ∂Ω at p 6= 0, let z = Φ(p).

Let 〈·, ·〉 be the standard Euclidean scalar product and observe that,
from the first equality in (4.25), we get

〈∇d(p), v〉 = |z|−1〈z,DΦ|p(v)〉 . (4.27)

On the other hand, since z = Φ(p) ∈ Rm−1 × {0} and DΦ|p(v) ∈
(Rm−1×{0})⊥ by the assumptions on Φ above, we clearly have 〈∇d(p), v〉 =
0. We conclude that ∇d is orthogonal to any vector field normal to ∂Ω
and thus it must be tangent to ∂Ω. �

4.2.6. Proof of Theorem 4.15. Assume that φ and d have the
properties of Definition 4.13. As a consequence of Lemma 4.25 we may
assume that ∇d · ν = 0 on Br0(0). This implies that the conditions of
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Proposition 4.18, Lemma 4.23, 4.24 are satisfied. Hence,

− d

dr
ln(I(r)) =

H ′(r)

H(r)
− D′(r)

D(r)
− 1

r

(4.10),(4.9)
=

2E(r)

H(r)
− 2G(r)

D(r)
+O(1)

Furthermore due to (4.23) we have

H(r)E(r)

(
E(r)

H(r)
− G(r)

D(r)

)
=
(
E(r)2 −H(r)G(r)

)
=

(
1

r

∫
φ′
(
d

r

)∑
i

fi · (Dfi · ∇d)

)2

−
(∫

φ′
(
d

r

)
|∇d|2

d
|f |2
)(

1

r

∫
φ′
(
d

r

)
d

r

1

|∇d|2
∑
i

(Dfi · ∇d)2

)
≤ 0,

due to the Cauchy–Schwarz inequality. Moreover the equality holds if
and only if there is a function αr such that

fi = αr
d

|∇d|2
(Dfi · ∇d) (4.28)

Finally we deduce, that

− d

dr
ln(I(r)) ≤ O(1) (4.29)

and therefore we deduce that, for r < r0,

r 7→ eCrI(r)

is monotone. This directly implies that limr↘0 e
CrI(r) = I0 exists.

Moreover, by Corollary 4.22, we have I0 ≥ C0 > 0.

4.3. Further consequences of the frequency estimate

As a further consequence of the almost monotonicity of the fre-
quency we obtain the following result, compare [13, Corollary 3.16].

Corollary 4.26. Under the assumptions of Theorem 4.15 there
exists a constant C such that setting I(0) = I0 > 0 for every λ > 1
there exists r1 ≤ r0 for which the following estimates hold true

(a) λ−1I0 ≤ I(r) ≤ λI0 for all r < r1;
(b) for all 0 ≤ s ≤ t ≤ r1

e−C(t−s)
(
t

s

)m−1+2λ−1I0

≤ H(t)

H(s)
≤ eC(t−s)

(
t

s

)m−1+2λI0

; (4.30)
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(c) for all 0 ≤ s ≤ t ≤ r1

λ−2e−C(t−s)
(
t

s

)m−2+2λ−1I0

≤ D(t)

D(s)
≤ λ2eC(t−s)

(
t

s

)m−2+2λI0

.

(4.31)

Proof. Point (a) is an immediate consequence of the almost mono-
tonicity of the frequency, (4.29)

Concerning point (b), using (4.10) and Lemma 4.23, we compute

d

dr
ln

(
H(r)

rm−1

)
=
H ′(r)

H(r)
− m− 1

r
=

2

r
I(r) +O(1) .

Integrating the above identity between 0 ≤ s ≤ t ≤ r1 and using point
(a), we obtain the estimate 4.30.

To prove (c), we have only to note that

D(t)

D(s)
=
I(t)

I(s)

(
t

s

)−1
H(t)

H(s)

and appeal to points (a) and (b). �

Corollary 4.27. Under the assumptions of Theorem 4.15 with
I0 = I(0), there are constants λ > 1 (depending only on φ), C̄ > 1
(depending on φ, d and I0) and r1 > 0 such that the following estimate
holds for all 0 < λ2s < t < r1:

C̄−1

(
t

s

)m−2+2λ−1I0

≤
∫

Ω∩Bt|Df |
2∫

Ω∩Bs|Df |
2
≤ C̄

(
t

s

)m−2+2λI0

. (4.32)

When φ = 1[0,1], we can choose both λ and C̄ arbitrarily close to 1,
provided r1 is small enough.

Proof. Recall that φ ≡ 1 on some interval [0, ρ̄[. By the assump-
tions on d, for any λ > ρ̄−1 there is then a positive r1 such that

1Bλ−1r
(x) ≤ φ

(
d(x)

r

)
≤ 1Bλr(x) ∀r < r1,∀x ∈ Rm .

Hence we deduce that

D(λ−1r) ≤
∫
Br∩Ω

|Df |2 ≤ D(λr),

and we conclude the proof from (4.31). When φ = 1[0,1] we can choose
any λ > 1. Note moreover that the constant C̄ in (4.32) can be taken
to be eCr1λτ where the exponent τ depends only on I0 and m. The last
claim of the corollary is thus obvious. �
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Lemma 4.28. Let Ω ⊂ Rm be an open set of class C3 with 0 ∈ ∂Ω.
Furthermore assume f ∈ W 1,2(Ω∩B1,AQ(Rn)) satisfies the assumption
of Theorem 4.15. Then, for any rk ↓ 0, there is a subsequence, not
relabeled, such that 3

(a) f̂k(x) :=
(
r2−m
k

∫
Brk∩Ω

|Df |2
)− 1

2
f(rkx) converges to a map g ∈

W 1,2(H,AQ(Rn)) such that g = Q J0K on ∂H, where H is some
halfspace containing the origin.

(b) g is Dirichlet minimizing, in the sense that Dir(g,BR ∩H) ≤
Dir(h) for every R > 0 and for every h ∈ W 1,2(H∩BR,AQ(Rn))
such that g|∂(H∩BR) = h|∂(H∩BR).

(c) g(x) = |x|I0g( x
|x|), where I0 = limr↓0 Id,φ(0) (which exists thanks

to Theorem 4.15).

Proof. Let d, φ be a distance function and cut-off function that
are admissible in the sense of Theorem 4.15. As before we intro-
duce the usual scaling fr(x) = f(rx), dr(x) = r−1d(rx) and Ωr :=
{x/r : x ∈ Ω}. Observe that Ωr converges locally in C2 to a halfspace
H, which up to a rotation we may assume to be {x : xm > 0}. Fur-
thermore, by Remark 4.14 dr(x)→ |x| in C2

loc(Rm \{0}). Moreover, by
direct computation, Hφ,dr(fr, R) = rm−1Hφ,d(f, rR) and Dφ,dr(fr, R) =
rm−2Dφ,d(f, rR), for any R > 0.

Let us pick λ and r1 > 0 such that the conclusions of Corollary 4.27
apply. Then, for every R > 1, the following estimate holds provided r
is sufficiently small:∫

BR∩Dom (f̂±r )

|Df̂r|2 ≤ C(I0,m)Rm−2+2I±0

∫
B1∩Dom (f̂±r )

|Df̂r|2 ,

where Dom (f̂±) denote the domains of the rescaled functions f̂±. Ap-
pealing to [29, Theorem 3.6] we deduce the existence of g satisfying
(a) and (b).

It remains to prove (c). Observe that (a), (b) together with dr → |·|
in C2 imply, for R > 0,

Id,φ(0) = lim
k→∞

RrkDd,φ(f, rkR)

Hd,φ(f, rkR)
= lim

k→∞

RDdrk ,φ
(f̂rk , R)

Hdrk ,φ
(f̂rk , R)

=
RD|·|,φ(g,R)

H|·|,φ(g,R)
.

Now (iii) follows by straightforward adaption of the proof of [13, Corol-
lary 3.16] using (4.28). �

3Here again we are using the following abuse of notation: if λ is a scalar and
P =

∑
i JPiK an element in AQ(Rn), then λP =

∑
i JλPiK.
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4.4. Blowup: proof of Theorem 4.5 with ϕ ≡ 0

The proof is based on the monotonicity of the frequency function
and the fact that it ensures two things: non-triviality of the blow-ups
and radial homogeneity.

More precisely, we have the following:

Lemma 4.29. Let (f+, f−) be a
(
Q− 1

2

)
Dir-minimizer which col-

lapses at the interface (γ, 0), where γ is C3. Fix p ∈ γ and, unless
(f+, f−) is identically (Q J0K , (Q−1) J0K) in some ball Br(0), for every
r define

f̂±p,r(x) :=
1

∆p,r

f±(p+ rx) .

The normalizing factor ∆p,r is chosen to fulfill

∆2
p,r = r2−m

∫
B+
r (p)

|Df+|2 + r2−m
∫
B−r (p)

|Df−|2,

so that

Dir(f̂+
p,r, B1) + Dir(f̂−p,r, B1) = 1.

If we set π = Tpγ, then, up to subsequences, the pair of sequences
(f+
p,r, f

−
p,r) converges to a

(
Q− 1

2

)
Dir-minimizer (g+, g−) which col-

lapses at the interface (π, 0) satisfying the following properties:

(a) The convergence is as in Theorem 4.8.
(b) Dir(g+) + Dir(g−) = 1.
(c) (g+, g−) is radially homogeneous, namely g±(rx) = rI0g±(x),

where, if we fix φ = 1[0,1] in Definition 4.13, then

I0 = lim
r↓0

r (D(f+, r) +D(f−, r))

H(f+, r) +H(f−, r)
(4.33)

Proof. After a translation we may assume that p = 0. Observe
that both x 7→ f+(x) and x 7→ f−(x) satisfy the assumptions of Theo-
rem 4.15. Let us define the single normalization factors

(∆±r )2 := r2−m
∫
B±r

|Df±|2,

so that ∆2
r = (∆+

r )2 + (∆−r )2. Thanks to Lemma 4.28, given any
sequence rk → 0 there is a subsequence (not relabeled) such that

f̃±k (x) := 1
∆±rk

f±(rkx) converge to some g̃±(x), which are homogeneous

with exponent I±0 . Since(
f̂+
r (x), f̂−r (x)

)
=

(
∆+
r

∆r

f̃+
r (x),

∆−r
∆r

f̃−r (x)

)
,
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it is sufficient to understand the possible limits of α±k :=
∆±rk
∆rk
∈ [0, 1].

Up to subsequences, we may assume that their limits exist and are
α± ≥ 0. Due to the properties of ∆±r and ∆r, we have

(α+)2 + (α−)2 = 1.

Point (a) agrees with the statement of Theorem 4.8 since(
f̂+
rk

(x), f̂−rk(x)
)
→ (α+g̃+, α−g̃−) = (g+, g−).

We now distinguish three cases depending on the values of

I± = lim
r→0

rD(f±, r)

H(r)

Case I+
0 = I−0 : In this case the tangent function (g+, g−) is I+

0 =
I−0 homogeneous and satisfies (b). Point (c) follows from the simple
observation that

r (D(f+, r) +D(f−, r))

H(f+, r) +H(f−, r)
=

(
∆+
r

∆r

)2

D(f̃+
r , 1) +

(
∆−r
∆r

)2

D(f̃−r , 1)(
∆+
r

∆r

)2

H(f̃+
r , 1) +

(
∆−r
∆r

)2

H(f̃−r , 1)
.

Case I+
0 > I−0 : We claim that in this case α+ = 0, so that (g+, g−) =

(Q J0K , g̃−) is I0 = I−0 - homogeneous. Pick λ > 1 such that λI−0 <
λ−1I+

0 . For r1 > 0 sufficiently small, such that Corollary 4.27 applies
for f+ and f−, we may choose r < r1. Using (4.32), for some fixed
t < r1 and for any s < t, we have that∫

B+
s
|Df+|2∫

B−s
|Df−|2

≤ λ2m+2λI−0

(s
t

)λ−1I+
0 −λI

−
0

∫
B+
t
|Df+|2∫

B−t
|Df−|2

.

By our choice of λ this converges to 0 as s→ 0.
Case I+

0 < I−0 : We argue as in the previous case swapping + and −
and conclude that α− = 0. �

Definition 4.30. A (g+, g−) as above will be called, from now on,
a tangent function to (f+, f−) at p.

Remark 4.31. Let (g+, g−) be a tangent function to some (f+, f−)
at some point p. Let q ∈ Tpγ \{0} and let us consider a further tangent
function (g+

1 , g
−
1 ) to (g+, g−) at q. Then, by [13, Lemma 12.3], (g+

1 , g
−
1 )

is invariant along the direction q, namely g±1 (x+λq) = g±(x) for every
λ ∈ R.

As a simple corollary we then conclude the following:
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Lemma 4.32. Let (f+, f−) and p ∈ γ be as in Lemma 4.29. Con-
sider a tangent function (g+, g−) to (f+, f−) at p. Moreover fix a
base e1, . . . , em−1 of π = Tpγ, and define inductively (g+

1 , g
−
1 ) to be

a tangent function to (g+, g−) at e1 and (g+
j , g

−
j ) to be a tangent func-

tion to (g+
j−1, g

−
j−1) at ej. Then (h+, h−) = (g+

m−1, g
−
m−1) is given by

(Q JLK , (Q− 1) JLK), where L is a nonzero linear function which van-
ishes on π.

Proof. Assume π = {x : xm = 0}. Applying the remark above
m times we infer the existence of a map (h+, h−) with the following
properties:

• (h+, h−) is a
(
Q− 1

2

)
Dir-minimizer which collapses at the

interface (π, 0);
• (h+, h−) depends only on xm, namely there exist Q-valued

function α+ : R+ → AQ(Rn) and a (Q − 1)-valued function
α− : R− → AQ−1(Rn) such that h±(x) = α±(xm);
• (h+, h−) is an I-homogeneous function for some I > 0, namely

there is a Q-point P and a (Q−1)-point P ′ such that α+(xm) =
xImP and α−(xm) = (−xm)IP ′.
• Dir(h+, B1) + Dir(h−, B1) = 1.

Since (h+, h−) is a Dir-minimizer both h+ and h− are classical harmonic
functions and, since they depend only upon one variable, we necessarily
have that I = 1. So there are coefficients β+

1 , . . . , β
+
Q and β−1 , . . . , β

−
Q−1

such that

h+(x) =

Q∑
i=1

q
β+
i xm

y

h−(x) =

Q−1∑
i=1

q
β−i xm

y
.

If Q = 1, then there is nothing to prove. If Q > 1, then necessarily for
every choice of i and j the function

k(x) =

 β+
j xm if xm ≥ 0

β−i xm if xm < 0

must be harmonic and hence linear. This implies that all β−i and β+
j

coincide. The claim of the lemma follows. �

Remark 4.33. The above result is the key step to establish Theo-
rem 4.5. Note that in proving that the only 1 homogeneous 1 dimen-
sional

(
Q− 1

2

)
Dir-minimizer which collapses at the interfaces (π, 0)
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we have used in an essential way that only one sheet has to take care
of the interface, while the values of the others can be modified even
over γ. In other words the above result is easily seen to be false if we
would have required to be minimizers only with respect to variations
that keep the pair f+ and f− completely fixed over γ.

As a simple corollary of the above Lemma we have:

Corollary 4.34. Assume (f+, f−) is a
(
Q− 1

2

)
Dir-minimizer

with collapsed interface (γ, 0), where γ is C3. If η ◦ f− = η ◦ f+ = 0,
then f+ = Q J0K and f− = (Q− 1) J0K.

Proof. If (f+, f−) is identically (Q J0K , (Q − 1) J0K) in a neigh-
borhood U of a point p ∈ γ, then, by the interior regularity theory of
Dir-minimizer, (f+, f−) is identically (Q J0K , (Q − 1) J0K) in the con-
nected component of the domain of (f+, f−) which contains p. Thus,
if the corollary were false, then there would be a point p such that
Dir(f+, Br(p)) + Dir(f−, Br(p)) > 0 for every r > 0.

If we consider (h+, h−) as in Lemma 4.32, we conclude that η◦h+ =
η ◦ h− = 0, since such property is inherited by each tangent map. But
then the nonzero linear function L of the conclusion of Lemma 4.32
should equal η ◦ h+ on {xm > 0} and η ◦ h− on {xm ≤ 0}. Hence L
should vanish identically, contradicting Lemma 4.32. �

Corollary 4.35. Theorem 4.5 holds when ϕ = 0.

Proof. We start noticing that by classical elliptic regularity, the
functions η ◦ f± belong to C1(Ω± ∪ γ). Let ν be the unit normal to γ.
We claim that

∂ν(η ◦ f+)(p) = ∂ν(η ◦ f−)(p) for all p ∈ γ ∩ Ω. (4.34)

The claim will be proved below, whereas we first show that it is enough
to conclude. Indeed it implies that the function

ζ =

 η ◦ f+ on Ω+

η ◦ f− on Ω−
(4.35)

is a harmonic function. Now let us subtract it from (f+, f−), namely
let us define the functions

f̃+ =
∑
i

q
f+
i − ζ

y
(4.36)

f̃− =
∑
i

q
f−i − ζ

y
. (4.37)
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We conclude that (f̃+, f̃−) is a
(
Q− 1

2

)
Dir-minimizer which collapses

at the interface (γ, 0) and that η ◦ f̃+ = η ◦ f̃− = 0. Thus we apply

Corollary 4.34 and conclude that f̃+ = Q J0K and f̃− = (Q − 1) J0K,
which complete the proof.

To prove claim (4.34) assume by contradiction that, at some point
p ∈ γ ∩ Ω, we have ∂ν(η ◦ f+)(p) 6= ∂ν(η ◦ f−)(p) and consider a
tangent function (g+, g−) to (f+, f−) at p, which is the limit of some
(f+
p,ρk

, f−p,ρk). Observe that, since at least one among ∂ν(η ◦ f+)(p) and
∂ν(η ◦ f−)(p) differs from 0, we necessarily have

Dir(f+, Bρk(p)) + Dir(f−, Bρk(p)) ≥ c0ρ
m
k

for some constant c0. We then have just two possibilities:

(A) lim supk(ρk)
−m(Dir(f+, Bρk(p)) + Dir(f−, Bρk(p))) = ∞. In

this case the tangent function (g+, g−) has zero average, namely
η ◦ g+ = η ◦ g− = 0. By Corollary 4.35, (g+, g−) should
be trivial. But this is not possible because Dir(g+, B1) +
Dir(g−, B1) = 1.

(B) lim supk(ρk)
−m(Dir(f+, Bρk(p)) + Dir(f−, Bρk(p))) < ∞. In

this case we have that η ◦ g+ and η ◦ g− are also nontrivial
and linear. Moreover they are two distinct linear functions.

We can apply this argument to the tangent functions of (g+, g−) and
since the case (A) is always excluded, after applying it m−1 times, we
reach a pair (h+, h−) as in Lemma 4.32, with the property that η ◦ h+

and η ◦ h− are two distinct linear functions. However this contradicts
the conclusion of Lemma 4.32. �

4.5. Proof of Theorem 4.5: general case

Proof. Let ν be the unit normal to γ. As above, we claim that

∂ν(η ◦ f+) = ∂ν(η ◦ f−) .

With this claim, proceeding as in the proof of Corollary 4.35, we can
define ζ as in (4.35) and conclude that it is a harmonic function. We

then define (f̃+, f̃−) as in (4.36) and (4.37). To this pair we can apply
Corollary 4.34 and conclude.

To prove the claim, assume by contradiction that, for some p ∈ γ,
we have that ∂ν(η◦f+)(p) 6= ∂ν(η◦f−)(p). . Without loss of generality
we can assume that p = 0, ϕ(0) = 0 and Dϕ(0) = 0. Since at least one
among Df±(0) does not vanish, we must have

Dir(f+, Bρ) + Dir(f−, Bρ) ≥ c0ρ
m (4.38)
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for some positive constant c0. It also means that there exist a constant
η > 0 and a sequence ρk ↓ 0 such that

Dir(f+, Bρk) + Dir(f−, Bρk) ≥ η(Dir(f+, B2ρk) + Dir(f−, B2ρk)) ,

otherwise we would contradict the lower bound (4.38). If we now define
the blow-up functions

f±ρk(x) :=
f±(ρkx)

Dir(f+, Bρk) + Dir(f−, Bρk)
.

we see that they have finite energy on B2 and thus there is strong
convergence of a subsequence to a

(
Q− 1

2

)
Dir-minimizer (g+, g−) with

interface (Tpγ, 0). The latter must then have Dirichlet energy 1 on B1.
We then have two possibilities:

(A) lim supk(ρk)
−m(Dir(f+, Bρk)+Dir(f−, Bρk)) =∞. Arguing as

in the proof of Corollary 4.34, this gives that η◦g+ = η◦g− =
0. Thus, applying Corollary 4.34 we conclude that (g+, g−) is
trivial, which is a contradiction.

(B) lim supk(ρk)
−m(Dir(f+, Bρk) + Dir(f−, Bρk)) < ∞. Assuming

in this case that T0γ = {xm = 0}, we conclude that (g+, g−) is
a
(
Q− 1

2

)
Dir-minimizer with flat interface (T0γ, 0), but also

that η ◦ g±(x) = c̄∂ν(η ◦ f±)(0)xm for some positive constant
c̄. By Corollary 4.35, we then conclude that ∂ν(η ◦ f+)(0) =
∂ν(η ◦ f−)(0).

�





CHAPTER 5

First Lipschitz approximation and harmonic
blow-up

In this chapter we assume that π0 = Rm × {0} and we use the
notation p and p⊥ for the orthogonal projections onto π0 and π⊥0 re-
spectively., whereas pπ and p⊥π will denote, respectively, the orthogonal
projections onto the plane π and its orthogonal complement π⊥. We
also introduce the notation Br(p, π) for the disks Br(p) ∩ (p + π) and
Cr(p, π) for the cylinders Br(p, π)+π⊥. If π is omitted, then we assume
π = π0.

Definition 5.1. For a current T in a cylinder Cr(p, π) we de-
fine the cylindrical excess E and the excess measure eT of a set F ⊂
B4r(pπ(p), π) as

E(T,Cr(p, π)) :=
1

2ωmrm

∫
Cr(p,π)

|~T − ~π|2 d‖T‖

eT (F ) :=
1

2

∫
F+π⊥

|~T − ~π|2 d‖T‖ .

The height in a set G ⊂ Rm+n with respect to a plane π is defined as

h(T,G, π) := sup{|p⊥π (q − p)| : q, p ∈ spt(T ) ∩G} . (5.1)

The aim of this chapter is to produce a Lipschitz
(
Q− 1

2

)
-valued ap-

proximation for area-minimizing currents in a neighborhood of bound-
ary points where the latter are sufficiently flat. For this reason we
will introduce a set of assumptions: in this chapter we will work under
these assumptions and only later we will show when we will in fact fall
under them. In what follows, in order to simplify our notation, we will
assume that (x, 0) ∈ π0 and we will abuse the notation by identifying
Rm with π0 = Rm×{0}: in particular we will use Cr(x) for the cylinder
Cr(x, π0) and we will use the same symbol F for subsets F ⊂ Rm and
for the corresponding F ×{0} ⊂ π0. Similarly we will write F ×Rn for
the set F × {0}+ π⊥0 .

Assumption 5.2. Γ ⊂ Σ is a C2 submanifold of dimension m − 1
and Σ ⊂ Rm+n is a C2 submanifold of dimension m + n̄ = m + n − l

75
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containing Γ. We assume moreover that both Σ and Γ are graphs of
entire functions Ψ : Rm+n̄ → Rl and ψ : Rm−1 → Rn̄+1+l satisfying the
bounds

‖Dψ‖0 + ‖DΨ‖0 ≤ c0 and A := ‖AΓ‖0 + ‖AΣ‖0 ≤ c0 (5.2)

where c0 is a positive (small) dimensional constant.
T is an integral current of dim. m with ∂T C4r(x) = JΓK C4r(x)

and spt(T ) ⊂ Σ. Moreover we assume that

(i) p = (x, 0) ∈ Γ and TpΓ = Rm−1 × {0} ⊂ π0;
(ii) γ = p(Γ) divides B4r(x) in two disjoint open sets Ω+ and Ω−;
(ii) for some integer Q

p#T = Q
q
Ω+

y
+ (Q− 1)

q
Ω−

y
; (5.3)

(iv) T is area minimizing in Σ ∩C4r(x);
(v) Q− 1

2
≤ Θ(T, q) for every q ∈ Γ ∩C4r(x).

Observe that thanks to (5.3) we have the identities

E(T,C4r(x)) =
1

ωmrm
(
‖T‖(C4r(x))− (Q|Ω+|+ (Q− 1)|Ω−|)

)
(5.4)

eT (F ) = ‖T‖(F × Rn)− (Q|Ω+ ∩ F |+ (Q− 1)|Ω− ∩ F |) .
(5.5)

Definition 5.3. Given a current T in a cylinder C4r(p, π) we in-
troduce the non-centered maximal function of eT as

meT (y) := sup
y∈Bs(z,π)⊂B4r(p,π)

eT (Bs(y, π))

ωmsm
.

Again abusing the notation, under Assumption 5.2 we regard meT
has a function on B4r(x) ⊂ Rm.

In what follows, given a Q-valued function u, we denote by Gr(u)
and Gu respectively the set theoretic graph of u and the integer rectifi-
able current naturally induced by it. For the precise definition we refer
to [15]. We next rotate the coordinates keeping π0 fixed and achieving
suitable estimates for DΨ: the argument is the same as in [14, Remark
2.5].

Remark 5.4 (Estimates on Ψ in good Cartesian coordinates).
Assume that T is as in Assumption 5.2 in the cylinder C4r(x). If
E := E(T,C4r(x)) is smaller than a geometric constant, we can as-
sume, without loss of generality, that the function Ψ : Rm+n̄ → Rl

parameterizing Σ satisfies Ψ(x) = 0, ‖DΨ‖0 ≤ C E1/2 + CAr and
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‖D2Ψ‖0 ≤ CA. Indeed observe that

E = E(T,C4r(x)) =
1

2ωm (4r)m

∫
C4r(x)

|~T (y)− ~π0|2 d‖T‖(y) .

Thus, we can fix a point p ∈ spt(T ) ∩C4r(x) such that |~T (p) − ~π0| ≤
C E1/2. Then, we can find an associated rotation R ∈ O(m + n,R)

such that R]
~T (p) = ~π0 and |R − Id| ≤ C E1/2. It follows that π :=

R(TpΣ) is a (m + n̄)-dimensional plane such that π0 ⊂ π and ‖π −
TpΣ‖ ≤ CE1/2. We choose new coordinates so that π0 remains equal to
Rm×{0} but Rm+n̄×{0} equals π. Since the excess E is assumed to be
sufficiently small, we can write Σ as the graph of a function Ψ : π → π⊥.
If (z,Ψ(z)) = p, then |DΨ(z)| ≤ C‖TpΣ − Rm+n̄ × {0}‖ ≤ CE1/2.
However, ‖D2Ψ‖0 ≤ CA and so ‖DΨ‖0 ≤ CE1/2 + CAr. Moreover,
Ψ(x) = 0 is achieved translating the system of reference by a vector
orthogonal to Rm+n̄ × {0} and, hence, belonging to {0} × Rl.

We introduce the notation Lip(u) for the Lipschitz constant of a
Q-valued map u =

∑
i ui and oscu for its oscillation, which is defined

as in [14] by

osc (u) = sup
z,y,i,j

|ui(z)− uj(y)| ,

and let ψ′ : γ → Rn be the function1 whose graph coincides with Γ.

Theorem 5.5. There are positive geometric constants C and c0

with the following properties. Assume T satisfies Assumption 5.2, E :=
E(T,C4r(x)) ≤ c0 and ‖DΨ‖0 ≤ C(E1/2 + Ar). Then, for any δ∗ ∈
(0, 1), there are a closed set K ⊂ B3r(x) and a

(
Q− 1

2

)
-valued function

(u+, u−) on B3r(x) which collapses at the interface (γ, ψ′) satisfying the

1If ψ1 is the first of component of the map ψ, then

γ = {(x′, ψ1(x′), 0) : x′ ∈ Rm−1} .

In particular ψ′ can be regarded as a function of x′ and in particular we have
ψ(x′) = (ψ1(x′), ψ′(x′)). In the remaining part of the section we will adopt the
latter convention.
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following properties:

Lip(u±) ≤ C(δ
1/2
∗ + r

1
2 A

1
2 ) (5.6)

osc(u±) ≤ Ch(T,C4r(x), π0) + CrE
1/2 + Cr2A (5.7)

Gr(u±) ⊂ Σ (5.8)

K ⊂ B3r(x) ∩ {meT ≤ δ∗} (5.9)

Gu± [(K ∩ Ω±)× Rn] = T [(K ∩ Ω±)× Rn] (5.10)

|Bs(x) \K| ≤ C

δ∗
eT ({meT > δ∗} ∩Bs+r1r(x)) ∀s ≤ (3− r1)r

(5.11)

‖T −Gu+ −Gu−‖(C3r(x))

rm
≤ C(m,n,Q)

δ∗
E (5.12)

where r1 = c m

√
E
δ∗

.

From now on the approximation of Theorem 5.5 is called the δ
1
2
∗ -

approximation of T in C3r(x). Actually in the sequel we will choose

δ
1
2
∗ to be Eβ for a suitable chosen small β.

In a second step we will prove that, if E is chosen sufficiently small
and T is area minimizing, then u is close to a

(
Q− 1

2

)
Dir-minimizer

which which collapses at its interface and thus, by Theorem 4.5, consists
of a single harmonic sheet.

Theorem 5.6. For every η∗ > 0 and every β ∈ (0, 1
4m

) there exist
constants ε > 0 and C > 0 with the following property. Let T be as
in Theorem 5.5 and mass-minimizing in Σ, let (u+, u−) be the Eβ-
approximation of T in B3r(x) and let K be the set satisfying all the

properties (5.6)-(5.12). If E ≤ ε and rA ≤ εE
1
2 , then

eT (B5r/2 \K)) ≤ η∗E , (5.13)

and

Dir(u+,Ω+ ∩B2r(x) \K) + Dir(u−,Ω− ∩B2r(x) \K) ≤ Cη∗E . (5.14)
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Moreover, there exists a (single) harmonic function h : B2r(x) → Rn

such that h|xm=0 ≡ 0 and the function κ(y) := (h(y),Ψ(y, h(y))) satis-
fies the following inequalities:

r−2

∫
B2r(x)∩Ω+

G(u+, Q JκK)2 +

∫
B2r(x)∩Ω+

(
|Du+| −

√
Q|Dκ|

)2

≤ η∗Er
m

(5.15)

r−2

∫
B2r(x)∩Ω−

G(u−, (Q− 1) JκK)2 +

∫
B2r(x)∩Ω−

(
|Du−| −

√
Q− 1|Dκ|

)2

≤ η∗Er
m (5.16)∫

B2r(x)∩Ω±
|D(η ◦ u±)−Dκ|2 ≤ η∗Er

m . (5.17)

Remark 5.7. Observe that from the Schwarz reflection principle
and the unique continuation for harmonic functions, it follows immedi-
ately that the h of the previous theorem is in fact odd in the variable
xm.

5.1. Proof of Theorem 5.5

5.1.1. Artificial sheet and “bad set”. Since the statement is
invariant under translations and dilations, without loss of generality we
assume x = 0 and r = 1. We add to the current T an artificial sheet ,
constructed by translating the boundary Γ in the “negative direction”
−em over the negative domain Ω−. Clearly, if the current T were area
minimizing, the addition would (in general) destroy such property. On
the other hand we do not assume that T is area minimizing in Theorem
5.5 and the “augmented current” has no boundary in the cylinder, while
it still has small excess. This will allow us to apply the first part of
the approximation theory in the interior developed in [14, Section 3],
where the area minimizing assumption is not relevant.

Let therefore ψ(x′) = (ψ1(x′), ψ′(x′)) be the map introduced in
Assumption 5.2, whose graph gives Γ, and let (x′, xm) = x be the
coordinates of Rm. We introduce further the map Gψ′ : π0 = Rm →
Rm+n̄+l given by Gψ′(x

′, xm) := (x′, xm, ψ
′(x′)): the image of Gψ′ is

just the translation of Γ in the direction em = (0, . . . , 0, 1, 0, . . . , 0).
Consider then the current Z := Gψ′# JΩ−K, cf. Figure 5.1.1.

Using the Taylor expansion of the mass, e.g. [14, Remark 5.4], we
can estimate, for any Borel set F ⊂ Rm.

M(Z (F × Rn)) = |F ∩ Ω−|+
∫
F∩Ω−

|Dψ′|2

2
+

∫
F∩Ω−

R(Dψ′)
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Z γ

xm

Figure 1. The current Z is the graph over Ω− of a
function ψ′ which does not depend on xm: ψ′ is chosen
so that ∂Z = JΓK.

where R(Dψ′) = O(|Dψ′|4). By assumption

|Dψ′(x′)| ≤ |x′|
∥∥D2ψ′

∥∥
∞ ≤ c|x′|A

for some dimensional constant c. Hence, assuming that the constant
c0 in (5.2) sufficiently small,

eZ(F ) ≤
∫
F∩Ω−

|Dψ′|2 ≤ cA2|F ∩ Ω−| .

By construction we have ∂Z C4 = Gψ′# J∂Ω− ∩B4K = − JΓK and

p#Z = JΩ−K. Therefore S := T + Z satisfies

p#S = Q JB4K , ∂S C4 = 0 and

eS(F ) ≤ eT (F ) + eZ(F ) ≤ eT (F ) + cA2|F ∩ Ω−| . (5.18)

We can thus apply the modified Jerrard-Soner estimate of [14, Propo-
sition 3.3] which gives:

(JS) For every ϕ ∈ C∞(Rn) set Φϕ(x) := Sx(ϕ) with

Sx := p⊥#〈S,p, x〉 ∈ I0(Rn)

(the space of zero-dimensional integral currents in Rn). If
‖Dϕ‖∞ ≤ 1 then Φϕ(x) ∈ BV (B4) and satisfies

(|DΦϕ|(F ))2 ≤ 2m2eS(F ) ‖S‖ (F × π⊥0 ) for every Borel set F ⊂ B4.
(5.19)

Following a classical terminology we define noncentered maximal func-
tions for Radon measures µ and (Lebesgue) integrable functions f :
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Rk → R+ by setting

m(f)(z) := sup
z∈Bs(y)⊂B4

1

ωmsm

∫
Bs(y)

f

m(µ)(z) := sup
z∈Bs(y)⊂B4

µ(Bs(y))

ωmsm
.

Note that the functions z 7→ m(f)(z), z 7→ m(µ)(z) and z 7→ meZ(z)
are lower semi-continuous. Indeed, since m(f) is obviously the max-
imal function of the measure fL m, it suffices to show the claim for
m(µ). Next observe that for a general Radon measure µ the map
y 7→ µ(Bs(y)) is lower semicontinuous, and thus the claim follows from
the fact that the map z 7→m(µ)(z) is the supremum of lower semicon-
tinuous functions.

Let us fix a small constant 0 < λ < 1 and define the following “bad”
sets, which are, respectively, the upper level set U of meT

U := {x ∈ B4 : meT (x) > δ∗} (5.20)

and the upper level set of m(1U):

U∗ := {x ∈ B4 : m(1U)(x) > λ} . (5.21)

As proven in [14, Proposition 3.2.] we have a weak L1 estimate for
the Lebesgue measure of U . Indeed, fix r < 3 and for every point
x ∈ U ∩ Br consider a ball Bx of radius r(x) which contains x and
satisfies meT (Bx) ≥ δ∗ωmr(x)m. Since meT (Bx) ≤ E we obviously
have

r(x) ≤ r0 = m

√
E

ωmδ∗

Now, by the definition of the maximal function it follows clearly that
Bx ⊂ U ∩ Br+r0 . In turn, by the 5r covering theorem we can select
countably many pairwise disjoint Bxi such that the corresponding con-
centric balls B̂i with radii 5r(xi) cover U ∩Br Then we get

|U∩Br| ≤ 5m
∑
i

ωmr(xi)
m ≤ 5m

δ∗

∑
i

meT (Bxi) ≤ 5m

δ∗
meT (U∩Br+r0) .

Since U is open we have U ⊂ U∗ and by the classical weak L1 estimate
(see e.g. [40, 1.3 Theorem 1]), we have again

|U∗ ∩Br| ≤
5m

λ
|U ∩Br+r1 | ∀r < 3, where r1 = 5 m

√
E

ωmλδ∗
. (5.22)
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5.1.2. Lipschitz estimate. Since δ∗ + cA2 < 1, we infer that
M(Sx) < Q + 1 for a.e. x /∈ U . Indeed recall that ‖S‖ (F × π⊥0 ) ≥∫
F

M(Sx) dx for every open set F (e.g. [35, Lemma 28.5]). Therefore
using (5.18)

M(Sx) ≤ lim
r→0

‖S‖ (Cr(x))

ωmrm

≤ lim
r→0

‖T‖ (Cr(x))

ωmrm
+ cA2 ≤meT (x) + cA2 +Q.

There are then Q measurable functions i : B4 \ U → Rn such that

Sx =
∑Q

i=1 Jgi(x)K and we define g : B4 \ U → AQ(Rn) by

g(x) =

Q∑
i=1

Jgi(x)K .

Since the slicing is a linear operator and Zx = Z(x′,xm) = p⊥#〈Z,p, x〉 =
Jψ′(x′)K for all x ∈ Ω−, we have that

Sx =

Q−1∑
i=1

Jgi(x)K + Jψ′(x′)K for a.e. x ∈ Ω− \ U .

In conclusion we can define a
(
Q− 1

2

)
-valued function (g+, g−) as

g+(x) :=

Q∑
i=1

Jgi(x)K for a.e. x ∈ Ω+ \ U

g−(x) :=

Q−1∑
i=1

Jgi(x)K for a.e. x ∈ Ω− \ U,

i.e. g(x) = g−(x) + Jψ′(x′)K for all x ∈ Ω− \ U .
Combining (5.19) and (5.18) we infer

m|DΦϕ|(x)2 ≤ 2m2(meT (x) + cA2)(meT (x) + cA2 +Q)

≤ 2m(Q+ 1)(δ∗ + cA2) .

Therefore, the theory of BV functions gives a dimensional constant C
such that, for any ϕ ∈ C∞(Rn) with ‖Dϕ‖∞ ≤ 1,

|Φϕ(x)−Φϕ(y)| ≤ C
√

2m(Q+ 1)(δ∗ + cA2)|x− y|
≤ L∗|x− y| for x, y ∈ B3 \ U ,

where L∗ := C
√

2m(Q+ 1)(δ
1
2
∗ + c

1
2 A). As pointed out in the proof of

[14, Proposition 3.2] one has

sup{|Φϕ(x)−Φϕ(y)| : |Dϕ|∞ ≤ 1} = W1(g(x), g(y))
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where we have set

W1(S1, S2) := sup{(S1 − S2)(ϕ) : ‖Dϕ‖∞ ≤ 1}

= min
σ∈PQ

∑
i

|S1i − S2σ(i)| ≥ G(S1, S2)

for Sk =
∑Q

i=1 JSkiK ∈ AQ(Rn). This implies the Lipschitz continuity
of g on B3 \ U and of g± on Ω± \ U . For g it follows directly from the
above estimate:

G(g(x), g(y)) ≤ W1(g(x), g(y)) ≤ L∗|x−y| for all x, y ∈ B3 \U (5.23)

and similarly for g+ and x, y ∈ Ω+ ∩ B3 \ U . In the case of g− we use
the triangle inequality to infer

G(g−(x), g−(y)) ≤ W1(g−(x), g−(y))

≤W1(g−(x) + Jψ′(x′)K , g−(y) + Jψ′(y′)K) +W1(Jψ′(x′)K , Jψ′(y′)K)
≤L∗|x− y|+ |ψ′(x′)− ψ′(y′)| ≤ (L∗ + cA)|x− y|.

We now claim that for some dimensional constant a > c we have

G(g+(y), Q Jψ′(x′)K) ≤ 33
√
Q(L∗ + aA

1
2 )|y − x|

for all y ∈ Ω+ \ U∗, x ∈ γ and

G(g−(y), (Q− 1) Jψ′(x′)K) ≤ 33
√
Q(L∗ + aA

1
2 )|y − x|

for all y ∈ Ω− \ U∗, x ∈ γ. The latter estimates are implied by the
following claim:

(Cl) for y ∈ B3 \ U∗ with |x− y| = dist(y, γ) we have

|gi(y)− ψ′(x′)| ≤ 33(L∗ + aA
1
2 )|x− y| ∀i

(where we recall that, given a point x ∈ Rm, we write x′ for
the vector x′ ∈ Rm−1 having the first m− 1 coordinates of x.)

We will argue by contradiction. Assume y0 ∈ B3 \ U∗, x0 ∈ γ and
i ∈ {1, . . . , Q} satisfy

|gi(y0)− ψ′(x′0)| ≥ 33(L∗ + aA
1
2 )r,

where r = |y0 − x0| = dist(y0, γ) < 1. Firstly, we note that

|ψ′(x′1)− ψ′(x′2)| ≤ cA|x1 − x2| for all x1, x2 ∈ B4. (5.24)

Moreover gi(y0) ∈ spt(T ) \ spt(Z) . Secondly, since y0 /∈ U∗ we have
m(1U)(y0) ≤ λ and so

|Br(x0) ∩ U | ≤ λ|Br(x0)|. (5.25)
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Due to (5.23) for all y ∈ Br(x0) \ U there must be a j ∈ {1, . . . , Q}
with

|gj(y)− ψ′(x′0)| ≥ |gi(y0)− ψ′(x′0)| − G(g(y), g(x0)) ≥ 32(L∗ + aA
1
2 )r

and, because of (5.24), gj(y) ∈ spt(T ) \ spt(Z).
Choose N ∈ N such that

1

N
≤ (4(L∗ + aA

1
2 ))2 <

1

(N − 1)
(5.26)

and set ri := (1 − i
2N

)r for i = 0, . . . , N . This choice ensures that, if
(y, z) ∈ Bri((x0, ψ

′(x′0))) and y belongs to the annulus Ai := Bri(x0) \
Bri+1

(x0), we must have

|z − ψ′(x′0)|2 ≤ r2
i − r2

i+1 ≤
1

N
rri ≤ (4(L∗ + aA

1
2 ))2r2.

Therefore, if y ∈ Ai \ U , the point (y, gj(y)) determined above cannot
be contained in Bri((x0, ψ

′(x′0))). In order to simplify our notation, set
p0 := (x0, ψ

′(x′0)). We then have

Ai \ U ⊂ p
(
sptT ∩Cri(p0) \Bri(p0)

)
and thus

‖T‖
(
Cri(p0) \Bri(p0)

)
≥ |Ai \ U |. (5.27)

We now claim that there should be i ∈ 1, . . . , N such that |Ai\U | ≥
1
2
|Ai|, indeed otherwise

|Br(x0) ∩ U | ≥
N∑
i=0

|Ai ∩ U | ≥
1

2

N∑
i=0

|Ai| ≥
1

2
|Br(x0) \B r

2
(x0)|

≥ 1

2

(
1− 1

2m

)
|Br(x0)|

which contradicts (5.25) because λ ≤ 1
4
. Fix an annulus Ai with |Ai \

U | ≥ 1
2
|Ai| and define ρ := ri. Now we can estimate the mass of T in

Bρ(p0) from above using (5.5), in fact

‖T‖ (Bρ(p0) = ‖T‖ (Cρ(p0))− ‖T‖ (Cρ(p0) \Bρ(p0))

(5.27)

≤ ‖T‖ (Cρ(p0))− 1

2
|Ai|

(5.1)

≤ Q|Ω+ ∩Bρ(x0)|+ (Q− 1)|Ω− ∩Bρ(x0)|+ meT (Bρ(x0))− 1

2
|Ai|

≤ Q|Ω+ ∩Bρ(x0)|+ (Q− 1)|Ω− ∩Bρ(x0)|

+ meT (Bρ(x0))− m

4N
|Bρ(x0)|. (5.28)
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Notice that

Q|Ω+ ∩Bρ(x0)|+ (Q− 1)|Ω− ∩Bρ(x0)|

≤
(
Q− 1

2

)
|Bρ(x0)|+ |Bρ(x0) ∩ {ψ1(x′) ≤ xm < ψ1(x′0)}|

≤
(
Q− 1

2

)
|Bρ(x0)|+ cAρ|Bρ(x0)|. (5.29)

Moreover Bρ(x0) \ U 6= ∅ and meT (Bρ(x0)) ≤ δ∗|Bρ(x0)|. Combining
the latter inequality with (5.28) and (5.29) we have

‖T‖ (Bρ(p0)) ≤ |Bρ(x0)|
((

Q− 1

2

)
+ cAρ+ δ∗ −

1

4N

)
. (5.30)

On the other hand, by Allard’s monotonicity formula and (v) in As-
sumption (5.2) we have

eC0Aρωmρ
−m ‖T‖ (Bρ(p0)) ≥ Θ(T, p0) ≥ Q− 1

2

from which we deduce that

‖T‖ (Bρ(p0)) ≥ (1− C0Aρ)
(
Q− 1

2

)
|Bρ(x0)| (5.31)

The comparison of (5.30) and (5.31) gives a contradiction, because,
for sufficiently large a > 0,

δ∗ + (c+ C0)Aρ− 1

4N
≤ L2

∗ + 4(c+ C0)A− 1

8

1

N − 1
(5.26)

≤ L2
∗ + (c+ C0)A− 4L2

∗ − 4a2A < 0.

This concludes the proof of the claim (Cl).

5.1.3. Conclusion. Having established the Lipschitz bounds above,
first we restrict g± to the sets Ω± ∩B3 \ U∗ and then we extend them
to γ setting:

g+(x) = Q Jψ′(x′)K

g−(x) = (Q− 1) Jψ′(x′)K .

We define the “good” set to be

K := (Ω ∩B3 \ U∗) ∪ γ (5.32)

and (5.22) agrees with the claimed estimate on |Bs \K|.
Next, write g±(y) =

∑
i

q
(h±i (y),Ψ(y, h±i (y)))

y
. Obviously the

maps

y 7→ h±(y) :=
∑
i

q
h±i (y)

y
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are Lipschitz on K± := K ∩Ω± with Lipschitz constant 33(L∗+ aA
1
2 ).

Recalling [13, Theorem 1.7], we can extend h± to maps ū± ∈ Lip(B3∩
Ω±,AQ(Rn̄)) satisfying

Lip(ū±) ≤ C(δ
1/2
∗ + aA

1
2 ) and osc (ū±) ≤ Cosc (h±).

Set finally u±(x) :=
∑

i

q
(ū±i (x),Ψ(x, ū±i (x)))

y
. We start showing the

Lipschitz bound. Fix x1, x2 ∈ B3 ∩ Ω± and assume, without loss of
generality, that G(ū±(x1), ū±(x2))2 =

∑
i |ū
±
i (x1)− ū±i (x2)|2. Then

G(u±(x1), u±(x2))2

≤
∑
i

∣∣(ū±i (x1),Ψ(x1, ū
±
i (x1)))− (ū±i (x2),Ψ(x2, ū

±
i (x2)))

∣∣2
≤ 2

∑
i

(
(1 + ‖DyΨ‖2

0)|ū±i (x1)− ū±i (x2)|2 + ‖DxΨ‖2
0|x1 − x2|2

)
≤ 2(1 + ‖DΨ‖2

0)G(ū±(x1), ū±(x2))2 + 2‖DΨ‖2
0|x1 − x2|2

≤ C(δ∗ + a2A + ‖DΨ‖2
0)|x1 − x2|2 .

Recalling that ‖DΨ‖0 ≤ C(E1/2 + A) the Lipschitz bound follows. As
for the L∞ bound, recall that osc(u±) = infp supx∈B3

G(u±(x), Q JpK).
Proceeding as above we then conclude

osc(u±)2 ≤ inf
p

sup
x∈B3

G(u±(x), Q J(p,Ψ(0, p))K)2

≤ 2 inf
p

sup
x∈B3

(
(1 + ‖DΨ‖2

0)G(ū±(x), Q
q
p±

y
)2 + ‖DΨ‖2

0|x|2
)

≤ 2(1 + ‖DΨ‖2
0)osc(ū±)2 + 18 ‖DΨ‖2

0.

The identity Gu± (K± × Rn) = T (K± × Rn) is a consequence of
u±(x) = Tx for a.e. x ∈ K±. Indeed, recall that both T and Gu± are

rectifiable and observe that2 〈~T , ~π0〉 6= 0 ‖T‖-a.e. on K × Rn, because

meT < ∞ on K. Similarly, 〈~Gu± , ~π0〉 6= 0 ‖Gu±‖-a.e. on K± × Rn,
by [15, Proposition 1.4]. Thus, (Gu± − T ) K± × Rn = 0 if and only
if (Gu± − T ) dx1 ∧ . . . ∧ dxn 1K±×Rn = 0. The latter identity follows
from the slicing formula and the property 〈T,p, x〉 = 〈Gu± ,p, x〉 =∑

i

q
(x, u±i (x))

y
, valid for a.e. x ∈ K±. Finally, to prove (5.12) we

simply not that by (5.11), (5.10) and (5.5),

‖T −Gu+ −Gu−‖(Cs(x)) = ‖T −Gu+ −Gu−‖(Cs(x) \ (K × Rn))

≤ ‖T‖(Cs(x) \ (K × Rn)) + C|B3 \K|
≤ E + (C +Q)|B3 \K| ≤ CE.

2Here we use the notation 〈~v1, ~v2〉 for the standard inner product between m-
vectors and S ω for the restriction of currents S on forms ω.
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5.2. Lipschitz approximation of Sobolev maps

Before coming to Theorem 5.6, we need a preliminary lemma, which
is a modification of a corresponding statements in [14].

Lemma 5.8. Let (f+, f−) be a
(
Q− 1

2

)
-valued function on Br with

interface (γ, 0) where γ = {xm = 0}. Then for every ε there exists a(
Q− 1

2

)
-valued function (f+

ε , f
−
ε ) with interface (γ, 0) such that

(a) f+
ε and f−ε are Lipschitz continuous;

(b) The following estimate holds:∫
B±r

G(f±, f±ε )2 +

∫
B±r

(
|Df±| − |Df±ε |

)2

+

∫
B±r

|D(η ◦ f±)−D(η ◦ f±ε )|
)2 ≤ ε. (5.33)

If f |∂B±r ∈ W
1,2(∂B±r ,AQ), then f±ε can be chosen to satisfy also∫

∂B±r

G(f±, f±ε )2 +

∫
∂B±r

(
|Df±| − |Df±ε |

)2 ≤ ε. (5.34)

Proof. Firstly we argue that once we have the properties (a) and
(b), the additional conclusion (5.34) can be easily inferred using the
same trick of [14, Lemma 4.5]. Indeed, without loss of generality, as-
sume r = 1 and, using the hypothesis f |∂B±1 ∈ W

1,2(∂B±1 ,AQ), extend

the maps on B±2 \ B±1 as 0-homogeneous: the extension (f̂+, f̂−) are
then still in W 1,2 and they form a

(
Q− 1

2

)
-valued function with inter-

face (γ, 0) (note that γ is flat). Moreover f̂±((1 + δ)x) = f±(x) for
every δ > 0 and every x ∈ ∂B±1 .

Assuming that we can prove (a) and (b) for a general r, we infer the
existence of a sequence (u+

k , u
−
k ) of Lipschitz

(
Q− 1

2

)
approximations

such that∫
B±2

G(f̂±, u±k )2 +

∫
B±2

(
|Df̂±| − |Du±k |

)2

+

∫
B±2

|D(η ◦ f̂±)−D(η ◦ u±k )|
)2 → 0 .

By Fubini, there is a sequence δk ↓ 0 such that∫
∂B±1+δk

G(f̂±, u±k )2 +

∫
∂B±1+δk

(
|Df̂±| − |Du±k |

)2 → 0 .
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By a straightforward computation, if we define f±k (x) := u±k (x/(1+δk)),
then we have at the same time∫

B±1

G(f±, f±k )2 +

∫
B±1

(
|Df±| − |Df±k |

)2

+

∫
B±1

|D(η ◦ f±)−D(η ◦ f±k )|
)2 → 0∫

∂B±1

G(f±, f±k )2 +

∫
∂B±1

(
|Df±| − |Df±k |

)2 → 0 .

We now come to the main part of the lemma, namely the points
(a) and (b). First of all, without loss of generality, we can assume that
r = 1. We next define the auxiliary function h ∈ W 1,2(B1,AQ(Rn)) as

h(x) :=

{
f+(x) if xm > 0
f−(x) + J0K if xm < 0.

Observe that |Df+(x)| = |Dh(x)| for every x ∈ B+
1 and |Df−(x)| =

|Dh(x)| for every x ∈ B−1 . Consider the maximal function m(|Dh|)(x)
and let

Kλ := {x : m(|Dh|)(x) ≤ λ}
which is a closed set, since maximal functions are lower semicontinuous.
Arguing as in [13, Proposition 4.4] we conclude that h|Kλ is Lipschitz
with a constant Cλ (where C depends only upon m). Moreover, by
the standard maximal function estimates, we have

λ2|B1 \Kλ| ≤ C

∫
B1\Kλ/2

|Dh|2 . (5.35)

We next consider the symmetrized setKs
λ := {(x′, xm) ∈ Kλ : (x′,−xm) ∈

Kλ} and observe that

|B1 \Ks
λ| ≤ 2|B1 \Kλ| .

By an elementary comparison3 we easily see that

G(f−(x), f−(y)) ≤
√

2G(h(x), h(y)) .

3Indeed, fix x and y and assume without loss of generality that hQ(x) =
hQ(y) = 0, and that hi(x) = f−i (x) and hi(y) = f−i (y) for every i ≤ Q − 1.
Let π be a permutation of the set {1, . . . , Q} such that

G(h(x), h(y))2 =
∑
i

|hi(x)− hπ(i)(y)|2 .

We define a permutation σ of {1, . . . , Q−1} in the following way. If π(Q) = Q, then
we simply set σ(j) = π(j) for every j ≤ Q − 1 and we easily that G(h(x), h(y)) ≥
G(f−(x), f−(y)). Otherwise there is a j0 ≤ Q − 1 such that π(j0) = Q and an
i0 ≤ Q− 1 such that π(i0) = Q. We then set σ(i0) = j0 and σ(k) = π(k) for every
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Hence the Lipschitz constant of the restriction of f− to Ks
λ ∩B−1 is at

most 3Cλ and we can extend it to a function g− on B−1 with Lipschitz
constant at most C ′λ, for some C ′ depending only upon m,n and Q, cf.
[13, Theorem 1.7]. Consider now the function k : B−1 ∪ (B+

1 ∩Ks
λ) →

AQ(Rn) such that

k(x) :=

{
g−(x) + J0K for x ∈ B−1
f+(x) for x ∈ B+

1 ∩Ks
λ .

We claim that k is in fact Lipschitz with constant at most Cλ. Fix
two points x, y in the domain of the function: if they are both in B+

1

or both in B−1 then our claim is obvious, given the Lipschitz bounds
on g− and f+|Ks

λ
, respectively. Fix otherwise x = (x′, xm) ∈ Ks

λ ∩ B+
1

and y ∈ B−1 . Consider now xs := (x′,−xm) and observe that xs ∈ Ks
λ.

On the other hand

|xs − x| = 2xm ≤ 2|x− y| .
We can therefore estimate

G(k(x), k(y)) ≤ G(k(x), k(xs)) + G(k(xs), k(y))

= G(h(x), h(xs)) + G(k(xs), k(y))

≤ G(h(x), h(xs)) + 3G(g−(xs), g−(y))

≤ Cλ|x− xs|+ Cλ|xs − y| ≤ Cλ|x− y| .
We can now extend k to a Lipschitz map on the whole ball B1 and we
define g+(x) equal to such extension for every x ∈ B+

1 . Observe there-
fore that (g+, g−) is a

(
Q− 1

2

)
-valued function with interface (γ, 0).

Moreover the Lipschitz constant is controlled by Cλ. Note also that
g± and f± coincide on Ks

λ ∩B±1 .
Consider next that the functions

α± := G(f±, g±) ,

k ∈ {1, . . . , Q− 1} \ {i0}. We can therefore compute

G(f−(x), f−(y))2

≤
∑

i≤Q−1

|f−i (x)− f−σ(i)(y)|2 =
∑

i≤Q−1,i6=i0

|hi(x)− hπ(i)(y)|2 + |hi0(x)− hj0(y)|2

≤
∑

i≤Q−1,i6=i0

|hi(x)− hπ(i)(y)|2 + 2|hi0(x)|2 + 2|hj0(y)|2

=
∑

i≤Q−1,i6=i0

|hi(x)− hπ(i)(y)|2 + 2|hi0(x)− hπ(i0)(y)|2 + 2|hQ(x)− hπ(Q)(y)|2

= G(h(x).h(y)2 + |hi0(x)− hπ(i0)(y)|2 + |hQ(x)− hπ(Q)(y)|2 ≤ 2G(h(x), h(y))2 .
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vanish on Ks
λ. Furthermore by choosing λ sufficiently large we can

assume that |Ks
λ ∩B±1 | ≥ 1/2|B±1 |. Thus the Poincaré inequality gives∫

B±1

G(f±, g±)2 =

∫
B±1

(α±)2 ≤ C

∫
B±1

|Dα±|2 .

Moreover, recalling that |B1 \Ks
λ| ≤ 2|B1 \Kλ| and (5.35)∫

B±1

(
|Dα±|2 + (|Df±| − |Dg±|)2 + |D(η ◦ f±)−D(η ◦ g±)|2

)
≤ C

∫
B±1 \Ks

λ

(
|Df±|2 + |Dg±|2

)
≤ C

∫
B±1 \Ks

λ

(
|Df±|2 + λ2

)
≤ C

∫
B±1 \Ks

λ

|Df±|2 + Cλ2|B1 \ λ|

≤C
∫
B±1 \Ks

λ

|Df±|2 + C

∫
B1\Kλ/2

|Dh|2 → 0 .

Since the latter converges to 0 as λ→∞, we conclude the proof. �

5.3. Proof of Theorem 5.6

It is not restrictive to assume that x = 0 and r = 1. Thus Ψ(0) = 0
and ψ(0) = 0.

5.3.1. Proof of (5.13) and (5.14). Firstly we want to note that
(5.14) is a consequence of (5.13). Indeed, use first (5.9), (5.11) and
(5.13) to estimate

|B2 \K| ≤ Cη∗E
1−2β .

Since Lip(u±) ≤ CEβ, (5.14) follows easily.
We fix β and η∗. Assuming by contradiction that the statement is

false we find a sequence of area-minimizing currents Tk and submani-
folds Σk, Γk satisfying the following properties:

(i) The cylindrical excesses satisfy the estimate

Ek := E(Tk,C4(0), π0) =
1

2ωm

∫
C4(0,π0)

| ~Tk − ~π0|2 d‖Tk‖ ≤
1

k
. (5.36)

(ii) Γk are smooth submanifolds of dimension m − 1 and Σk ⊂
Rm+n are smooth submanifolds of dimension m+n̄ = m+n−l
containing Γk. After possibly changing coordinates appropri-
ately (cf. Remark 5.4), Σk and Γk are graphs of entire func-
tions Ψk : Rm+n̄ → Rl and ψk : Rm−1 → Rn̄+1+l satisfying the
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bounds

‖Ψk‖C2(B8) ≤ C(E
1/2
k + Ak) ≤ CE

1/2
k (5.37)

‖ψk‖C2(B8) ≤ CAk ≤
C

k
E

1/2
k . (5.38)

(iii) Assumption 5.2 holds for each Tk.
(iv) The estimate (5.13) fails, i.e.,

eTk(B5/2 \Kk) > η∗Ek = 5c2Ek , (5.39)

for some positive c2. The pair of
(
Q− 1

2

)
-valued maps (f+

k , f
−
k )

denotes the Eβ
k -Lipschitz approximations of the current Tk.

For every s > 5/2, we have

eTk(Kk ∩Bs) ≤ eTk(Bs)− 5 c2Ek. (5.40)

In order to simplify our notation, we use B±k,r for the domains of the

functions f±k intersected with the ball Br(0) ⊂ π0. Instead B±r de-
notes the corresponding limits, namely the sets B±r := Br(0)∩{±xm ≥
0}. Using this notation and the Taylor expansion of the area func-
tional, since Ek ↓ 0, we conclude the following inequalities for every
s ∈ [5/2, 3]:∫
Kk∩B+

k,s

|Df+
k |2

2
+

∫
Kk∩B−k,s

|Df−k |2

2
≤ (1 + C E2β

k ) eTk(Kk ∩Bs)

≤ (1 + C E2β
k )
(
eTk(Bs)− 5 c2Ek

)
(5.41)

≤ eTk(Bs)− 4c2Ek. (5.42)

Our aim is to show that (5.41) contradicts the minimizing property of
Tk. To construct a competitor we write f±k (x) =

∑
i

q
(f±k )i(x)

y
and

denote by (f±k )′′i (x) the first n̄ components of the point (f±k )i(x). This
induces a

(
Q− 1

2

)
valued map (f±k )′′ :=

∑
i

q
(f±k )′′i (x)

y
, namely a pair

of maps taking values, respectively, in AQ(Rn̄) and AQ−1(Rn̄). Observe
that, since (f±k )i(x) are indeed point of the manifold Σk, then

f±k (x) =
∑
i

q(
(f±k )′′i (x),Ψk(x, (f

±
k )′′i (x))

)y
.

Moreover, by (5.41), the fact that Lip(f±k ) ≤ CEβ
k and |B3 \ Kk| ≤

CE1−2β
k gives

Dir(f+
k ) + Dir(f−k ) ≤ CEk . (5.43)
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Let ((ψk)
1(x′), (ψk)

′′(x′)) be the first n̄+ 1 components of the map
ψ whose graph gives Γk. We consider the

(
Q− 1

2

)
valued map (g+

k , g
−
k )

with g±k := E
− 1

2
k (f±k )′′ with interface (γk, ϕk) where

γk = {xm = (ψk)
1(x′)} and ϕk(x

′) = E
− 1

2
k (ψk)

′′(x′).

By assumption (5.38), denote by γ the plane {xm = 0} ⊂ π0, we have
that (γk, ϕk)→ (γ, 0) in C1.

For each k we let Φk be a diffeomorphism which maps B3 onto itself
and γk∩B3 onto γ∩B3. Clearly this can be done so that ‖Φk−Id‖C1 →
0. Moreover, given the convergence of γk to γ = {xm = 0}, it is not
difficult to see that we can require the property Φk(∂Br) = ∂Br for
every r ∈ [2, 3] (provided k is large enough)4 Furthermore we have that∥∥ϕk ◦ Φ−1

k

∥∥
C1(B3)

→ 0 so we can choose κk ∈ C1(B3) with κk = ϕk◦Φ−1
k

on γ and ‖κk‖C1(B3) → 0. Now define the
(
Q− 1

2

)
valued maps

ĝ±k (x) :=
∑
i

q
(g±k )i ◦ Φ−1

k (x)− κk(x)
y
.

We observe that (ĝ+
k , ĝ

−
k ) is a

(
Q− 1

2

)
valued map with interface (γ, 0)

and by straightforward computations

Dir(ĝ±k ,Φ
−1
k (A) ∩B±)

= (1 + o(1))
(
Dir(g+

k , A ∩B
±
k ) + Dir(g−k )

)
+ o(1) (5.44)

for all measurable A ⊂ B3 where o(1) is independent of the set A. From
(5.43) we conclude that the Dirichlet energy of (ĝ+

k , ĝ
−
k ) is uniformly

bounded. By the Poincaré inequality and since the maps collapse at
their interfaces, their L2 norms are uniformly bounded as well. By
compactness we can find a subsequence (not relabeled) and a

(
Q− 1

2

)
4A simple procedure to define the map on each sphere ∂Br is the following.

Consider the north and south poles P±r = (0, . . . , 0, r). On each great circle Cr
passing through P+

r and P−r consider the corresponding half circles connecting P±r .
Each have exactly one intersection with, respectively, {xm = 0} and γk. We then
map both half circles onto themselves by keeping the map an identity around the
poles and moving the intersections with γk to the intersections with {xm = 0}. If
we use polar coordinates on the circle Cr so that the north and south poles are
given by ±π2 , we then can assume that one half circle is parametrized by [−π2 ,

π
2 ]:

we seek a map which is the identity around ±π2 and which maps a small given α in
0. Consider then a bump function λ which is supported in (−1, 1) and identically
1 on (− 1

2 ,
1
2 ): an explicit formula for such a map is

θ 7→ θ(1− λ(θ)) + λ(θ)(θ − α) .
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valued map (g+, g−) with interface (γ, 0) such that∥∥G(ĝ±k ◦ Φ−1
k , g±)

∥∥
L2(B±3 )

→ 0

and

Dir(g+) + Dir(g−) ≤ lim inf
k→∞

(Dir(ĝ+
k ) + Dir(ĝ−k ))

= lim inf
k→∞

(Dir(g+
k ) + Dir(g−k )) .

Up to extracting a subsequence, we can assume that |Dĝ±k |⇀G± weakly
in L2(B3). One can then easily check, see for instance the proof of [14,
Proposition 4.3], that

|Dg±| ≤ G±.

In particular, since |B3 \Kk| → 0, we deduce that for every s ∈ (0, 3):

Dir(g±, B±s ) ≤ lim inf
k→∞

∫
B±s ∩Φk(Kk)

(G±)2

≤ lim inf
k→∞

Dir(ĝ±k , B
±
s ∩ Φk(Kk)) ≤ lim inf

k→∞
Dir(g±k , B

±
s ∩Kk)

(5.45)

where in the last inequality we have used (5.44).
Let ε > 0 be a small parameter to be chosen later, we apply Lemma

5.8 to (g+, g−)|B3 with ε to produce a Lipschitz functions (g+
ε , g

−
ε ) sat-

isfying all the estimates there.
We would like to use Lemma (4.9) to interpolate between (ĝ+

k , ĝ
−
k )

and (g+
ε , g

−
ε ) (note that both have interface (γ, 0)). However we would

like the functions (ĝ+
k , ĝ

−
k ) not to concentrate too much energy in the

transition region. To this end let us define the Radon measures

µk(A) =

∫
A∩B+

3

|Dĝ+
k |

2 +

∫
A∩B−3

|Dĝ−k |
2 A ⊂ B3.

Up to the extraction of a subsequence we can assume that µk
∗
⇀µ for

some Radon measure µ. We now choose r ∈ (5/2, 3) and a subsequence,
not relabeled, such that

(A) µ(∂Br) = 0

(B) M(〈Tk − (Gf+
k

+ Gf−k
), |p|, r〉) ≤ CE1−2β

k , where the map |p|
is given by π0 × π⊥0 3 (x, y)→ |x|.

Indeed (A) is true for all but countably many radii while (B) can be
obtained from the estimate (5.12) through the combination of Fatou’s
Lemma and Fubini’s Theorem. In particular, by (A) and the properties
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of weak convergence of measures, we have

lim sup
s→r

lim sup
k→∞

∫
B+
r \B+

s

|Dĝ+
k |

2 +

∫
A∩B−r \B−s

|Dĝ−k |
2

≤ lim sup
s→r

µ(Br \Bs) = 0.

Hence, given r ∈ (5/2, 3) satisfying (A) and (B) above, we can now
choose s ∈ (5/2, 3) such that

lim sup
k→∞

∫
B+
r \B+

s

|Dĝ+
k |

2 +

∫
B−r \B−s

|Dĝ−k |
2 ≤ c2

3
. (5.46)

We now apply, for each k, Lemma (4.9) to connect the functions
(ĝ+
k , ĝ

−
k ) and (g+

ε , g
−
ε ) on the annulus Br \ Bs . This gives sets Bs ⊂

V k
λ,ε ⊂ W k

λ,ε ⊂ Br and a
(
Q− 1

2

)
valued interpolation map (ζ+

k,ε, ζ
−
k,ε)

with ∫
(Wk

λ,ε)
±\V kλ,ε

|Dζ±k,ε|
2

≤ Cλ

∫
(Wk

λ,ε)
±\V kλ,ε

|Dĝ±k |
2 + |Dg±ε |2 +

C

λ

∫
(Wk

λ,ε)
±\V kλ,ε

G(ĝ±k , g
±
ε )2

≤ Cλ

∫
(Wk

λ,ε)
±\V kλ,ε

|Dĝ±k |
2 + |Dg±ε |2

+
C

λ

∫
(Wk

λ,ε)
±\V kλ,ε

(
G(ĝ±k , g

±)2 + G(ĝ±, g±ε )2
)

Hence

lim sup
λ→0

lim sup
ε→0

lim sup
k→∞

∫
(Wk

λ )±\V kλ

|Dζ±k,ε|
2 = 0.

Thus we can find λ, ε > 0 sufficiently small such that

lim sup
k→∞

∫
(Wk

λ,ε)
±\V kλ,ε

|Dζ±k,ε|
2 <

c2

3
. (5.47)

Moreover, up to further reduce ε, we can also assume that∫
B±r

|Dg±ε |2 ≤
∫
B±r

|Dg±|2 +
c2

6
. (5.48)

Next we define Lipschitz-continuous function on Br with interface (γ, 0)
by (note that since λ and ε are fixed we drop the dependence on those
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parameters for the sake of readability)

ĥ±k :=


ĝ±k on Br \ (W k

λ,ε)
±

ζ±k,ε on (W k
λ,ε)
± \ V k

λ

g±ε on (V k
λ,ε)
±.

(5.49)

Let us then consider the functions h±k :=
∑

i

r
(ĥ±k )i ◦ Φk + κk ◦ Φk

z
,

defined on B±k,3. The resulting
(
Q− 1

2

)
valued map (h+

k , h
−
k ) has inter-

face (γk, ϕk) and satisfies

lim inf
k→∞

(
Dir(h+

k , B
+
k,r) + Dir(h−k , Bk,rr

−)
)

= lim inf
k→∞

(
Dir(ĥ+

k , B
+
r ) + Dir(ĥ−k , B

−
r )
)

≤ Dir(g+
ε , B

+
r ) + Dir(g−ε , B

−
r )

+ lim sup
k→∞

(
Dir(ζ+

k , (W
k
λ,ε)

+ \ V k
λ,ε) + Dir(ζ−k , (W

k
λ,ε)
− \ V k

λ,ε)
)

+ lim sup
k→∞

(
Dir(ĝ+

k , B
+
r \Bs) + Dir(ĝ−k , B

−
r \Bs)

)
≤ Dir(g+, B+

r ) + Dir(g−, B−r ) + c2 (5.50)

≤ lim inf
k→∞

(
Dir(ĝ+

k , B
+
r ∩Kk) + Dir(ĝ−k , B

−
r ∩Kk)

)
+ c2 (5.51)

where in the third inequality we have used (5.47), (5.48), (5.46) and
the fourth one (5.45).

We thus conclude that, for infinitely many k,

EkDir(h+
k , B

+
k,r) + EkDir(h−k , B

−
k,r)

≤ Dir((f+
k )′′, B+

k,r ∩Kk) + Dir((f−k )′′, B−k,r ∩Kk) + 2c2Ek . (5.52)

Let us consider the functions

v±k (x) := E
1/2
k h±k (x) and w±k (x) :=

∑
i

q(
v±k (x),Ψk(x, v

±
k (x))

)y
.

Observe that w±k |∂Br = f±k and Lip(w±k ) ≤ CEβ
k .

We are now ready to construct our competitor currents to test the
minimality of the sequence Tk. First of all, by the isoperimetric in-
equality, there is a current Sk supported in Σk such that

∂Sk = 〈Tk − (Gf+
k

+ Gf−k
), |p|, r〉

and M(Sk) ≤ C(E1−2β
k )

m
m−1 = o(Ek) .

where we have used that β < 1
4m

. Let Zk = Gw+
k

Cr + Gw−k
Cr +Sk.

We easily see that the boundary of Zk matches that of Tk Cr and
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that the support of Zk is contained in Σk. Thus it is an admissible
competitor and we must have

M(Zk) ≥M(Tk Cr) .

On the other hand, using the Taylor expansion of the mass, the bound
on Lip(h±k ) and the bound on M(Sk), we easily conclude that

Dir(w+
k , B

+
k,r) + Dir(w−k , B

−
k,r) ≥ 2eTk(Br)− o(Ek) . (5.53)

We next compute

Dir(w+
k , B

+
k,r)−Dir(f+

k , B
+
k,r ∩Kk) =

∫
B+
k,r

|Dv+
k |

2 −
∫
B+
k,r∩Kk

|D(f+
k )′′|2︸ ︷︷ ︸

I1

+

∫
B+
k,r

|D(Ψk(x, v
+
k ))|2 −

∫
B+
k,r

|D(Ψk(x, (f
+
k )′′))|2︸ ︷︷ ︸

I2

+

∫
B+
k,r\Kk

|D(Ψk(x, (f
+
k )′′))|2︸ ︷︷ ︸

I3

.

By (5.52) we already know that I1 ≤ 2c2Ek for infinitely many k. For
what concerns I2, we proceed as follows. First we write

I2 =
∑
i

∫
B+
k,r

(D(Ψk(x, v
+
k (x))i −D(Ψk(x, (f

+
k )′′(x))i) :

(D(Ψk(x, v
+
k (x))i +D(Ψk(x, (f

+
k )′′(x))i).

Next, recalling the chain rule [13, Proposition 1.12], we get∣∣D(Ψk(x, v
+
k (x))i +D(Ψk(x, (f

+
k )′′(x))i

∣∣
≤ C‖DxΨk‖0 + C‖DuΨk‖0(Lip(vk) + Lip((f+

k )′′)) = CE
1/2
k .

Using the latter inequality and the chain rule again, we obtain

I2 ≤CE
1/2
k

∫
B+
k,r

(∑
i

|DxΨk(x, (v
+
k )i(x))−DxΨk(x, ((f

+
k )′′)i(x))|

+ ‖DuΨk‖0

(
|Dv+

k |+ |D(f+
k )′′|

) )
≤ C E

1/2
k ‖D

2Ψk‖0

∫
B+
k,r

G(v+
k , (f

+
k )′′) + C Ek

∫
B+
k,r

(
|Dv+

k |+ |D(f+
k )′′|

)
≤ C E

3/2
k . (5.54)
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Finally,

I3 ≤ C‖DΨk‖2
∞|B3\Kk|+C‖DuΨk‖2

∞

∫
Br

|(Df+
k )′′|2 ≤ CE2−2β

k +CE2
k .

Hence I1 +I2 +I3 ≤ 2c2Ek+o(Ek). Since an analogous estimates holds
replacing + with −, we conclude that

Dir(w+
k , B

+
k,r) + Dir(w−k , B

−
k,r)

≤Dir(f+
k , B

+
k,r ∩Kk) + Dir(f−k , B

−
k,r ∩Kk) + 4c2Ek + o(Ek) . (5.55)

However, the latter inequality combined with (5.41) implies

Dir(w+
k , B

+
k,r) + Dir(w−k , B

−
k,r) ≤ 2eTk(Br)− c2Ek + o(Ek) . (5.56)

Clearly (5.53) and (5.56) are incompatible for k large enough. This
completes the proof of the first part of the theorem.

5.3.2. Proof of (5.15), (5.16) and (5.17). We again argue by
contradiction. Assume the second part of the theorem is false for some
η∗. We then have again a sequence of area-minimizing currents Tk and
submanifolds Σk, Γk satisfying the properties (i), (ii) and (iii) of the
previous step, which we recall here for the reader’s convenience together
with the fourth contradiction assumption. More precisely:

(i) The cylindrical excesses satisfy the estimate

Ek := E(Tk,C4(0), π0) =
1

2ωm

∫
Cr(0,π0)

| ~Tk − ~π0|2 d‖Tk‖ ≤
1

k
. (5.57)

(ii) Γk are smooth submanifolds of dimension m − 1 and Σk ⊂
Rm+n are smooth submanifolds of dimension m+n̄ = m+n−l
containing Γk. Σk and Γk are graphs of entire functions Ψk :
Rm+n̄ → Rl and ψk : Rm−1 → Rn̄+1+l satisfying the bounds

‖Ψk‖C2(B8) ≤ C(E
1/2
k + Ak) ≤ CE

1/2
k (5.58)

‖ψk‖C2(B8) ≤ CAk ≤
C

k
E

1/2
k . (5.59)

(iii) Assumption 5.2 holds for each Tk.

(iv) The Eβ
k -Lipschitz approximations (f+

k , f
−
k ) fail to satisfy one

among the estimates (5.15), (5.16) and (5.17) for any choice
of the function κ.

As in the previous step we write f±k (x) =
∑

i

q
(f±k )i(x)

y
and denote

by (f±k )′′i (x) the first n̄ components of the point (f±k )i(x). This in-
duces a

(
Q− 1

2

)
valued function (f±k )′′ :=

∑
i

q
(f±k )′′i (x)

y
with values
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in AQ(Rn)(Rn̄) and AQ−1(Rn̄). Observe that, since (f±k )i(x) are indeed
points of the manifold Σk, then

f±k (x) =
∑
i

q(
(f±k )′′i (x),Ψk(x, (f

±
k )′′i (x))

)y
.

We keep using the notation of the previous step. In particular we let

((ψk)
1(x′), (ψk)

′′(x′))

be the first n̄ + 1 components of the graph map of Γk and ϕk =

E
− 1

2
k (ψk)

′′(x′). We consider the
(
Q− 1

2

)
valued map (g+

k , g
−
k ) defined

by

g±k := E
− 1

2
k (f±k )′′ ,

with interface (γk, ϕk). For each k we let Φk be a diffeomorphism
which maps B3 onto itself and γk ∩B3 onto γ ∩B3. Again this is done
in such a way that ‖Φk − Φ‖C1 → 0, where Φ is the identity map.
Furthermore, since

∥∥ϕk ◦ Φ−1
k

∥∥
C1(B3)

→ 0, we can choose κk ∈ C1(B3)

with κk = ϕk◦Φ−1
k on γ and ‖κk‖W 1,2(B3) → 0. Now define the

(
Q− 1

2

)
valued maps

ĝ±k (x) :=
∑
i

q
(g±k )i ◦ Φ−1

k (x)− κk(x)
y
.

As in the previous step we can find a subsequence (not relabeled)
and a

(
Q− 1

2

)
valued map (g+, g−) with interface (γ, 0) such that∥∥G(ĝ±k , g

±)
∥∥
L2(B±3 )

→ 0. We next claim that

(A) The convergence of ĝ±k to g± is strong in W 1,2(B5/2), namely

lim
k→∞

(Dir(ĝ+
k , B

+
5/2) + Dir(ĝ−k , B

−
5/2)) = Dir(g+, B+

5/2) + Dir(g−, B−5/2) .

(B) g± is a
(
Q− 1

2

)
-minimizer.

Assuming that (A) and (B) are proved, from Theorem 4.5 we would

then infer the existence of a classical harmonic function ĥ which van-
ishes identically on {xm = 0} and such that g+ = Q JhK and g− =

(Q− 1) JhK. Setting hk := E
1/2
k ĥ and κk(x) := (hk(x),Ψk(x, hk(x))) we
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would then conclude that∫
B+
k,5/2

G(f+
k , Q JκkK)2 +

∫
B+
k,5/2

(
|Df+

k | −
√
Q|Dκk|

)2

= o(Ek) ,∫
B−
k,5/2

G(f−k , (Q− 1) JκkK)2 +

∫
B−
k,5/2

(
|Df−k | −

√
(Q− 1)|Dκk|

)2

= o(Ek) ,∫
B±
k,5/2

|D(η ◦ f±k )−Dκk|2 = o(Ek) .

But these estimates are incompatible with (iv) above. Hence, at least
one between (A) and (B) needs to fail. As in the previous section we
will use this to contradict the minimality of Tk. Note that in both
cases there exists a

(
Q− 1

2

)
valued function (ḡ+, ḡ−) with interface

(γ, 0), γ = {xm = 0}, and a positive constant c3 > 0, such that

Dir(ḡ+, B+
s ) + Dir(ḡ−, B−s ) ≤ lim inf

k→∞
Dir(ĝ+

k , B
+
s ) + Dir(ĝ−k , B

−
s )− 2c3

(5.60)
for all s ∈ (5/2, 3). Indeed this is true with (ḡ+, ḡ−) = (g+, g−) if (A)
fails, while if (B) fails we choose (ḡ+, ḡ−) to be a

(
Q− 1

2

)
-minimizer

with boundary data g± on ∂B5/2 extended to be equal to g± onB3\B5/2.
We can now argue exactly as in the previous step to find a radius
r ∈ (5/2, 3) and functions ĥ±k such that

M(〈Tk − (Gf+
k

+ Gf−k
), |p|, r〉) ≤ CE1−2β

k

and, arguing as we have done for (5.50),

lim inf
k→∞

Dir(h+, B+
k,r) + Dir(h−, B−k,r) ≤ Dir(ḡ+, B+

r ) + Dir(ḡ−, B−r ) + c3

(5.61)

≤ lim inf
k→∞

Dir(g+, B+
k,r) + Dir(g−, B−k,r)− c3. (5.62)

As in the previous section we consider v±k (x) := E
1/2
k h±k (x) and

w±k (x) :=
∑
i

q(
v±k (x),Ψk(x, v

±
k (x))

)y
and observe that w±k |∂Br = f±k . We then construct the same competitor
currents to test the minimality of Tk. First we consider a current Sk
supported in Σk such that

∂Sk = 〈Tk− (Gf+
k

+Gf−k
), |p|, r〉 and M(Sk) ≤ C(E1−2β

k )
m
m−1 = o(Ek) ,
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Then we define, as before, Zk := Gw+
k

Cr + Gw−k
Cr + Sk, for which

we can verify that
M(Zk) ≥M(Tk Cr) . (5.63)

By the result of the previous section, we know that

2eTk(Br) = Dir(f+
k , B

+
k,r) + Dir(f−k , B

−
k,r) +O(ηkEk) . (5.64)

Observe that now we can choose ηk → 0 as k → ∞. On the other
hand, using the bound on M(Sk) and Taylor expansion we infer

2eZk(Br) = Dir(w+
k , B

+
k,r) + Dir(w−k , B

−
k,r) + o(Ek) . (5.65)

Arguing as in the previous section (see (5.54)) and relying on (5.62) we
also have

Dir(w+
k , B

+
k,r) + Dir(w−k , B

−
k,r)

≤Dir(f+
k , B

+
k,r) + Dir(f−k , B

−
k,r)− c3Ek + o(Ek) . (5.66)

Clearly (5.63), (5.64), (5.65) and (5.66) are in contradiction for k large
enough, which completes the proof.



CHAPTER 6

Decay of the excess and uniqueness of tangent
cones

In this chapter we prove the decay of the excess at totally collapsed
points for area minimizing currents. As a consequence we will conclude
that the tangent cone at each such point is in fact unique.

Definition 6.1. Let T be an integral current of dimension m in
Rm+n. We define the excess E(T,Br(p), π) of T in the ball Br(p) with
respect to the (oriented) plane π as

E(T,Br(p), π) :=
1

2ωmrm

∫
Br(p)

|~T (x)− ~π|2 d‖T‖(x) . (6.1)

If T is area minimizing in a Riemannian manifold Σ ⊂ Rm+n, we then
define the spherical excess of T at any ball Br(p) centered at some
point p ∈ spt(T ) ⊂ Σ as

E(T,Br(p)) := min{E(T,Br(p), π) : π ⊂ TpΣ} . (6.2)

We underline that π is constrained to be a subset of TpΣ, so probably
a more appropriate, yet cumbersome, notation would be EΣ(T,Br(p)).
Moreover we let h(T,Br(p)) be the minimum of h(T,Br(p), π) while
π ⊂ TpΣ runs among those planes which optimize the right hand side
of (6.2).

Before stating the main theorem of this chapter we need to intro-
duce a modified excess function for boundary points, where we con-
strain the “minimal” reference planes to contain TpΓ.

Definition 6.2. Let T , Σ and Γ be as in Assumption 1.5 and
assume that p ∈ Γ. We define the modified excess in Br(p) as

E[(T,Br(p)) := min {E(T,Br(p), π) : TpΓ ⊂ π ⊂ TpΣ} . (6.3)

With this notation, the main result of this chapter is the following

Theorem 6.3. Let Γ be a C2 (m− 1)-dimensional submanifold of
a C2 (m + n̄)-dimensional submanifold Σ ⊂ Rm+n and consider an
area minimizing current T in Σ with the property that ∂T U = JΓK

101
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for some open set U . If p ∈ Γ ∩ U is a collapsed point with density
Θ(T, p) = Q− 1

2
, then there exists r > 0 such that:

(a) Each q ∈ Γ ∩ Br(p) is a collapsed point for T with density
Q− 1

2
;

(b) At each q ∈ Γ ∩ Br(p) there is a unique flat tangent cone
Q Jπ(q)+K + (Q− 1) Jπ(q)−K, where π(q) ⊂ TqΣ is an oriented
m-dimensional plane containing TqΓ;

(c) For each ε > 0 there is a constant C = C(ε) with the property
that

E[(T,Bρ(q)) ≤ E(T,Bρ(q), π(q))

≤ C
(ρ
r

)2−2ε

E[(T,B2r(p)) + Cρ2−2εr2εA2 (6.4)

for all q ∈ Γ ∩Br(p) and for all ρ ∈]0, r[;
(d) For each ε > 0 there is a constant C = C(ε) such that

|π(q)− π(q′)| ≤ C(rε−1E[(T,B2r(p))
1/2 + Arε)|q′ − q|1−ε (6.5)

∀q, q′ ∈ Γ ∩Br(p);
(e) There is a constant C such that

h(T,Bρ(q), π(q)) ≤ C(r−1E[(T,B2r(p)) + A)
1/2ρ

3/2 (6.6)

for all q ∈ Γ ∩Br(p) and for all ρ ∈]0, r
2
[.

Before coming to the proof we state an important corollary of the
theorem which will be used often in the remaining chapters (for a geo-
metric illustration of the conclusions we refer to Figure 6).

Corollary 6.4. Let Γ,Σ, T and p be as in Theorem 6.3, assume
r = 2σ is a radius for which all the conclusions of Theorem 6.3 hold,
set E = E[(T,Br(p)). Furthermore let π be an optimal plane for the
right hand side of (6.3) and π(q) be the tangent plane to T in q as
in conclusion (b) of Theorem 6.3. If we denote by p,p⊥,pq and p⊥q
respectively the orthogonal projections onto π, π⊥, π(q) and π(q)⊥, then

|π(q)− π| ≤ C(E + Ar) , (6.7)

spt(T ) ∩Bσ(q) ⊂ {x : |p⊥(x− q)| ≤ C(E + Ar)
1/2|x− q|} (6.8)

(6.9)

for all q ∈ Γ ∩Bσ(p) and

spt(T ) ∩Bσ(q) ⊂ {x : |p⊥q (x− q)| ≤ C(r−1E + A)
1/2|x− q|

3
2} (6.10)

for all q ∈ Γ ∩Bσ(p).
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π(q)

π

Figure 1. The region delimited by the thick curved
lines is the right hand side of (6.10), whereas the cone
delimited by the thick dashed straight lines is the right
hand side of (6.8)

.

6.1. Hardt–Simon height bound

In this section we show the validity, at the boundary, of the classi-
cal interior height bound, under Assumption 5.2. The argument follows
an important idea of Hardt and Simon in [27] and takes advantage of
an appropriate variant of Moser’s iteration on varifolds, due to Allard,
combined with a crucial use of the remainder in the monotonicity for-
mula.

Theorem 6.5. There are positive constants ε = ε(Q,m, n̄, n) and
C0 = C0(Q,m, n̄, n) with the following property. Let T , C4r(x), Σ, Γ
and π0 := Rm × {0} be as in Assumption 5.2 and set

E := E(T,C4r(x)) , a := ‖AΓ‖0 and ā := ‖AΣ‖0 .

If E + a + ā ≤ ε, then

h(T,C2r(x), π0) ≤ C0(E
1/2 + a

1/2r
1/2 + ār)r .

We will split the proof of the theorem in the following two lemmas,
where again the corresponding geometric constants C0 depend only
upon m, n̄, n and Q.
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Lemma 6.6. Under the assumptions of Theorem 6.5 there is a con-
stant C0 such that

sup
z∈spt(T )∩C2r(x)

|p⊥π0
(z − x)|2 ≤ C0r

−m
∫
C3r(x)

|p⊥π0
(z − x)|2 d‖T‖(z)

+ C0(a2 + ā2)r4 . (6.11)

Lemma 6.7. Under the assumptions of Theorem 6.5 there is a con-
stant C0 such that

r−m
∫
C3r(x)

|p⊥π0
(z − x)|2 d‖T‖(z) ≤ C0Er

2 + C0ā
2r4 + C0ar

2 . (6.12)

After rescaling and translating we can assume in all our statements
that r = 1 and x = 0 . Moreover, we use p and p⊥ in place of pπ0 and
p⊥π0

.

6.1.1. Proof of Lemma 6.6. The estimate is a classical one in
Allard’s interior regularity theory. The proof in our setting follows
from a minor modification of the arguments, which we however report
for the reader’s convenience.

We fix a system of coordinates so that π0 = {y : ym+1 = . . . =
ym+n = 0} and fix i ∈ {m+ 1, . . . ,m+n}. We fix a constant C0, to be
chosen in a moment, and consider the function

f(x) := max{xi − C0a + C0ā|x|2, 0} .

We wish to show the estimate

sup
z∈spt(T )∩C2

f 2(z) ≤ C1

∫
C3

f 2(z) d‖T‖(z) , (6.13)

from which we will get (6.11) simply summing up all the corresponding
inequalities when taking i ∈ {m+ 1, . . . ,m+n} and −yi in place of yi.

In fact we let r+,δ be a suitable convex smoothing of the function
R 3 t 7→ r+(t) := max{t, 0}, with the additional properties that r+,δ

vanishes on the negative half line and equals the identity for t > δ: then
we will show the inequality (6.13) for the function f(x) := r+,δ(xi −
C0a + C0ā|x|2). Since the constant C1 will not depend on δ, we will
achieve the correct inequality by simply letting δ ↓ 0. For the rest
of this proof f denotes such a fixed smoothing of max{xi − C0a +
C0ā|x|2, 0}.



6.1. HARDT–SIMON HEIGHT BOUND 105

Observe that, by choosing C0 sufficiently large we achieve that f
vanishes on Γ and, according to [2, Section 7.5], that f is subharmonic1

on the varifold induced by T .
We next show that (6.13) holds under these two assumptions. Note

that Allard in [2, Section 7.5] proves precisely this statement, but we
cannot use [2, Theorem 7.5(6)] directly because the constant in the in-
equality depends upon the distance of the support of f and the bound-
ary Γ: the purpose of the following argument is to show that in fact
such dependence is absent in our case.

We denote by Ck the decreasing sequence of cylinders C2+2−k . We
then observe that the (short) paragraph proving [2, Lemma 7.5(5)]
applies to our situation and implies the inequality∫

Ck+1

|∇Th|2d‖T‖ ≤ 22k+2

∫
Ck
h2d‖T‖ (6.14)

for any subharmonic function h which vanishes on a neighborhood of
Γ. We next use the Sobolev inequality on stationary varifolds, namely
from [2, Theorem 7.3] we know that, for ā smaller than a positive
geometric constant,(∫

Ck
(hϕ)

m
m−1d‖T‖

)m−1
m

≤ C0

∫
Ck
|∇T (hϕ)| (6.15)

whenever ϕ is a smooth function compactly supported in Ck (remember
that h vanishes in a neighborhood of Γ).

Following the classical scheme of Moser’s iteration, cf. [2, Theorem
7.5(6)], we introduce β := m

m−1
and

I(k) :=

(∫
C2k

f 2βk
)1/βk

.

Next we fix a cutoff ϕk identically equal to 1 on C2k+2, compactly
supported in C2k+1 and with |∇ϕk| ≤ C022k. Substituting h = f 2βk

and ϕ = ϕk inside (6.15) we then conclude

I(k + 1)β
k ≤ C0

∫
C2k+1

|∇T (f 2βk)|d‖T‖+ C022k

∫
C2k+1

f 2βkd‖T‖ .

(6.16)

1We recall that a function h is said to be subharmonic on the varifold induced
by T if ∫

∇Th · ∇Tϕd‖T‖ ≤ 0 ∀ϕ ∈ C1
c with ϕ ≥ 0,

where ∇Th is the orthogonal projection of ∇h on the tangent space to T (i.e., if

v1, . . . , vm is an orthonormal frame such that ~T (x) = v1 ∧ . . . ∧ vm, then ∇Th =∑
i
∂h
∂vi

vi).
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Next we compute∫
C2k+1

|∇T (f 2βk)|d‖T‖ ≤ 2

∫
C2k+1

|∇T (fβ
k

)|fβk |d‖T‖

≤ 2

(∫
C2k+1

|∇T (fβ
k

)|2d‖T‖
)1/2(∫

C2k+1

f 2βkd‖T‖
)1/2

.

Now, since R+ 3 t 7→ tβ
k

is C2, convex, and increasing, the function
h := fβ

k
is subharmonic (cf. [2, Lemma 7.5(4)]). Moreover it vanishes

in a neighborhood of Γ. From (6.14), we then conclude∫
C2k+1

|∇T (f 2βk)|d‖T‖ ≤ 22k+2

∫
C2k

f 2βkd‖T‖ . (6.17)

Putting together (6.16) and (6.17), we then easily conclude

I(k + 1) ≤ Ck/βkI(k) .

The estimate (6.13) follows from

sup
z∈spt(T )∩C2

f 2(z) ≤ lim sup
k→∞

I(k) ≤ CI(0) .

6.1.2. Proof of Lemma 6.7. We follow here the proof of [39,
Lemma 1.8] (note that essentially the same idea was used in [27]).
First of all, we let r = 4 and s go to 0 in (3.5) to achieve∫

B4

|x⊥|2

|x|m+2
d‖T‖(x) ≤ 4−m‖T‖(B4)− ωmΘ(T, 0) + Err1 + Err2 ,

(6.18)

where

Err1 :=

∫ 4

0

ρ−m−1

∫
Bρ

|x⊥ · ~HT (x)|d‖T‖(x) dρ

Err2 :=

∫ 4

0

ρ−m−1

∫
Bρ∩Γ

|x · ~n(x)| dHm−1(x) dρ .

Straightforward computations2 show that |x ·~n(x)| ≤ C0a|x|2 for x ∈ Γ

and |x⊥ · ~HT (x)| ≤ 1
8ρ
|x⊥|2 + 2m2ρā2. Thus we can bound

Err2 ≤C0a

∫ 4

0

ρ1−mHm−1(Bρ ∩ Γ) dρ ≤ C0a

2Observe that |x⊥ · ~HT (x)| ≤ 1
8ρ |x

⊥|2+2ρ| ~HT (x)|2, while | ~HT (x)| ≤ m‖AΣ‖0 ≤
ma by (3.1).
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and

Err1 ≤
1

8

∫ 4

0

1

ρm+2

∫
Bρ

|x⊥|2 d‖T‖(x) dρ+ 2m2ā2

∫ 4

0

‖T‖(Bρ)

ρm
dρ

≤1

2

∫
B4

|x⊥|2

|x|m+2
d‖T‖(x) + 2C0ā

2‖T‖(B4)

where in the last inequality we have used the monotonicity of ρ 7→
eCρρ−m‖T‖(Bρ). Plugging these two estimates in (6.18) and recalling
that Θ(T, 0) ≥ Q− 1

2
we then conclude∫

B4

|x⊥|2

|x|m+2
d‖T‖(x) ≤ 4−m‖T‖(B4)−(Q− 1

2
)ωm+C0a+C0ā

2‖T‖(B4) .

(6.19)
Next, by (5.4) and computations as in (5.29), we infer

4−m‖T‖(B4)− (Q− 1
2
)ωm

=ωm

(
‖T‖(C4)

ωm4m
− (Q− 1

2
)

)
≤ ωmE(T,C4) + C0a . (6.20)

Hence we easily conclude from (6.19) that∫
B4

|x⊥|2d‖T‖(x) ≤ C0(E + a + ā2) . (6.21)

Next, a straightforward computation gives

|z⊥|2 ≥ 1

2
|p⊥(z)|2 − |z|2|~T (z)− π0|2

for every z ∈ spt(T ). Integrating the latter inequality and inserting in
(6.21) we then conclude∫

B4

|p⊥(z)|2d‖T‖(z) ≤ C0(E + a + ā2) . (6.22)

In order to complete the proof we need to show that spt(T )∩C3 ⊂
B4, if the parameter ε in Theorem 6.5 is chosen sufficiently small.
Arguing by contradiction, if this were not the case there would be a
sequence of currents Tk in C4 and submanifolds Γk, Σk satisfying all the
requirements of Assumption 5.2 with E(Tk,C4)+‖AΓk‖0 +‖AΣk‖0 → 0
but with the additional property that there is a point pk ∈ spt(Tk) ∩
C3 with |pk| ≥ 4. Note however that, under these assumptions, the
mass of Tk in C4 converges to (Q − 1

2
)4mωm and Tk converges, up

to subsequences, to a current T∞ of the form Q
q
C4 ∩ π+

0

y
+ (Q −

1)
q
C4 ∩ π−0

y
. On the other hand this means that, for some geometric

constant r > 0, Br(pk) has positive distance from the plane π0 and is
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contained in C4. Let U be an open set which contains the closure of
C4 ∩ π0 and has empty intersection with Br(pk). Then

M(Tk) ≥ ‖Tk‖(U) + ‖Tk‖(Br(pk)) .

Letting k →∞ and using the semicontinuity of the mass we conclude(
Q− 1

2

)
4mωm ≥ ‖T∞‖(U) + lim sup

k→∞
‖Tk‖(Br(pk)) .

On the other hand ‖T∞‖(U) = (Q− 1
2
)4mωm and so

lim
k→∞
‖Tk‖(Br(pk)) = 0 .

Since pk ∈ spt(Tk) and Br(pk) ⊂ C4 \ Γ, for k large enough we contra-
dict the interior monotonicity formula.

6.2. Excess decay

The core of Theorem 6.3 is in fact the decay estimate (6.4), which
we prove in this section for the modified excess function introduced in
Definition 6.2, under a suitable smallness assumption.

Theorem 6.8. For any ε > 0 there is an ε0 = ε0(ε,Q,m, n) > 0
and a M0 = M0(ε,Q,m, n) with the following property. Let T , Σ and
Γ be as in Assumption 1.5 and assume that

(i) A2σ2 + E = (‖AΣ‖+ ‖AΓ‖)2σ2 + E[(T,B4σ(q)) < ε0;
(ii) Θ(T, x) ≥ Q− 1

2
for all x ∈ Γ ∩B4σ(q);

(iii) q ∈ Γ and ‖T‖(B4σ(q)) ≤ (Q− 1
4
)ωm(4σ)m.

Then, if we set e(t) := max{E[(T,Bt(q)),M0A
2t2} we have

e(σ) ≤ max{2−4+4εe(4σ), 2−2+2εe(2σ)} . (6.23)

The rest of this section is devoted to the proof of Theorem 6.8.

6.2.1. Preliminary considerations. Without loss of generality
by scaling, translating and rotating, we can assume σ = 1, q = 0,
E[(T,B2) = E(T,B2, π0), where π0 = Rm×{0} ⊂ T0Σ = Rm×Rn×{0},
and T0Γ = Rm−1 × {0}. We also recall that, if we do not specify the
center of a ball or a cylinder, we implicitly assume that such center is
the origin.

We start by observing that, without loss of generality, we can as-
sume

E[(T,B2) ≥ 2−mM0A
2, (6.24)

and

E[(T,B2) ≥ 2−4−mE[(T,B4). (6.25)



6.2. EXCESS DECAY 109

Indeed, note that

e(1) = max{M0A
2,E[(T,B1)} ≤ max{M0A

2, 2mE[(T,B2)} .
So, if (6.24) fails, then

e(1) ≤M0A
2 = 2−2(22M0A

2) ≤ 2−2e(2) ,

whereas, if (6.25) fails, then

e(1) ≤ max{M0A
2, 2−4E[(T,B4)} = 2−4e(4) .

Hence in both cases the conclusion would hold trivially.
Summarizing, under assumptions (6.24) and (6.25), we need to show

the decay estimate:

E[(T,B1) ≤ 22ε−2E[(T,B2) . (6.26)

Let us now fix a positive η < 1, to be chosen sufficiently small
later, and consider the cylinder U := B4−η(0, π0) + Bn√

η(0, π
⊥
0 ), which

by abuse of notation we denote by B4−η × Bn√
η. If ε0 is sufficiently

small, we claim that

spt(T ) ∩ ∂U ⊂ ∂B4−η ×Bn√
η (6.27)

B4−η ∩ spt(T ) ⊂ U . (6.28)

Otherwise, arguing by contradiction, we would have a sequence of cur-
rents Tk satisfying the assumptions of the theorem with ε0 = 1

k
, but

violating either (6.27) or (6.28). Then Tk would converge, in the sense
of currents, to

T∞ := Q′
q
B+

4

y
+ (Q′ − 1)

q
B−4

y
,

where B±4 = B4(0, π0)∩{±xm > 0} and Q′ is a positive integer. By the
area-minimizing property, this implies that the supports of Tk converge

to either B4 (if Q′ > 1) or B
+

4 (if Q′ = 1) in the Hausdorff sense in
every compact subset of B4. This would be a contradiction because
both B4−η \ U and ∂U \ (∂B4−η×Bn√

η) are compact subsets of B4 with

positive distance from B4. We have therefore proved (6.27) and (6.28).

We remark further that we must necessarily have ‖T∞‖(B4) ≤ (Q−
1
4
)ωm4m by assumption (iii). Hence, by the monotonicity formula Q′−

1
2

= Θ(T∞, 0) ≤ Q− 1
4
. On the other hand, by assumption (ii) and the

upper semicontinuity of the density of area-minimizing currents under
convergence of the latter, we must have Θ(T∞, 0) ≥ Q − 1

2
. Since Q′

is an integer we conclude Q′ = Q. Observe also that, by the area-
minimizing property, ‖Tk‖(A)→ ‖T∞‖(A) for every compact subset A
of B4. Thus, for ε0 is sufficiently small, we have that:
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(A) the mass of T in the ball Br is, up to a small error,
(
Q− 1

2

)
ωmr

m

for any 1 ≤ r ≤ 4− η
2
.

Next, let us define T0 := T U . Observe that (6.27) and (6.28)
imply:

(B) ∂T0 C4−η = JΓ ∩C4−ηK;
(C) T B4−η = T0 B4−η.

Choose a plane π ⊂ T0Σ which contains T0Γ and such that E(T,B4, π) =
E[(T,B4). Let us observe that (since π0 is the optimal plane for
E[(T,B2)):

|π − π0|2‖T‖(B2) =

∫
B2

|π − π0|2 d‖T‖

≤ 2

∫
B2

|~T − π0|2 d‖T‖+ 2

∫
B2

|~T − π|2 d‖T‖

≤ 2 · 2mωmE[(T,B2) + 2 · 4mωmE[(T,B4)

≤ CE[(T,B4) .

Moreover

E(T0,C4−η) ≤ E(T,B4− η
2
, π0)

≤ 2E[(T,B4− η
2
) + 2

ωm4m
|π − π0|2‖T‖(B4− η

2
)

≤ 2E[(T,B4− η
2
) + C|π − π0|2‖T‖(B2) ≤ CE[(T,B4) ,

(6.29)

where in the third inequality we have used (A), namely that the mass
of T in a ball of radius r ≤ 4− η

2
is comparable to

(
Q− 1

2

)
ωmr

m. Thus

(D) E(T0,C4−η) ≤ CE[(T,B4).

Moreover, recalling that p : Rm+n → π0 is the orthogonal projection,
by the Constancy Theorem

(E) p]T0 = Q∗ JΩ+K+(Q∗−1) JΩ−K, where Q∗ is a suitable positive
natural number and Ω± are the regions in which B4 is divided
by p(Γ); in particular

∂
q
Ω+

y
C4−η = −∂

q
Ω−

y
C4−η = p] JΓK C4−η .

Since T0 = T U and U ⊂ B4−η/2, clearly ‖T0‖(C4−η) ≤ ‖T‖(B4−η/2).
On the other hand, by (D) and (E),

‖T0‖(C4−η) ≥ Q∗|Ω+|+ (Q∗ − 1)|Ω−| .
Assuming that the constant ε0 in the assumption (i) of the theorem is
sufficiently small, we conclude that p] JΓK C4−η is close to an m− 1-
dimensional plane passing through the origin. In particular Q∗|Ω+| +
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(Q∗−1)|Ω−| is close to (Q∗− 1
2
)ωm(4−η)m. Thus, if ε0 is smaller than

a geometric constant, we infer

‖T0‖(C4−η) ≥ (Q∗ − 3

4
)ωm(4− η)m .

However, by (A), a sufficiently small ε0 would imply ‖T‖(B4−η/2) ≤
(Q− 1

4
)ωm(4− η

2
)m and hence we achieve Q∗ ≤ Q provided η is chosen

smaller than a geometric constant.
On the other hand,

‖T0‖(C4−η) ≤ Q∗|Ω+|+ (Q∗ − 1)|Ω−|+ E(T0,C4−η) .

Using (D) and the argument above, if ε0 is sufficiently small we get
‖T0‖(C4−η) ≤ (Q∗ − 1

4
)ωm(4 − η)m. Recall that we have shown that

T B4−η = T0 B4−η. Thus ‖T‖(B4−η) ≤ ‖T0‖(C4−η) and, using (A),
we also have ‖T‖(B4−η) ≥ (Q− 3

4
)(4− η)m. Thus necessarily Q∗ ≥ Q.

Next, since T B2 = T0 B2, then

A2
(6.24)

≤ 2m+2M−1
0 E[(T,B2) ≤ 2m+2

(
2

4− η

)m
M−1

0 E(T0,C4−η)

(6.29)

≤ CM−1
0 E[(T,B4) .

Thus we can apply Theorem 5.6 with β = 1
5m

and a sufficiently small
parameter η∗ to be chosen later, provided ε0 is sufficiently small and
M0 is sufficiently large.

6.2.2. Reduction to excess decay for graphs. From now on
we let (u+, u−), h and κ be as in Theorem 5.6. In particular, recall
that (u+, u−) is the Eβ-approximation of Theorem 5.5 (and therefore it
satisfies the estimate (5.6)-(5.9)) and h is the single harmonic function
which “supports” the collapsed

(
Q− 1

2

)
Dir-minimizer κ. Moreover,

denote by E the excess E(T0,C4−η) and record the estimates:

A2 ≤ C0M
−1
0 E (6.30)

E ≤ C0E
[(T,B2) , (6.31)

where C0 is a geometric constant and the second inequality follows by
combining (6.29) and (6.25). Next, define π to be the plane given by
the graph of the linear function x 7→ (Dh(0)x, 0). Since, by Remark
5.7, h(x′, 0) = 0 we have that

π ⊃ T0Γ = Rm−1 × {0}.
Moreover, by elliptic estimates,

|π| ≤ |Dh(0)| ≤ (CDir(h,B 5
2

(4−η)))
1
2 ≤ CE

1
2 . (6.32)
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Fix η to be chosen later; in the next steps we show that

E(Gu+ +Gu− ,C1, π) ≤ (2−η)−(2−ε)E(Gu+ +Gu− ,C2−η)+ηE . (6.33)

From this we easily conclude (6.26) as follows. First of all, by the
Taylor expansion of the mass of a Lipschitz graph and the Lipschitz
bounds on u±, we conclude

E(Gu++Gu− ,C2−η) ≤ E(T0,C2−η)+C

∫
Ω+\K

|Du+|2+C

∫
Ω−\K

|Du−|2 .

Secondly,

E(T,B1, π) ≤ E(T0,C1, π)

≤ E(Gu+ + Gu− ,C1, π) + 2eT (B1 \K) + 2|π|2|B1 \K| .

From (5.13), (5.14) and (6.32) we infer

E(Gu+ + Gu− ,C2−η) ≤ E(T0,C2−η) + Cη∗E

E(T,B1, π) ≤ E(Gu+ + Gu− ,C1, π) + Cη∗E .

Combining these two last inequalities with (6.33), we conclude

E(T,B1, π) ≤ (2− η)2−εE(T0,C2−η) + Cη∗E + ηE . (6.34)

Using the height bound in Theorem 6.5, we infer

spt(T ) ∩C2−η ⊂ B2 .

Since T0 B2 = T B2, (6.34) gives us that

E[(T,B1) ≤ E(T,B1, π)

≤ (2− η)−(2−ε)
(

2

2− η

)m
E(T,B2, π0) + Cη∗E + ηE

= (2− η)−(2−ε)
(

2

2− η

)m
E[(T,B2) + Cη∗E + ηE .

Hence, since the constant C in the last inequality is independent of
the parameters η∗, η, choosing the latter sufficiently small and recalling
(6.31), we conclude (6.26).

6.2.3. Reduction to L2-decay. In this section we want to replace
the excesses in (6.33) with suitable L2 quantities. In particular the
Taylor expansion of the area functional and the estimate Lip(u±) ≤ Eβ
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give

∣∣∣∣∣2ωm(2− η)mE(Gu+ + Gu− ,C2−η)−
∫
B2−η∩Ω+

|Du+|2 +

∫
B2−η∩Ω−

|Du−|2
∣∣∣∣∣

≤CE2β

(∫
B2−η∩Ω+

|Du+|2 +

∫
B2−η∩Ω−

|Du−|2
)
≤ η

3
E , (6.35)

provided ε0 is sufficiently small. Let us define the linear map x 7→
Ax := (Dh(0)x, 0). We now claim that

2ωmE(Gu+ + Gu− ,C1, π) ≤
∫
B1∩Ω+

G(Du+, Q JAK)2

+

∫
B1∩Ω−

G(Du−, (Q− 1) JAK)2 +
η

3
E .

(6.36)

If we introduce the notation ~τ for the unit simple m-vector orienting
π, then the latter inequality is implied by

∫
Ω+∩B1×Rn

∣∣∣~Gu+ − ~τ
∣∣∣2 d‖Gu+‖ ≤

∫
G(Du+, Q JAK)2 +

η

3
E (6.37)

and the analogous inequality for u−. In fact, since the argument is
entirely similar, we only show (6.37). The argument follows the one
of [15, Theorem 3.5]. Arguing as in [15], thanks to [15, Lemma 1.1],
we can write u+ =

∑
i

q
u+
i

y
and process local computations (when

needed) as if each u+
i were Lipschitz. Moreover, we have that

~τ = ξ
|ξ| with ξ = (e1 + Ae1) ∧ . . . ∧ (em + Aem).

Here and for the rest of this proof, we identify Rm and Rn with the
subspaces Rm × {0} and {0} × Rn of Rm+n, respectively: this justifies
the notation ej +Aej for ej ∈ Rm and Aej ∈ Rn. Next, we recall that

|ξ| =
√
〈ξ, ξ〉 =

√
det(δij + 〈Aei, A ej〉) = 1 + 1

2
|A|2 +O(|A|4).
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By [15, Corollary 1.11]

Etilt :=

∫
(Ω+∩B1)×Rn

∣∣∣~Gu+ − ~τ
∣∣∣2 d‖Gu+‖ (6.38)

=2 M(Gu+)− 2

∫
(Ω+∩B1)×Rn

〈~Gu+ , ~τ 〉 d‖Gu+‖

= 2Q |Ω+ ∩B1|+
∫

Ω+∩B1

(|Du+|2 +O(|Du+|4))

− 2

∫
Ω+∩B1

∑
i

〈(e1 +Du+
i e1) ∧ . . . ∧ (em +Du+

i em), ~τ 〉.

On the other hand 〈Aej, ek〉 = 0 = 〈Du+
i ej, ek〉. Therefore,

〈(e1 +Du+
i e1) ∧ . . . ∧ (em +Du+

i em), ~τ 〉
=|ξ|−1 det(δjk + 〈Du+

i ej, A ek〉)

=

(
1 +
|A|2

2
+O(|A|4)

)−1 (
1 +Du+

i : A+O(|Du+|2|A|2)
)
.

By the mean value property of harmonic functions

|A| =
∣∣∣∣−∫
B1

Dh

∣∣∣∣ ≤ CE
1
2 (6.39)

and the Lipschitz bound Lip(u+) ≤ Eβ, we conclude

Etilt =

∫
B1∩Ω+

|Du+|2 +Q |Ω+ ∩B1| |A|2

− 2

∫
B1∩Ω+

∑
i

Du+
i : A+O

(
E1+2β

)
=

∫
Ω+∩B1

∑
i

|Du+
i − A|2 +O

(
E1+2β

)
=

∫
Ω+∩B1

G(Du+, Q JAK)2 +O(E1+2β) .

The claim (6.36) follows from the latter identity for ε0 small enough.
Combining (6.35) and (6.36), (6.33) is reduced to∫

Ω+∩B1

G(Du+, Q JAK)2 +

∫
Ω+∩B1

G(Du−, (Q− 1) JAK)2

< (2− η)−m−2+ε

(∫
Ω+∩B2−η

|Du+|2 +

∫
Ω−∩B2−η

|Du−|2
)

+
η

3
E .

(6.40)
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6.2.4. Reduction to L2-decay for harmonic functions. As a
first step, we substitute u+ and u− in the inequality (6.40) with Q JκK
and (Q− 1) JκK, where κ is as in Theorem 5.6. In fact, from (5.15) and
(5.16) ∫

Ω+∩B2−η

|Du+|2 +

∫
Ω−∩B2−η

|Du−|2

≥Q
∫

Ω+∩B2−η

|Dκ|2 + (Q− 1)

∫
Ω−∩B2−η

||Dκ|2 − 4
√
η∗E .

Moreover, using again (5.15), (5.16) and (5.17), the identity∫
Ω+∩B1

G(Du+, JAK)2 =

∫
Ω+∩B1

(
|Du+|2 − 2Q(D(η ◦ u+) : A) +Q|A|2

)
,

and (6.39), we also conclude∫
Ω+∩B1

G(Du+, JAK)2 +

∫
Ω−∩B1

G(Du−, (Q− 1) JAK)2

≤ Q

∫
Ω+∩B1

|Dκ− A|2 + (Q− 1)

∫
Ω−∩B1

|Dκ− A|2 + Cη
1/2
∗ E .

Next, notice that∣∣Ω+ \B+
2−η
∣∣+
∣∣B+

2−η \ Ω+
∣∣ ≤ C‖AΓ‖ ≤ CA ≤ CM

−1/2
0 E

1/2

and compute

|Dκ| ≤ |Dh|+|DxΨ(x, h)|+|DuΨ(x, h)||Dh| ≤ C

η̄m
E

1
2 for x ∈ B2−η.

In the latter estimate we are using that the harmonic function h is
defined on B2− η

2
and that

∫
|Dh|2 ≤ CE, together with the usual

interior estimates for harmonic functions. Note that, in particular, we
have the better bound |Dκ| ≤ CE

1
2 on the smaller ball B1.

Thus

Q

∫
Ω+∩B1

|Dκ− A|2 + (Q− 1)

∫
Ω−∩B1

|Dκ− A|2

≤Q
∫
B+

1

|Dκ− A|2 + (Q− 1)

∫
B−1

|Dκ− A|2 + CE
3
2
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and

Q

∫
Ω+∩B2−η

|Du+|2 + (Q− 1)

∫
Ω+∩B2−η

|Du−|2

≥Q
∫
B+

2−η

|Dκ|2 + (Q− 1)

∫
B−2−η

|Dκ|2 − C

η̄m
E

3
2 .

In conclusion, if ε0 is sufficiently small (depending on η̄) (6.40) is re-
duced to

Q

∫
B+

1

|Dκ− A|2 + (Q− 1)

∫
B−1

|Dκ− A|2

≤ (2− η)−m−2+ε

(
Q

∫
B+

2−η

|Dκ|2 + (Q− 1)

∫
B−2−η

|Dκ|2
)

+
η

8
E .

(6.41)

Now we will substitute κ with the harmonic function h in (6.41).
To this regard, recall that A = (Dh(0), 0) and

Dκ = (Dh,DxΨ +DuΨ(x, h)Dh) ,

where

|DxΨ|+ |DuΨ| ≤ CA ≤ C

M
1
2

0

E
1
2 .

Therefore

|Dκ− A|2 ≤ |Dh−Dh(0)|2 +
C

M0

E

|Dκ|2 ≥ |Dh|2 .
Hence, assuming M0 sufficiently large, the proof of (6.41) will be com-
pleted in the next paragraph, where we show that

Q

∫
B+

1

|Dh−Dh(0)|2 + (Q− 1)

∫
B−1

|Dh−Dh(0)|2

≤ (2− η)−m−2

(
Q

∫
B+

2−η

|Dh|2 + (Q− 1)

∫
B−2−η

|Dh|2
)
. (6.42)

Recall that h vanishes on {xm = 0}, hence by the Schwarz reflection
principle and unique continuation for harmonic functions, h(x′, xm) =
−h(x′,−xm) (see Remark 5.7). This implies that the left hand side of
(6.42) equals

(
Q− 1

2

) ∫
B1
|Dh − Dh(0)|2, whereas the right hand side

equals (2− η)−m−2
(
Q− 1

2

) ∫
B2−η
|Dh|2. Thus (6.42) is equivalent to∫

B1

|Dh−Dh(0)|2 ≤ (2− η)−m−2

∫
B2−η

|Dh|2 , (6.43)
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which is a classical inequality for harmonic functions. In order to show
(6.43) it suffices to decompose Dh in series of homogeneous harmonic
polynomials Dh(x) =

∑∞
i=0 Pi(x), where i is the degree. In partic-

ular the restriction of this decomposition on any sphere S := ∂Bρ

gives the decomposition of Dh|S in spherical harmonics, see [41, Chap-
ter 5, Section 2]. It turns out, therefore, that the Pi are L2(Bρ)-
orthogonal. Since the constant polynomial P0 is Dh(0) and

∫
B1
|Pi|2 =

(2− η)−m−2i
∫
B2−η
|Pi|2, (6.43) follows at once.

6.3. Proof of Theorem 6.3

We first notice that, by definition of collapsed point, for every δ > 0
there exists ρ̄ = ρ̄(δ) small such that

(i) E[(T,B2σ(p)) + 4Aσ2 ≤ δ for every σ ≤ ρ̄;
(ii) Θ(T, q) ≥ Θ(T, p) = Q− 1

2
for all q ∈ Γ ∩B2ρ̄(p).

Next, since Θ(T, p) = Q− 1
2
, if the radius ρ̄ is chosen small enough we

can assume that

‖T‖(B4ρ̄(p)) ≤ ωm

(
Q− 3

8

)
(4ρ̄)m .

By a simple comparison, for η sufficiently small, if q ∈ Bη(p) ∩ Γ and
ρ̄′ = ρ̄− η, then

‖T‖(B4ρ̄′(q)) ≤ ‖T‖(B4ρ̄(p)) ≤ ωm

(
Q− 3

8

)
(4ρ̄)m

≤ ωm

(
Q− 5

16

)
(4ρ̄′)m .

Next, by the monotonicity formula

σ−m‖T‖(Bσ(q)) ≤ eA(4ρ̄′−σ)(4ρ̄′)−m‖T‖(B4ρ̄′(q))

≤ eA(4ρ̄′−σ)ωm

(
Q− 5

16

)
≤ e4Aρ̄ωm

(
Q− 5

16

)
for all σ ≤ 4ρ̄′. In particular, if ρ̄ is chosen sufficiently small, we then
conclude

‖T‖(Bσ(q)) ≤ ωm

(
Q− 1

4

)
σm ∀q ∈ Bη(p) ∩ Γ and ∀σ ≤ 4ρ̄′ .

(6.44)
Set now r := min{η, ρ̄′}. For all points q in Br ∩ Γ we claim that

E[(q,Br) ≤ 2mE[(p,B2r) + CA2r2 ≤ Cδ. (6.45)
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Indeed let π be a plane for which E[(p,B2r(p)) = E(p,B2r(p), π). By
the regularity of Γ and Σ we find a plane π(q) such that |π − π(q)| ≤
CrA and TqΓ ⊂ π(q) ⊂ TqΣ. Then we can estimate

E[(T,Br(q)) ≤ E(T,Br(q), π̃(q)) ≤ 2mE(T,B2r(p), π(q))

≤ 2mE[(T,B2r(p)) + Cr2A2 ≤ Cδ .

We will now show that the conclusions of the theorem hold for this
particular radius r. First, without loss of generality we translate p
in 0 and rescale r to 1. Summarizing our discussion above, for every
q ∈ B1 ∩ Γ we have the following three properties

(A) E[(T,B1(q)) + A2 ≤ 2mE[(T,B2) + CA2 ≤ Cδ;
(B) Θ(T, x) ≥ Q− 1

2
for every x ∈ B1(q) ∩ Γ;

(C) ‖T‖(Bs(q)) ≤ (Q− 1
4
)ωms

m for every s ≤ 1.

We now fix any point q ∈ Γ ∩B1 and define e(s) := E[(T,Bs(q)). We
claim that

e(2−k−1) ≤ max{2−2(1−ε)ke(1
4
), 2−2(1−ε)k+2e(1

2
)} for all k ∈ N.

(6.46)
We prove it by induction on k: notice that the inequality is trivially
true for k = 0, 1. If the inequality is true for k = k0 ≥ 1, we want to
show it for k = k0 + 1. We set σ = 2−k−2 and notice that, by inductive
assumption

e(4σ) ≤ max{e(1
4
), e(1

2
)} ≤ Ce(1)

(A)

≤ Cδ.

Hence, provided we choose δ = δ(m,Q) (and thus r) sufficiently small,
we are in the position of applying Theorem 6.8: note that the induction
assumption covers hypothesis (i) of Theorem 6.8, whereas (B) and (C)
imply the hypotheses (ii) and (iii). We thus deduce that

e(2−k−2) = e(σ) ≤ max{2−2+2εe(2σ), 2−4+4εe(4σ)}
≤max{2−2(1−ε)ke(1

4
), 2−2(1−ε)k+2e(1

2
)} .

From (6.46) we easily conclude that for all such points q and for ρ ∈]0, 1
2
[

E(T,Bρ(q)) ≤ E[(T,Bρ(q)) ≤ Cρ2−2εe(1
2
) (6.47)

≤ Cρ2−2εE[(T,B1(q)) + Cρ2−2εA2

≤ Cρ2−2εE[(T,B1(q)) + Cρ2−2εA2

(A)

≤ Cρ2−2εE[(T,B2) + Cρ2−2εA2 . (6.48)

In addition, the estimate is trivial for 1
2
≤ ρ ≤ 1. Next, given 0 <

t < s < 1, if π(q, s) and π(q, t) are the optimal planes for E(q, t) and
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E[(q, s), (6.48) implies

|π(q, s)− π(q, t)|2 ≤ 1

‖T‖(Bs(q))

∫
Bs(q)

|π(q, t)− π(q, s)|2

≤ CE(T,Bs(q), π(q, s)) + CE(T,Bt(q)), π(t))

≤ Cs2−2εE[(T,B1) + Cs2−2εA2 .

We thus conclude the existence of a unique limit π(q) such that

|π(q)− π(q, s)|2 ≤ Cs2−2εE[(T,B1) + Cs2−2εA2 ∀ s ≤ 1 . (6.49)

From the latter inequality and (6.48), we conclude (6.4), namely state-
ment (c) of the theorem, for all q ∈ B1 ∩ Γ.

Next, notice that, at every such q ∈ B1 ∩Γ, TqΓ ⊂ π(q) ⊂ TqΣ and
that, from (6.4), the tangent cone is unique and takes the form

Q∗
q
π(q)+

y
+ (Q∗ − 1)

q
π(q)−

y
.

for some Q∗ ∈ N (since the tangent cone is an integral current). By
(ii) Q∗ − 1

2
= Θ(T, q) ≥ Q − 1

2
. Furthermore, by (C) Q < Q + 1 and

thus Q∗ = Q. Therefore Θ(T, q) = Q − 1
2

and this proves statements
(a) and (b) of the theorem.

We next turn to (e): arguing as in Section 6.2.1, we let

T0 = T
(
Bρ(q, π(q))×Bn

ρ (0, π(q)⊥)
)

and we note that it satisfies (5.2) in the cylinder Cρ(q, π(q)). In addi-
tion we have

E(T0,Cρ(q, π(q))) ≤ CE(T,Bρ(q), π(q))

and T Bρ(q) = T0 Bρ(q). Thus, we can apply Theorem 6.5 to get

h(T,Bρ(q), π(q)) ≤ h(T0,Cρ(q, π(q)), π(q))

≤ C(E(T,Bρ(q), π(q))
1
2 + A

1
2ρ

1
2 )ρ .

The estimate (6.6) follows at once from the latter inequality and (6.4).
We conclude by proving (d) of Theorem 6.3. First of all, observe

that it suffices to show (6.5) when ρ := |q − q′| ≤ 1/2. Recall the
estimate (6.49):

max{|π(q)− π(q, ρ)|, |π(q′)− π(q′, ρ)|} ≤ C(E[(T,B1)
1
2 + A)ρ1−ε .
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Hence to complete the proof of (6.5), we notice that

|π(q, ρ)− π(q′, ρ)|2 ≤ −
∫
Bρ(q)∩Bρ(q′)

|π(q, ρ)− π(q′, ρ)|2

≤ C

ωmρm

∫
Bρ(q)

|~T − π(q, ρ)|2 +
C

ωmρm

∫
Bρ(q′)

|~T − π(q′, ρ)|2

= C(E[(T,Bρ(q)) + E[(T,Bρ(q
′)))

≤ C(E[(T,B1) + A2)ρ2−2ε ,

where we have also used that ‖T‖(Bρ(p) ≥ cρm, a simple consequence
of the monotonicity formula in Theorem 3.2.

6.4. Proof of Corollary 6.4

The inclusion (6.10) follows immediately from (6.6) applied to some
ρ with 2|x − q| > ρ > |x − q|, where x ∈ spt(T ) ∩ Bσ(q). Next we
observe that (6.10) is in fact stronger than (6.8), because, by (6.7), we
can control the tilt |π(q)− π(p)|. Indeed,

|p⊥ − p⊥q |2 = |p− pq|2 ≤ m|π − π(q)|2
(6.49)

≤ CE.

Using Theorem 6.3(d) with q′ = p and ε = 1
2

we conclude the crude

estimate |π(q)− π(p)| ≤ C(E1/2 + Ar). In particular

|p⊥q − p⊥|2 = |pq − p|2 ≤ m|π(q)− π|2 ≤ C(E + A2r2) .

Fix therefore a point x ∈ Bσ(q) ∩ spt(T ). Then

|p⊥(x− q)| ≤|x− q||p⊥ − p⊥q |+ |p⊥q (x− q)|

≤C(E
1/2 + Ar)|x− q|+ C(r−1E + A)

1/2|x− q|
3
2

≤C(E + Ar)
1/2|x− q| ,

which proves (6.8).



CHAPTER 7

Second Lipschitz approximation

Recalling Theorem 3.8, our main task is to show that, under As-
sumption 1.5, any collapsed point q ∈ Γ is regular. By the usual scaling
and translation argument, we can moreover assume that:

(i) 0 ∈ Γ is a collapsed point with multiplicity Θ(T, 0) = Q− 1
2
;

(ii) at any point q ∈ Γ∩B1 the conclusions of Theorem 6.3 apply
for every radius r ≤ 1;

(iii) A and E[(T,B2) are small, namely

A2 + E[(T,B2) < ε0 , (7.1)

where ε0 is a sufficiently small constant whose choice will be
specified in the remaining proofs.

Let π0 be a plane which minimizes the expression defining E[(T,B1).
By Corollary 6.4, we know that

spt(T ) ∩B1 ⊂ {x : |p⊥0 (x)| ≤ Cε
1/2
0 |x|} , (7.2)

where p⊥0 is the orthogonal projection on π⊥0 . Since we can restrict
the current T to B1 and further scale by a factor 2, we can assume,
without loss of generality, that

(iv) There is a plane π0 such that E[(T,B2) = E(T,B2, π0), T0Γ ⊂
π0 ⊂ T0Σ and

spt(T ) ∩B2 ⊂ {x : |p⊥0 (x)| ≤ Cε
1/2
0 |x|} . (7.3)

From now on we will work under the above assumptions, which we
summarize together in the following

Assumption 7.1. T , Σ and Γ are as in Assumption 1.5 and they
satisfy additionally the conditions (i), (ii), (iii) and (iv) above.

In particular, Theorem 3.8 is implied by the following milder ver-
sion:

Theorem 7.2. If T,Σ and Γ are as in Assumption 7.1, then 0 is
a regular boundary point of T .

121
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In this framework we can then refine our Lipschitz approximation
in cylinders with small excess. We first note the following corollary of
Theorem 6.3 and of the cone condition in Assumption 7.1(iv).

Proposition 7.3. Let T,Σ and Γ be as in Assumption 7.1 with
ε0 sufficiently small (depending only upon m,n, n̄ and Q). Then there
are positive constants C = C(m,n, n̄, Q) and ε̄ = ε̄(m,n, n̄, Q) with
the following properties. Assume that q ∈ Γ ∩ B1, r < 1

8
and π is an

m-dimensional plane such that TqΓ ⊂ π ⊂ TqΣ and

E = E(T,C4r(q, π)) < ε̄ . (7.4)

Then

spt(∂(T C4r(q, π))) ⊂ ∂C4r(q, π) ∪ Γ

and

h(T,C2r(q, π), π) ≤ Cr(E + Ar)
1/2 . (7.5)

We are then ready to state our improved approximation theorem:

Theorem 7.4. Let T , Σ, Γ, q, r and π be as in Proposition 7.3.
Consider the orthogonal projection γ of Γ ∩ C4r(q, π) onto the plane
q + π and observe that, since ε0 is sufficiently small, Γ ∩ C4r(q, π) is
the graph over γ of a C3,a0 function ψ. Then there are a closed set
K ⊂ Br(q) = Br(q, π) and a

(
Q− 1

2

)
-valued map (u+, u−) on Br(p)

which collapses at the interface (γ, ψ) satisfying the following estimates:

Lip(u±) ≤ C(E + A2r2)σ (7.6)

osc(u±) ≤ C(E + Ar)
1/2r (7.7)

Gu± [(K ∩ Ω±)× π⊥] = T [(K ∩ Ω±)× Rn] (7.8)

Gr(u±) ⊂ Σ (7.9)

|Br(q) \K| ≤C(E + A2r2)1+σrm (7.10)

eT (Br(q) \K) ≤C(E + A2r2)1+σrm (7.11)∫
Br(q)\K

|Du|2 ≤C(E + A2r2)1+σrm (7.12)∣∣∣∣eT (F )− 1

2

∫
F

|Du±|2
∣∣∣∣ ≤C(E + A2r2)1+σrm ∀F ⊂ Ω± measurable,

(7.13)

where Ω± are the two regions in which Br(q) is divided by γ, whereas
C ≥ 1 and σ ∈]0, 1

4
[ are two positive constants which depend on m,n, n̄

and Q.



7.1. PRELIMINARY OBSERVATIONS 123

7.1. Preliminary observations

We start recalling [14, Theorem 2.4] in our context.

Theorem 7.5 (Almgren’s strong approximation). There exist con-
stants C, σ, ε̄ > 0 (depending on m,n, n̄, Q) with the following property.
Let T , Σ and Γ be as in Assumption 7.1, π, q and r as in Proposition
7.3 and let x ∈ B1 such that

(i) the cylinder C := C4ρ(x, π) does not intersect Γ and is con-
tained in C4r(q, π);

(ii) A2ρ2 + Ē = A2 + E(T,C4 ρ(x, π)) < ε̄.

Then, there is a map f : Bρ(x, π)→ AQ(π⊥), or a map f : Bρ(x, π)→
AQ−1(π⊥), with spt(f(z)) ⊂ Σ for every z ∈ Bρ(x, π), and a closed set
K̄ ⊂ Bρ(x, π) such that

Lip(f) ≤ C(Ē + A2ρ2)σ (7.14)

Gf (K̄ × Rn) = T (K̄ × Rn)

and |Bρ(x, π) \ K̄| ≤ C
(
Ē + A2ρ2

)1+σ
ρm, (7.15)∣∣∣∣∣‖T‖(Csρ(x))−Qωm (sρ)m − 1

2

∫
Bsρ(x,π)

|Df |2
∣∣∣∣∣ (7.16)

≤C
(
Ē + A2ρ2

)1+σ
ρm ∀ 0 < s ≤ 1 (7.17)

and

osc (f) ≤ Ch(T,C, π) + C(Ē
1/2 + Aρ) ρ . (7.18)

From now on, in order to simplify our notation, we assume that
π = π0 = Rm×{0} and use the shorthand notation Bt(x) for Bt(x, π).

In addition to the conclusions of the theorem above, we observe
that they imply the following further estimates

eT (Bρ(x) \ K̄) ≤C(Ē + ρ2A2)1+σρm (7.19)∫
Bρ(x)\K̄

|Df |2 ≤C(Ē + ρ2A2)1+σρm (7.20)∣∣∣∣eT (F )− 1

2

∫
F

|Df |2
∣∣∣∣ ≤C (̄Ē + ρ2A2)1+σρm ∀F ⊂ Bρ(x) measurable.

(7.21)

This can be seen as follows. First of all (7.14) and (7.15) give∫
F\K̄
|Df |2 ≤ C(Ē + A2ρ2)2σ|Bρ(x) \ K̄| ≤ C(Ē + A2ρ2)1+σρm
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for every F ⊂ Bρ(x) measurable. In particular we achieve (7.20) setting
F = Bρ(x).

Next recall that ‖T‖(Bρ(x))−Qωmρm = eT (Bρ(x)) and hence (7.17)
can be reformulated, for s = 1, as∣∣∣∣∣eT (Bρ(x))− 1

2

∫
Bρ(x)

|Df |2
∣∣∣∣∣ ≤ C(Ē + A2ρ2)1+σρm .

In particular

1

2

∫
Bρ(x)

|Df |2 ≤
(
Ē + C(Ē + A2ρ2)1+σ

)
ρm ≤ C

(
Ē + A2ρ2

)
ρm .

Secondly, the Taylor expansion of the area functional and (7.14) give∣∣∣∣eGf
(F )− 1

2

∫
F

|Df |2
∣∣∣∣ ≤ CLip(f)2

∫
F

|Df |2 ≤ C(Ē + A2ρ2)1+2σρm

for every F ⊂ Bρ(x) measurable.
Combining the inequalities just obtained we achieve

eT (Bρ(x) \ K̄) = eT (Bρ(x))− eGf
(Bρ(x) ∩ K̄)

≤

∣∣∣∣∣eT (Bρ(x))− 1

2

∫
Bρ(x)

|Df |2
∣∣∣∣∣

+

∣∣∣∣∣12
∫
Bρ(x)∩K̄

|Df |2 − eGf
(Bρ(x) ∩ K̄)

∣∣∣∣∣+

∫
Bρ(x)\K̄

|Df |2

≤C(Ē + A2ρ2)1+σρm ,

which implies (7.19).
Finally, for every F ⊂ Bρ(x) measurable we have∣∣∣∣eT (F )− 1

2

∫
F

|Df |2
∣∣∣∣ ≤ ∣∣∣∣eGf

(F ∩K)− 1

2

∫
F∩K
|Df |2

∣∣∣∣
+ eT (F \K) +

1

2

∫
F\K
|Df |2

≤ C(Ē + A2ρ2)1+σρm .

7.2. Proof of Theorem 7.4

Without loss of generality we assume that TqΓ = Rm−1 × {0}, π =
Rm × {0} and TqΣ = Rm+n̄ × {0}. We then use Cs(q) in place of
Cs(q, π), and Bs(q) in place of Bs(q, π). Note that

∂T C4r(q) = JΓ ∩C4r(q)K
and p](∂T C4r(q)) = Jγ ∩B4r(p(q))K . (7.22)
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As in the previous sections, denote by Ω+ and Ω− the two connected
components of B4r(q)\γ, chosen so that p]T C4r(q) = Q JΩ+K+(Q−
1) JΩ−K.

Let L0 be the cube q+ [−r, r]m and, for any natural number k ∈ N,
letQk be the collection of cubes L of the form q+r2−kx+[−2−kr, 2−kr]m,
for x ∈ Zm, which are contained in L0 and intersect Br(q). We fix a
number N ∈ N such that the 16

√
m2−Nr-neighborhood of ∪L∈QNL is

contained in C4r(q) and construct a Whitney decomposition of

Ω̃ =
⋃

L∈QN

L \ γ

in the following way. We set RN = QN . If L ∈ RN has diam (L) ≤
1
16

sep (L, γ), then we assign L to the class WN . Here and in what
follows we set

sep (L, γ) = min{|x− y| : x ∈ γ, y ∈ L} .
Otherwise we subdivide it in 2m subcubes of side 2−Nr and assign them
to RN+1. We then inductively define Wk and Rk+1 for every k ≥ N .
The Whitney decompositionW = ∪k≥NWk is then a collection of closed
dyadic cubes whose interiors are pairwise disjoint, which cover Ω+∪Ω−

and such that

min

{
1

32
sep (L, γ),

√
m2−N+1

}
≤ diam(L) ≤ 1

16
sep (L, γ). (7.23)

We denote with cL the center of the cube L ∈ W and set rL :=
3 diam(L) so that L ⊂ B 1

4
rL

(cL).

....

....

....

....

....
cL

L

γ

Figure 1. The Whitney decomposition W in Ω−.

We claim that for each cube L the current T restricted to the cylin-
der C4rL(cL) satisfies the assumptions of Theorem 7.5.
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First note that, by the construction of the Whitney decomposi-
tion, we have C4rL(cL) ∩ Γ = ∅ and B6rL(cL) ⊂ B4r(q) and thus
∂T C4rL(cL) = 0. Moreover, either B4rL(cL) ⊂ Ω+ or B4rL(cL) ⊂ Ω−

and thus p]T C4rL(cL) equals eitherQ JB4rL(cL)K or (Q−1) JB4rL(cL)K.
To check the second assumption of Theorem 7.5 we distinguish the

two cases rL = 2−Nr and rL < 2−Nr. If rL = 2−Nr we simply have

E(T,C4rL(cL)) ≤ 2NmE(T,C4r(q)) = 2NmE.

For each L ∈ W with rL < 2−Nr let xL be the point of γ closest to cL
and let qL ∈ Γ be the point (xL, ψ(xL)). From the first inequality of
(7.23) we deduce that C4rL(cL) ⊂ C13rL(qL). In particular notice that
by the cone condition (7.5), spt(T )∩C14rL(qL) ⊂ B16rL(qL) and by our
choice of N we have C14rL(qL) ⊂ B16rL(qL) ⊂ C4r(q).

Next, observe that

E(T,C4rL(cL)) ≤ 4mE(T,B16rL(qL), π)

≤ CE(T,B16rL , π(qL)) + C|π − π(qL)|2

According to Theorem (6.3) we then conclude

E(T,C4rL(cL)) ≤ C(E + A2r2) . (7.24)

So, provided ε0 is chosen sufficiently small, we can apply Theorem
7.5 in every cylinder C4rL(cL) and obtain:

- a Q-valued (or (Q − 1)-valued) map fL on each ball BrL(cL)
with spt(fL(x)) ∈ Σ for every x ∈ BrL(cL)

- a closed sets KL ⊂ BrL(cL)

such that

Lip(fL) ≤C(E + A2r2
L)σ (7.25)

GfL (KL × Rn) =T (KL × Rn) (7.26)

|BrL(cL) \KL| ≤C(E + A2r2
L)1+σrmL (7.27)

eT (BrL(cL) \KL) ≤C(E + A2r2
L)1+σrmL (7.28)∫

BrL (cL)\KL
|DfL|2 ≤C(E + A2r2

L)1+σrmL (7.29)∣∣∣∣eT (F )− 1

2

∫
F

|DfL|2
∣∣∣∣ ≤C(E + A2r2

L)1+σrmL ∀F ⊂ BrL(cL) measurable

(7.30)

whereupon (7.29), (7.30) follow as explained in (7.19), (7.21).
Next, for each L we let N+(L) be the neighboring cubes inW with

larger or equal radius, i.e.

N+(L) = {H ∈ W : H ∩ L 6= ∅, rH ≥ rL}.
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Note that by the construction of the Whitney decomposition we en-
sured that if H ∈ N+(L), then L ⊂ BrH (cH). We define

K ′L = KL ∩
⋂

H∈N+(L)

KH

K+ =
⋃

L∈W,L⊂Ω+

K ′L ∩ L

K− =
⋃

L∈W,L⊂Ω−

K ′L ∩ L

and further

ũ+(x) := fL(x) if x ∈ L ∩K+ and ũ−(x) := fL(x) if x ∈ L ∩K−.

Since the cardinality of N+(L) is bounded by a geometric constant
C(m), we conclude from from (7.27) that

|L \K ′L| ≤ C(E + A2r2)1+σrmL . (7.31)

In particular, if ε0 is sufficiently small, we conclude that L ∩K ′L 6= ∅.
We next claim that

Lip(ũ±) ≤C(E + A2r2)σ (7.32)

Gũ± (K± × Rn) =T (K± × Rn) (7.33)

eT (L \K ′L) ≤C(E + A2r2)1+σrmL (7.34)∫
L\K′L
|Dũ±|2 ≤C(E + A2r2)1+σrmL . (7.35)

Inequalities (7.33), (7.34) and (7.35) follows easily by the fact that
L \K ′L ⊂ BrL(cL) \KL and ũ± coincides with fL on K ′L. To show the
the Lipschitz (7.32) we let H,L ∈ W be any two cubes and we assume
that diam(H) ≥ diam(L) and x ∈ H, y ∈ L.

If H ∩L 6= ∅ (and in particular if H = L) by construction ũ± = fH
on K±∩BrH (cH) ⊂ KH , hence the inequality G(ũ±(x), ũ±(y)) ≤ C(E+
A2r2)σ|x− y| follows from the Lipschitz bound for fH .

If H ∩ L = ∅ we have

1

2
√
m
rH ≤ |x− y|.

In case rH = 2−Nr then the Lipschitz estimate follows from the hight
bound (7.5): G(ũ+(x), ũ+(x′)) ≤ 2Cr(E+Ar)1/2 ≤ C(E+Ar)1/2|x−x′|.
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If rH < 2−Nr consider for the points x, y ∈ γ which are the closest
to x′, y′ respectively We claim that

G(ũ±(x), Q Jψ(x′)K) ≤C|x− x′|(E + Ar)
1/2 (7.36)

G(ũ±(y), Q Jψ(y′)K) ≤C|y − y′|(E + Ar)
1/2 . (7.37)

Indeed, both inequalities are due to the fact that dist (x, γ) is compa-
rable to rL and that, in the cylinder CC16rL(x′), we have the height
bound (7.5) (recall that the points (x′, ψ(x′)) and (x, ũi(x)) are all in
the support of the current T ). Note also that, by the regularity of Γ,

|ψ(x′)− ψ(y′)| ≤ C(E + Ar)
1/2|x′ − y′| .

In particular we can estimate

G(ũ±(x), ũ±(y))

≤G(ũ±(x), Q Jψ(x′)K) +Q
1/2|ψ(x′)− ψ(y′)|+ G(ũ±(y), Q Jψ(y′)K)

≤C(E + Ar)
1/2(|x− x′|+ |x′ − y′|+ |y′ − y|)

≤C(E + Ar)
1/2(2|x− x′|+ |x− y|+ 2|y′ − y|)

≤C(E + A2r2)σ|x− y|
where we have used that σ ≤ 1

4
and that

|x−x′|+|y′−y| = dist(x, γ)+dist(y, γ) ≤ C(rL+rH) ≤ CrH ≤ C|x−y|.
Note in particular that we have also proved that ũ+ (resp. ũ−) has a
unique Lipschitz extension to (K+∪γ)∩Br(q) (resp. (K−∪γ)∩Br(q))
which on γ ∩Br(q) coincides with Q JψK (resp. (Q− 1) JψK).

We next wish to extend ũ± to the whole Ω± keeping the Lipschitz
estimate (up to a multiplicative geometric constant) and the property
that spt(x, ũ±(x)) ⊂ Σ. This can be easily done observing that Σ ∩
Cr(q) is the graph of a function Ψ : T0Σ∩Br(q)→ T0Σ⊥ = {0}×Rn−n̄

with Lipschitz constant controlled by CAr. Therefore we can write

ũ±(x) =
∑
i

q
v±i (x),Ψ(x, v±i (x))

y

for an appropriate Lipschitz Q-valued map v+ : K+ → AQ(Rn̄) and an
appropriate Lipschitz (Q − 1)-valued map v− : K− → AQ−1(Rn̄) with
Lip(v±) ≤ C(E + A2r2)σ. Extending first v± to Ω± and then compos-
ing with Ψ, we achieve the desired extension u± of ũ± to Ω±. Note
moreover that, by the observation above, the pair (u+, u−) collapses
at the interface (γ ∩Br(q), ψ). Recalling the height estimate (7.5), we
also have that osc (ũ±) ≤ C(E + Ar)1/2r and the Lipschitz extension
can be constructed so to preserve the oscillation bound as well (up to
a geometric factor, cf. [13, Theorem 1.7]).
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Setting K = K+∪K−, we have so far proved the conclusions (7.6),
(7.7), (7.8) and (7.9). For the remaining estimates, observe first that∑

L∈W

rmL ≤ C(m)rm .

Hence, (7.10), (7.11) and (7.12) follow from summing, respectively,
(7.31), (7.34) and (7.35).

Finally, fix a measurable set F ⊂ Ω+ and observe that, for any cube
L in the Whitney decomposition of Ω+∣∣∣∣eT (F ∩ L)− 1

2

∫
F∩L
|Du+|2

∣∣∣∣
≤
∣∣∣∣eT (F ∩ L ∩K+)− 1

2

∫
F∩L∩K+

|Du+|2
∣∣∣∣

+ eT (L \K+) + Lip(u+)2|L \K+|

≤
∣∣∣∣eT (F ∩ L ∩K+)− 1

2

∫
F∩L∩K+

|DfL|2
∣∣∣∣+ C(E + A2r2)1+σrmL

≤ C(E + A2r2)1+σrmL .

Summing over L we obtain (7.13). The same arguments work for u−

and conclude the proof.





CHAPTER 8

Center manifolds

As already pointed out in the previous chapter, our task is to prove
Theorem 7.2, which for the reader’s convenience we recall here:

Theorem 8.1. If T,Σ and Γ are as in Assumption 7.1, then 0 is
a regular boundary point of T .

We thus work from now on under the assumption that 0, the origin
of our system of coordinates, is a collapsed point and that

T0Γ = Rm−1 × {0}
T0Σ = Rm+n × {0} and

Rn = Rm+n+l .

Therefore, the tangent cone of T at p = 0 is Q
q
π+

0

y
+ (Q − 1)

q
π−0

y
,

where

π±0 = {x ∈ Rn : ±xm > 0, xm+1 = . . . = xn+m = 0} .
As in the previous chapters, we denote by γ the projection on π0 of Γ

and, given any sufficiently small open set Ω ⊂ π0 which is contractible
and contains 0, we denote by Ω± those portions of Ω lying on the
right and left of γ. We are going to build two separate m-dimensional
surfacesM± of class C3 which will be called (respectively) left and right
center manifolds . Both surfaces lie in the manifold Σ. M+ will be a
graph over B+

3/2(0, π0) (which from now on we denote by B+
3/2) of some

function ϕ+ and M− a graph over B−3/2(0, π0) of some function ϕ− .

Both center manifolds will have Γ ∩ C3/2(0, π0) as a boundary, when
considered as surfaces in the cylinder C3/2(0, π0) and will be C3 (in
fact C3,κ for a suitable positive κ) up to the boundary. In addition, at
each point p ∈ Γ∩C3/2(0, π0) the tangent space to both manifolds will
be the same and will coincide with the plane π(q) of Theorem 6.3. In
particularM =M+∪M− will be a C1,1 submanifold of Σ∩C3/2(0, π0)
without boundary.

Finally we remark that at this stage we do not have any information
about higher regularity of M: in particular we do not yet know that
the second derivatives of the two functions ϕ± coincide at γ. At the

131
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very end of the proof of Theorem 8.1, which will be accomplished in
the final chapter, it will however turn out that M is indeed C3 and
that T C3/2(0, π0) = Q JM+K + (Q− 1) JM−K.

8.1. Construction of the center manifolds

8.1.1. Boundary dyadic cubes and non-boundary dyadic
cubes. We focus on the construction of M+ (the one of M− follows
a “specular” algorithm). We start by describing a procedure which
reaches a suitable Whitney-type decomposition of B+

3/2 with cubes

whose sides are parallel to the coordinate axes and have sidelength
2`(L). The center of any such cube L considered in the procedure will
be denoted by c(L) and its sidelength will be denoted by 2`(L). We
start by introducing a family of dyadic cubes L ⊂ π0 in the following
way: for j ≥ N0 (an integer whose choice will be specified below), we
introduce the families

Cj := {L : L is a dyadic cube of side `(L) = 2−j and B+
3/2 ∩ L 6= ∅} ,

For each L define a radius

rL := M0

√
m`(L) ,

with M0 ≥ 1 to be chosen later. We then subdivide C := ∪jCj into,
respectively, boundary cubes and non-boundary cubes1

C [ := {L ∈ C : dist(c(L), γ) < 64rL}
C \ := {L ∈ C : dist(c(L), γ) ≥ 64rL} .

Likewise we also use the notation C [
j and C \

j for C [ ∩ Cj and C \
j =

C \∩Cj. Indeed in what follows, without mentioning it any further, we
will often use the same convention for several other subfamilies of C .

Definition 8.2. If H,L ∈ C we say that:

• H is a descendant of L (and L is an ancestor of H) if H ⊂ L;
• H is a son of L (and L is the father of H) if H ⊂ L and
`(H) = 1

2
`(L);

• H and L are neighbors if 1
2
`(L) ≤ `(H) ≤ `(L) and H∩L 6= ∅.

Note, in particular, the following elementary consequence of the
subdivision of C :

1Observe that some boundary cubes can be completely contained in B+
3/2. For

this reason we prefer to use the term “non-boundary” rather than “interior” for the
cubes in C \.
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Lemma 8.3. Let H be a boundary cube. Then any ancestor L and
any neighbor L with `(L) = 2`(H) is necessarily a boundary cube. In
particular: the descendant of a non-boundary cube is a non-boundary
cube.

Proof. For the case of ancestors it suffices to prove that if L is
a father of a boundary cube H, then L as well is a boundary cube,
and since the father of H is a neighbor of H with `(L) = 2`(H), we
only need to show the second part of the statement of the lemma. The
latter is a simple consequence of the following chain of inequalities:

dist(c(L), γ) ≤ dist(c(H), γ) + |c(H)− c(L)|
= dist(c(H), γ) + 3

√
m`(H)

< 64rH + 3
rH
M0

≤
(
64 + 3M−1

0

) rL
2
≤ 67

2
rL < 64rL .�

Moreover, we set the following:

• If L ∈ C \
j , then BL is a ball in Rm+n+l with radius 64rL and

center some chosen point pL ∈ spt(T ) such that pπ0(pL) = c(L)
(note that such pL is a priori not unique: we just make an
arbitrary choice) and πL is a plane which minimizes the excess
in BL, namely E(T,BL) = E(T,BL, πL) and πL ⊂ TpLΣ.
• If L ∈ C [, then B[

L is the ball in Rm+n+l with radius 2764rL
and center p[L ∈ Γ such that |pπ0(p[L) − c(L)| = dist(c(L), γ).
Note that in this case the point p[L is uniquely determined
because Γ is regular and A is assumed to be sufficiently small.
Likewise πL is a plane which minimizes the excess E[, namely
such that E[(T,B[

L) = E(T,B[
L, πL) and Tp[LΓ ⊂ πL ⊂ Tp[LΣ.

A simple corollary of Theorem 6.3 and Corollary 6.4 is the following
lemma.

Lemma 8.4. Let T,Σ and Γ be as in Assumption 7.1. Then there is
a positive dimensional constant C(m,n) such that, if the starting size of
the Whitney decomposition is fine enough, namely if 2N0 ≥ C(m,n)M0,
then the balls B[

L and BL are all contained in B2.
Moreover, there exists ε1 such that, for any choice of M0, αe > 0

and αh <
1
2
, if

E[(T,B2) + ‖Ψ‖2
C3,a0 + ‖ψ‖2

C3,a0 < ε1 , (8.1)
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then for every cube L ∈ C [ we have

E[(T,B[
L) ≤ C0ε1r

2−2αe
L , (8.2)

h(T,B[
L, πL) ≤ C0ε

1/4
1 r1+αh

L , (8.3)

|πL − π0| ≤ C0ε
1/2
1 , (8.4)

|πL − π(p[L)| ≤ C0ε
1/2
1 r1−ae

L (8.5)

where, π(p[L) has been defined in (b) of Theorem 6.3 and C0 depends
only upon αe, αh, m and n.

Proof. The first part of the statement is just a direct inspection.
Estimate (8.2) is a direct consequence of (6.4). Consider now π(p[L) as
in Theorem 6.3. By the monotonicity formula we know that

‖T‖(B[
L) ≥ ωm(2764rL)m

because we know that Θ(T, p[L) = Q− 1
2
≥ 3

2
. Moreover (6.4) implies

E(T,B[
L, πL) ≤ E(T,B[

L, π(p[L)) ≤ C0ε1r
2−2αe
L .

Thus

|π(p[L)− πL|2 ≤ C0

(
E(T,B[

L, πL) + E(T,B[
L, π(p[L))

)
≤ C0ε

1/2
1 r2−2αe

L .

which proves (8.5). (8.4) is now a direct consequence of (6.7) and (8.5)
while (8.3) is direct consequence of (6.6). �

8.1.2. Decomposition and stopping conditions. We will now
defined a suitable refining procedure of our initial Whitney decomposi-
tion. To this end let Ce, Ch be two positive constants that will be fixed
later, see Assumption 8.6 below. We take a cube L ∈ CN0 and we do
not subdivide it if it belongs to one of the following sets:

(1) W e
N0

:= {L ∈ C \
N0

: E(T,BL) > Ceε1`(L)2−αe};
(2) W h

N0
:= {L ∈ C \

N0
: h(T,BL, πL) > Chε

1/2m
1 `(L)1+αh}.

We then define

SN0 := CN0 \
(
W e
N0
∪W h

N0

)
.

The cubes in SN0 will be subdivided in their sons. In fact we will
ensure that WN0 := W e

N0
∪ W h

N0
= ∅ (and therefore CN0 = SN0) by

choosing Ce and Ch large enough, depending only upon αh, αe,M0 and
N0, see Proposition 8.24 below.

We next describe the refining procedure assuming inductively that
for a certain step j ≥ N0+1 we have defined the families Wj−1 and Sj−1.
In particular we consider all the cubes L in Cj which are contained in
some element of Sj−1. Among them we select and set aside in the
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classes Wj := W e
j ∪W h

j ∪W n
j those cubes where the following stopping

criteria are met:

(1) W e
j := {L son of K ∈ S \

j−1 : E(T,BL) > Ceε1`(L)2−2αe};
(2) W h

j := {L son of K ∈ S \
j−1 : L 6∈ W e

j and

h(T,BL, πL) > Chε
1/2m
1 `(L)1+αh};

(3) W n
j := {L son of K ∈ Sj−1 : L 6∈ W e

j ∪W h
j but

∃L′ ∈ Wj−1 with L ∩ L′ 6= ∅}.
Note, in particular, that the refinement of boundary cubes can never
be stopped because of the conditions (1) and (2). Indeed we could have
included analogous stopping conditions for boundary cubes as well, but
Lemma 8.4 would have implied in any case that these conditions would
never stop the refining of boundary cubes. In principle a boundary
cube might still be stopped because of the third condition, but we will
see in Lemma 8.5 that this possibility can be excluded as well. Thus
boundary cubes always belong to S . Clearly, descendants of boundary
cubes might become non-boundary cubes and so their refining can be
stopped.

We finally set Wj := W e
j ∪ W h

j ∪ W n
j and we keep refining the

decomposition in the set

Sj := {L ∈ Cj son of K ∈ Sj−1} \Wj .

Observe that it might happen that the son of a cube in Sj−1 does not
intersect B+

3/2: in that case, according to our definition, the cube does

not belong to Sj neither to Wj: it is simply discarded.

As already mentioned, we use the notation S [
j and S \

j respectively

for Sj ∩ C [ and Sj ∩ C \. Furthermore we set

W :=
⋃
j≥N0

Wj

S :=
⋃
j≥N0

Sj

S+ :=
⋂
j≥N0

( ⋃
L∈Sj

L
)

= B+
3/2 \

⋃
H∈W

H .

We emphasize that B+
3/2 includes γ ∩B3/2.

Lemma 8.5. C [
j ∩ W = ∅ for every j ≥ N0 and in particular γ ∩

B+
3/2 ⊂ S+.

Proof. Assume there is a boundary cube in W and let L be a
boundary cube in W with largest side length. The latter must then
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belong to W n
j for some j. However this would imply the existence of

a neighbor L′ ∈ W with `(L′) = 2`(L): by Lemma 8.3 L′ would be a
boundary cube in W , contradicting the maximality of L. �

8.1.3. Hierarchy of parameters. From now on we specify a set
of assumptions on the various choices of the constants involved in the
construction.

Assumption 8.6. T,Σ and Γ are as in Assumptions 7.1 and we
also assume that

(a) αh is smaller than 1
2m

and αe is positive but small, depending
only on αh,

(b) M0 is larger than a suitable constant, depending only upon
αe,

(c) 2N0 ≥ C(m,n,M0), in particular it satisfies the condition of
Lemma 8.4,

(d) Ce is sufficiently large depending upon αe, αh, M0 and N0,
(e) Ch is sufficiently large depending upon αe, αh,M0, N0 and Ce,
(f) (8.1) holds with an ε1 sufficiently small depending upon all the

other parameters.

Finally, there is an exponent αL, which depends only on m,n, n̄ and
Q and which is independent of all the other parameters, in terms of
which several important estimates in Theorem 8.19 will be stated.

Note that the parameters are chosen following a precise hierarchy,
in particular ensuring that there is a nonempty set of parameters sat-
isfying all the requirements. The hierarchy is consistent with that of
[16], in particular the reader can compare Assumption 8.6 with [16,
Assumption 1.9].

8.1.4. Interpolating functions. In this section we define the “in-
terpolating functions” gL for each cube L. In particular, over the set
B+

3/2 \ S+, the function ϕ+ is defined by patching together the gL’s

with a partition of unity subordinate to the cover W . Since however
we need to define ϕ+ over S+ as well, we introduce all the necessary
objects for any cube in S ∪W .

Proposition 8.7. If T,Σ and Γ are as in Assumptions 7.1 and if
the various parameters αe, αh,M0, N0, Ce, Ch, ε1 fulfill the Assumptions
8.6 we have

spt(T ) ∩C36rL(pL, πL) ⊂ BL when L ∈ S \
j ∪Wj,

spt(T ) ∩C2736rL(p[L, πL) ⊂ B[
L when L ∈ S [

j ,
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and the current T satisfies the assumptions of Theorem 7.5 in the cylin-
der C36rL(pL, πL), resp. the assumptions of Theorem 7.4 in the cylinder
C2736rL(p[L, πL).

We omit the proof here and in fact a strengthened version of the
proposition is included in Proposition 8.25. In each cube L ∈ S [

j (resp.

L ∈ S \
j ∪Wj) we define (f−L , f

+
L ) (resp. fL) to be the Lipschitz approx-

imation of T in the cylinder C279rL(p[L, πL) (resp. C9rL(pL, πL)). More-
over we define the multifunctions f̄±L (respectively f̄L) by projecting the
values of f±L (resp. fL) on the plane Tp[LΣ (resp. TpLΣ). More precisely,

if we introduce the plane κL := π⊥L ∩ Tp[LΣ (resp. κL := π⊥L ∩ TpLΣ),

which is the orthogonal complement of πL in Tp[LΣ (resp. in TpLΣ), the

functions f±L and fL are defined by

f̄+
L =

Q∑
i=1

q
pκL((f+

L )i)
y

f̄−L =

Q−1∑
i=1

q
pκL((f−L )i)

y

and f̄L =

Q∑
i=1

JpκL((fL)i)K .

We can therefore regard each value (f±L )i(x) (resp. (fL)i(x)) as an ele-
ment of the product space κL×T⊥p[LΣ (resp. κL×T⊥pLΣ). Hence, if we let

ΨL : Tp[LΣ → T⊥
p[L

Σ (resp. ΨL : TpLΣ → T⊥pLΣ) be the parametrization

of the ambient manifold Σ (in such a way that locally Σ = Graph(ΨL)),
we have the identities

(f±L )i(x) = ((f̄±L )i(x),ΨL(x, (f̄±L )i(x)))

(fL)i(x) = ((f̄L)i(x),ΨL(x, (f̄L)i(x))) .

Although abusive, in order to make our notation less cumbersome we

will then write f±L = (f
±
L ,ΨL ◦ f

±
L) (resp. fL = (fL,ΨL ◦ fL) and we

will adopt the same convention for other maps with the same structure.

Definition 8.8. The maps f±L and fL defined above will be called
πL-approximations of T in the respective cylinders (indeed f±L approx-
imates the current on the “half cylinder” p−1

πL
(B±279rL

)).

We next let hL be the solution of a suitable elliptic system (coming
from the linearization of the mean curvature condition for minimal
surfaces in Σ), subject to appropriate boundary conditions, which differ
depending on whether L is a non-boundary or a boundary cube. More
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precisely, for each cube, we introduce the constant matrix L as

Lik = −
∑
j

∆xΨ
j
L(pL)∂2

yixk
Ψj
L(pL) if L ∈ C \ (8.6)

Lik = −
∑
j

∆xΨ
j
L(p[L)∂2

yixk
Ψj
L(p[L) if L ∈ C [. (8.7)

and we impose that ∆hL = L · (x− pπL(pL))

hL = η ◦ fL on ∂B5rL(pL, πL) ,
(8.8)

when L is a non-boundary cube and that
∆hL = L · (x− pπL(p[L))

hL = η ◦ f+

L on ∂
(
B+

275rL
(p[L, πL)

)
,

(8.9)

when L is a boundary cube.

Definition 8.9. The function

hL := (hL,ΨL ◦ hL)

will be called the tilted L-interpolating function.

We now are ready to define the final function, gL, on our “reference
coordinate system” (i.e. the domain of gL is contained in π0 and its
values are contained in π⊥0 ) with the property that its graph coincides
with (a suitable portion of) the graph of hL. For this reason we need
the following proposition ((cf. [16, Appendix B]).

Proposition 8.10. Under the assumptions of Proposition 8.7, for
every L as above the function hL is Lipschitz on B+

27·9rL/2(p[L, πL) (resp.

B9rL/2(pL, πL)) and we can define a function gL : B+
274rL

(p[L, π0) → π⊥0
(resp.gL : B4rL(pL, π0)→ π⊥0 ) such that

GgL = GhL B+
274rL

(p[L, π0)×Rn̄+l (resp. GgL = GhL C4rL(pL, π0)) .

Definition 8.11. The function gL is called L-interpolating func-
tion.

8.1.5. Glued interpolations and center manifolds. Let us de-
fine the Whitney cubes at the step j as

Pj := Sj ∪
j⋃

i=N0+1

Wi .
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Note that Pj is a “Whitney family of dyadic cubes” in the sense that
if K,L ∈Pj have non empty intersection, then 1

2
`(L) ≤ `(K) ≤ 2`(L).

Consistently with the notation introduced in the previous section we
let κ0 := π⊥0 ∩ T0Σ be the orthogonal complement of π0 in T0Σ. Recall
then the map Ψ : π0 × κ0 = T0Σ → T0Σ⊥, which is the graphical
parametrization of Σ with respect to T0Σ. We fix a function ϑ ∈
C∞c ([−17

16
, 17

16
]m, [0, 1]) which is identically 1 on [−1, 1]m. For each cube

L we define further

ϑ̃L(y) := ϑ

(
y − c(L)

`(L)

)
.

We obtain a partition of unity of B+
3/2 by setting

ϑL(y) :=
ϑ̃L(y)∑

H∈Pj
ϑ̃H(y)

.

Definition 8.12. We set

ϕj :=
∑
L∈Pj

ϑLgL ,

and
ϕj := (ϕj,Ψ ◦ ϕj) .

The latter map is called the glued interpolation at the step j.

We are now ready to state the main theorem regarding the con-
struction of the right center manifold.

Theorem 8.13. If T,Σ and Γ are as in Assumptions 7.1 and
αe, αh,M0, N0, Ce, Ch, ε1 fulfill the Assumptions 8.6, then there is a
κ > 0, depending only upon αe and αh, such that

(a) ‖ϕj‖3,κ,B+
3/2
≤ Cε

1/2
1 , for some C = C(αe, αh,M0, Ce, Ch);

(b) If i ≤ j, L ∈ Wi−1 and H is a cube concentric to L with
`(H) = 9

8
`(L), then ϕj = ϕi on H;

(c) ϕj converges in C3 to a map ϕ+ : B+
3/2 → Rn, whose graph is

a C3,κ submanifold M+ of Σ, which will be called right center
manifold;

(d) ϕ+ = ψ on γ ∩B3/2, namely ∂M+ ∩C3/2 = Γ ∩C3/2;
(e) For any q ∈ ∂M+ ∩C3/2, the tangent plane TqM+ coincides

with the plane π(q) in Theorem 6.3.

The construction of M+ made in Theorem 8.13 is based on the
decomposition of B+

3/2. Under Assumption 8.6, the same construction

can be made for B−3/2 and gives a C3,κ map ϕ− : B−3/2 → Rn which
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agrees with ψ on γ∩B3/2. The graph of ϕ− is a C3,κ submanifoldM− ⊂
Σ, which will be called left center manifold. Clearly its boundary in
the cylinder C3/2, namely ∂M− ∩C3/2, coincides, in a set-theoretical
sense, with ∂M+ ∩C1, but it has opposite orientation, and moreover
its tangent plane TqM− coincides with π(q) for every point q ∈ ∂M−∩
C3/2. In particular, the unionM :=M+∪M− of the two submanifolds
is a C1,1 submanifold of Σ ∩ C3/2 without boundary (in C3/2), which
will be called center manifold. Moreover, we will often state properties
of the center manifold related to cubes L in one of the collections Wj

described above. Therefore, we will denote by W + the union of all Wj

and by W − the union of the corresponding classes of cubes which lead
to the left center manifold M−.

Remark 8.14. We emphasize again that so far we can only con-
clude the C1,1 regularity ofM, because we do not know that the traces
of the second derivatives of ϕ+ and ϕ− coincide on γ.

Definition 8.15. Let us define the graph parametrization map of
M+ as Φ+(x) := (x,ϕ+(x)). We will call right contact set the subset
K+ := Φ+(S+). For every cube L ∈ W + we associate a Whitney region
L on M+ as follows:

• L := Φ+(H ∩ B1) where H is the cube concentric to L such
that `(H) = 17

16
`(L).

Analogously we define the map Φ−, the contact set K− and the Whit-
ney regions on the left center manifold M−.

8.2. The approximation on the normal bundle of M

In what follows we assume that Theorem 8.13 may be applied and
we fix a corresponding center manifoldM, subdivided into its left and
right portions. For any Borel set V ⊂M we denote by |V| its Hausdorff
m-dimensional measure and we write

∫
V f for

∫
V f dH

m.
Since the two portionsM− andM+ are C3,κ and they join with C1

regularity along Γ, in a sufficiently small normal neighborhood of M
there is a well defined orthogonal projection p ontoM. The thickness
of the neighborhood is inversely proportional to the size of the second
derivatives of ϕ± and hence, for ε1 sufficiently small, we can assume
it is 2. Summarizing, in the rest of the section we make the following
assumptions:

Assumption 8.16. T,Σ and Γ are as in Assumption 7.1 and the
various parameters αe, αh,M0, N0, Ce, Ch, ε1 fulfill the Assumptions 8.6.
In particular Theorem 8.13 applies and we let M be the union of the
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left and right center manifolds. ε1 is sufficiently small so that, if

U := {q ∈ Rm+n : ∃!q′ = p(q) ∈M s.t. |q − q′| < 1 and q − q′ ⊥M} ,
(8.10)

then the map p extends to a Lipschitz map to the closure U which is
C2,κ on U \ p−1(Γ) and

p−1(q′) = q′ +B1(0, (Tq′M)⊥) for all q′ ∈M.

We then have the following as a consequence of the construction
algorithm:

Corollary 8.17. Under Assumption 8.16 the following holds:

(a) spt(∂(T U)) ∩C1 ⊂ Γ ∪ p−1(∂M), spt(T ) ∩C1 ⊂ U and

p](T U) = (Q− 1)
q
M−y +Q

q
M+

y
;

(b) spt(〈T,p, x〉) ⊂ {y : |x − y| ≤ Cε
1/2m
1 `(L)1+αh} for a C =

C(αe, αh,M0, N0, Ce, Ch) and every x ∈ LWhitney region cor-
responding to L ∈ W + ∪W −;

(c) 〈T,p, q〉 = Q JqK ∀q ∈ K+ \ Γ and 〈T,p, q〉 = (Q − 1) JqK
∀q ∈ K− \ Γ;

(d) K+ ∩ K− = Γ ∩ C3/2 and spt(T ∩ p−1(q)) = {q} for every
q ∈ Γ ∩C3/2.

8.2.1. Local estimates. The center manifold is coupled with a
map onM taking values in the normal bundle which approximates the
current T with very high accuracy.

Definition 8.18. Given a center manifold M as in Assumption
8.16, anM-normal approximation of T is given by a triple (K, F+, F−)
such that

(A1) F+ :M+ ∩C1 → AQ(U) and F− :M− ∩C1 → AQ−1(U) are
Lipschitz and take the form F±(x) =

∑
i

q
x+N±i (x)

y
with

N±i (x) ⊥ TxM± and x + N±i (x) ∈ Σ for every i and every
x ∈M±;

(A2) K ⊂M is closed and TF± p−1(K∩M±) = T p−1(K∩M±),
where TF± := F±] JMK, see [15] ;

(A3) K+ ∪K− ⊂ K and moreover F+(x) = Q JxK (resp. F−(x) =
(Q− 1) JxK) on K+ (resp. K−).

Observe that the pairs (F+, F−) and (N+, N−) can be regarded as(
Q− 1

2

)
-valued maps. The following theorem, which is a consequence

of the construction and of the estimates leading to Theorem 8.13, en-
sures the existence of anM-normal approximation which describes the
current T with a high degree of accuracy:



142 8. CENTER MANIFOLDS

Theorem 8.19 (Local estimates for theM-normal approximation).
Under Assumption 8.16 there is a constant αL > 0 (depending on
m,n, n,Q) such that there is anM-normal approximation (K, (F+, F−))
satisfying the following estimates on any Whitney region L ⊂M asso-
ciated to a cube L ∈ W + ∪W − (where to simplify the notation we use
N in place of N+ and N−):

Lip(N |L) ≤ CεαL
1 `(L)αL (8.11)

‖NL‖0 ≤ Cε
1/2m
1 `(L)1+αh (8.12)

|L \ K|+ ‖TF − T‖(p−1(L)) ≤ Cε1+αL
1 `(L)m+2+αL (8.13)∫

L
|DN |2 ≤ Cε1`(L)m+2−2αe (8.14)

for a constant C = C(αe, αh,M0, N0, Ce, Ch).
Moreover, for any a > 0 and any Borel V ⊂ L,∫

V
|η ◦N | ≤ Cε1

(
`(L)m+3+αh/3 + a`(L)2+αL/2|V|

)
+
C

a

∫
V
G(N,Q Jη ◦NK)2+αL . (8.15)

8.2.2. Separation and domains of influence. We next analyze
suitable “bounds from below” induced by the stopping conditions in
the center manifold construction. The next proposition shows that the
current “separates” suitably on top of Whitney regions corresponding
to cubes in W h.

Proposition 8.20 (Separation). Under the assumptions of Theo-
rem 8.19 (recall, in particular, that Ch � Ce), the following conclu-
sions hold for every Whitney region L corresponding to a cube L ∈
W h ⊂ W +:

(S1) Θ(T, p) ≤ Q− 1
2

for every p ∈ B16rL(pL);

(S2) L ∩H = ∅ for every H ∈ W n with `(H) ≤ 1
2
`(L);

(S3) G(N+(x), Q Jη ◦N+(x)K) ≥ 1
4
Chε

1/2m
1 `(L)1+αh ∀x ∈ M+ ∩

C2
√
m`(L)(pL).

For L ∈ W h ⊂ W − the same conclusions, where in (S1) we replace
Q− 1

2
with Q− 3

2
.2

2Observe that, when Q = 2, we actually draw the conclusion that no cube
L ⊂ W − can belong to W h: in fact when Q = 2, we could use directly Allard’s
regularity theorem to prove that the “left” side of the current coincides with a
single smooth classical graph over B−3/2. In order to make our work shorter we

prefer however to treat the case Q = 2 together with the general one Q > 2.
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A simple corollary of the previous proposition is then the following

Corollary 8.21. Given any H ∈ W n ⊂ W + (resp. ⊂ W −) there
is a chain L = L0, L1, . . . , Lj = H such that:

(a) L0 ∈ W e ⊂ W + (resp. ⊂ W −) and Li ∈ W n ⊂ W + (resp.
W −) for all i > 0;

(b) Li ∩ Li−1 6= ∅ and `(Li) = 1
2
`(Li−1) for all i > 0.

In particular, H ⊂ B3
√
m`(L0)(xL0 , π0).

We use this last corollary to partition W n.

Definition 8.22 (Domains of influence). We first fix an ordering
of the cubes in W e ⊂ W + (resp. ⊂ W −) as {Ji}i∈N so that their side
lengths do not increase. Then H ∈ W n belongs to W n(J0) (the domain
of influence of J0) if there is a chain as in Corollary 8.21 with L0 = J0.
Inductively, W n(Jr) is the set of cubes H ∈ W n\∪i<rW n(Ji) for which
there is a chain as in Corollary 8.21 with L0 = Jr.

8.2.3. Splitting before tilting. Next we show that even around
cubes L ∈ W e the sheets of the current “open up” in a suitable quan-
titative way. Again we bundle the estimates for the two maps N± in
single statements using the letter N to denote both of them.

Proposition 8.23 (Splitting). Under the Assumptions of Theorem
8.19 the following holds. If L ∈ W e ⊂ W + (resp. ⊂ W −), q ∈ π0 with
dist(L, q) ≤ 4

√
m`(L) and Ω = C`(L)/4(q) ∩M, then (with C,C∗ =

C(αe, αh,M0, N0, Ce, Ch)):

Ceε1`(L)m+2−2αe ≤ `(L)mE(T,BL) ≤ C

∫
Ω

|DN |2 , (8.16)∫
L
|DN |2 ≤ C`(L)mE(T,BL) ≤ C∗`(L)−2

∫
Ω

|N |2 . (8.17)

8.3. Estimates on tilting and optimal planes

Proposition 8.24 (Tilting and optimal planes). Under the As-
sumptions 7.1 and 8.6 we have WN0 = ∅. Then the following esti-
mates hold for any couple of neighbors H,L ∈ S ∪ W and for every
H,L ∈ S ∪W with H descendant of L:

(a) denoting by πH , πL the excess-minimizing planes in BH and
BL, respectively,

|πH − πL| ≤ C̄ε
1/2
1 `(L)1−αe |πH − π0| ≤ C̄ε

1/2
1 ;

(b)\ h(T,C48rH (pH , π0)) ≤ Cε
1/2m
1 `(H) and

spt(T ) ∩C48rH (pH , π0) ⊂ BH if H ∈ C \;
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(b)[ h(T,C2748rH (p[H , π0)) ≤ Cε
1/4
1 `(H) and

spt(T ) ∩C2748rH (p[H , π0) ⊂ B[
H if H ∈ C [;

(c)\ h(T,C36rL(pL, πH)) ≤ Cε
1/2m
1 `(L)1+αh and

spt(T ) ∩C36rL(pL, πH) ⊂ BL if H,L ∈ C \;

(c)[ h(T,C2736rL(p[L, πH)) ≤ Cε
1/4
1 `(L)1+αh

and spt(T ) ∩C2736rL(p[L, πH)) ⊂ B[
L if L ∈ C [;

where C̄ = C̄(αe, αh,M0, N0, Ce) and C = C(αe, αh,M0, N0, Ce, Ch).

Proof. In this proof, constants denoted by C will be assumed to
depend on m,n,Q and all the parameters αe, αh,M0, N0, Ce, Ch, con-
stants denoted by C̄ will be assumed to depend on m,n,Q, αe, αh,M0,
N0, Ce and constants denoted by C0 will be assumed to depend only
upon m,n and Q. Constants depending on other subsets of the param-
eters above will be explicitly mentioned. We first show that WN0 = ∅.
We have already proved that W does not contain boundary cubes in
Lemma 8.5. Next, if H ∈ C \

N0
, BH ⊂ B2 by Lemma 8.4 and thus we

can estimate

E(T,BH , π0) ≤ C(M0, N0)E(T,B2, π0) ≤ C(M0, N0)ε1 . (8.18)

Next, let π be the projection of the plane π0 in TpHΣ. Since π0 ⊂ T0Σ,
by the regularity assumption (8.1) on Σ,

|π0 − π| ≤ C0ε
1/2
1 .

In particular, since by the monotonicity formula we can assume

‖T‖(BH) ≤ C0(64rH)m ,

we conclude

E(T,BH) ≤ E(T,BH , π) ≤ C(M0, N0)ε1 ≤ C(M0, N0)ε1`(H)2−2αe .

By our assumptions on the parameters, since Ce ≥ C(M0, N0), we
conclude that L 6∈ W e.

Next, notice that, since pH ∈ spt(T ), by the monotonicity formula
we know

‖T‖(BH) ≥ 1

2
ωm(64rH)m . (8.19)

Thus we can estimate

|πH − π0|2 ≤ C0E(T,BH) + C0E(T,BH , π0)

≤ C0ε1 + C(M0, N0)E(T,B2, π0)

≤ C(M0, N0)ε1 .
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Hence,

h(T,BH) = h(T,BH , πH)

≤ C0|πH − π0|(rH + h(T,BH , π0)) + h(T,BH , π0)

≤ C(M0, N0)ε
1/2m
1 .

Since Ch is assumed to be large enough compared to M0 and N0, we
conclude that H 6∈ W h.

We next prove (b)[, (c)[ and (a) when H ∈ C [. Since the conclu-
sions (b)[ and (c)[ are direct consequences of Corollary 6.4 and (a), it
will be enough to prove (a) for H ∈ C [. To this end, note that the
second part of the statement is in Lemma 8.4. We start with the first
part of (a) in the case of L is a boundary cube. In this is case the we
can use Lemma 8.4 and Theorem 6.3 part (c) to conclude that

|πH − πL|2 ≤ 3
(
|πH − π(p[H)|2 + |πL − π(p[L)|2 + |π(p[H)− π(p[L)|2

)
(8.20)

≤ 3C0ε1`(H)2−2αe + 3C0ε1`(L)2−2αe + 3C0ε1`(L)2−2αe .

where we have also used that, by regularity of Γ, |p[H−p[L| ≤ C0|c(H)−
c(L)| ≤ C0`(L). Since `(H) ≤ 2`(L) this proves (a) when L ∈ C [.

It remains the case that L is not a boundary cube. Since H is a
boundary cube, Lemma 8.3 implies that 1

2
`(H) ≤ `(L) ≤ `(H). In this

case from Corollary 6.4, equation (6.8), and the very definition of p[H
we deduce that

(1− C0ε
1
2
1 )|pL − p[H | ≤ |pπ0(pL − p[H)|

≤ |c(L)− c(H)|+ |c(H)− pπ0(p[H)| ≤ 65rH . (8.21)

Hence we conclude that BL ⊂ B[
H and so arguing as above

|πL − πH |2 ≤ C0E(T,BL) + C0E
[(T,B[

H).

If L /∈ W e we conclude that |πL − πH | ≤ Cε
1
2
1 `(H)1−αe . Otherwise let

π be the projection of πH onto TpLΣ. By the regularity assumptions

on Σ and the estimate (8.21) we have |π − πH | ≤ C0ε
1
2
1 `(H) and so

E(T,BL) ≤ E(T,BL, π) ≤ C0E
[(T,B[

H)+C0|π−πH |2 ≤ C0ε
1
2
1 `(H)2−2αe .

Hence we conclude as well if L ∈ W |πL − πH | ≤ Cε
1
2
1 `(H)1−αe , since

`(H) ≤ 2`(L), this concludes the proof of (a) if H is a boundary cube.

Now we now turn to the proof of (a), (b)\ and (c)\. To do so we
first pick H ∈ C \ and we start by considering a chain of ancestor-cubes
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H = Hj0+1 ⊂ Hj0 ⊂ · · · ⊂ Hj̄ such that Hj is the father of Hj+1 and
Hj̄ is the first ancestor that is a boundary cube or j̄ = N0. We want
to show by induction that

(i)j |πHj − πHj−1
| ≤ C1ε

1
2
1 `(Hj)

1−αe and |πHj − π0| ≤ C1ε
1
2
1 ;

(ii)j spt(T )∩Cj ⊂ BHj and h(T,Cj, π0) ≤ C1ε
1

2m
1 `(Hj) with Cj :=

C48rj(pHj , π0);

for suitable constants C1 = C1(αe, αh,M0, N0, Ce)
and C1 = C1(αe, αh,M0, N0, Ce, Ch).

Base Step, j = j̄: If Hj̄ = HN0 we have shown already that

|πHN0
− π0| ≤ C(M0, N0)ε

1
2
1 `(HN0)1−αe

and spt(T ) ∩ CN0 ⊂ BHN0
. Hence we need to consider only the case

in which Hj̄ is a boundary cube. In this case we argue as in (8.21) to
deduce

(1− C0ε
1
2
1 )|pHj̄+1

− p[Hj̄ | ≤ |pπ0(pHj̄+1
− p[Hj̄)|

≤|cHj̄+1
− cHj̄ |+ |cHj̄ − pπ0(p[Hj̄)| ≤ 65rHj̄ . (8.22)

In particular this implies that BHj̄+1
⊂ B[

Hj̄
. Hence we have

|πHj̄+1
− πHj̄ |

2 ≤ C0E(T,BHj̄+1
) + C0E

[(T,B[
Hj̄

).

As before if Hj̄+1 ∈ Sj̄+1 we directly conclude that

|πHj̄+1
− πHj̄ | ≤ Cε

1
2
1 `(Hj̄+1)1−αe .

Otherwise let π be the projection of πHj̄ onto the tangent space of

Σ at pHj̄+1
. By the regularity of Σ and the estimate (8.22) we have

|π − πHj̄+1
| ≤ C(M0)ε

1
2
1 `(Hj̄+1). Since ‖T‖(B[

Hj̄
) ≥ ωmr

m
Hj̄
/2,

E(T,BHj̄+1
) ≤ E(T,BHj̄+1

, π) ≤ C0E
[(T,B[

Hj̄
) + C0|π − πHj̄+1

|2

≤ Cε
1
2
1 `(Hj̄+1)2−2αe . (8.23)

We conclude the first part of (i)l for j = j̄, while the second one follows
from (6.7) and the estimate:

|π(p[Hj̄)− πHj̄ | ≤ C0ε1r
1−αe
Hj̄

.

Induction Step: Let us assume the validity of (i)j’, (ii)j’ for all j̄ ≤
j′ ≤ j, we want to show that (i)j+1, (ii)j+1 hold true. First note that
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pHj+1
∈ Cj, and thus, by (ii)j,

|pHj+1
− pHj |2 ≤ |c(Hj+1)− c(Hj)|2 + |p⊥π0

(pHj+1
− p�Hj)|

2

≤
(

9

M2
0

+ 4C1ε1

)
r2
Hj+1

, (8.24)

where � = [ or � = depending on whether Hl is a boundary or a non-
boundary cube. Hence, provided M−1

0 and ε1 are sufficiently small,
BHj+1

⊂ B�
Hj

. Thus

|πHj+1
− πHj |2 ≤ C0E

�(T,B�
Hj

) + C0E(T,BHj+1
).

Note now that Hj ∈ Sj (since otherwise it would have not been sub-
divided to produce Hj+1), hence

E(T,BHj+1
) ≤ C0E

�(T,B�
Hj

) ≤ C0Ceε1`(Hj)
2−2αe ≤ Cε1`(Hj)

2−2αe

for a constant C which depends only on m,n,Q, and Ce. This proves
the first part of (i)j+1 if we choose C1 ≥ C. The second part follows
from the first one and the inductive assumption via the estimate

|πHj+1
− π0| ≤

j+1∑
j′=j̄

|πHj′ − πHj′−1
| ≤ C1ε

1
2
1

j+1∑
j′=j̄+1

2−(1−αe)j′ ≤ C1ε
1
2
1 .

since we can choose N0 big enough to ensure
∞∑

j′=N0

2−(1−αe)j′ ≤ 1 .

We now prove (ii)j+1. The idea is to first use the inductive as-
sumption (namely the height bound in Cj) in order to prove that
spt(T ) ∩ Cj+1 ⊂ BHj+1

and hence to use the height bound in BHj+1

in order to conclude an height bound in Cj+1: in the second step it is
crucial that the tilt |πHj+1

− π0| has already been proved to be under
control, cf. Figure 8.3. Indeed, by (ii)j for all x ∈ spt(T ) ∩ Cj+1 ⊂
spt(T ) ∩Cj we have

|x− pHj+1
|2 ≤

(
48rHj+1

)2
+ h(T,Cj, π0)

≤
(
48rHj+1

)2
+ C14ε1`(Hj+1)2 ≤ (64rHj+1

)2. (8.25)

provided ε1 is small enough. This implies that spt(T ) ∩Cj+1 ⊂ BHj+1

and thus the first part of (ii)j+1. We now note that, if Hj+1 ∈ Sj+1,
then

h(T,Cj+1, π0) ≤ C0rHj+1
|πHj+1

− π0|+ h(T,BHj+1
, πHj+1

)

≤ C1ε
1/2m
1 `(Hj+1) .
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provided C1 is chosen big enough. If instead Hj+1 /∈ Sj+1 (which can
just happen for j = j0) we just observe that Cj+1 ⊂ Cj and that
Hj ∈ Sj (otherwise it would have not been subdivided) and thus, by
choosing C1 possibly bigger,

h(T,Cj+1, π0) ≤ h(T,Cj, π0) ≤ C0rHj |πHj − π0|+ h(T,B�
Hj
, πHj)

≤ C0rHj+1
|πHj+1

− π0|+ Chε
1/2m
1 `(Hj)

1+αh

≤ C1ε
1/2m
1 `(Hj+1)

This complete the proof of (ii)j+1 and of the claim. Note in particular
that (ii)j+1 implies (b)\.

BHj+1

Cj+1

πHj+1

π0

Figure 1. The inductive proof of (ii)j+1 consists of two
steps: first the height bound in the cylinder Cj is used
to prove that spt(T ) ∩ Cj+1 ⊂ BHj+1

; then the height
bound in BHj+1

is used to prove the height bound in the
cylinder Cj+1.

Let us now prove (a), and (c)\. For (a), let L be an ancestor of
H, then either L = Hi for some i ≤ j̄ or L is a boundary cube with
Hj̄ ⊂ L. In the first case the we use (i)j to deduce that

|πH − πL| = |πHj0+1
− πHi | ≤

j0+1∑
j=i+1

|πHj − πHj−1
|

≤ Cε
1
2
1 `(Hi)

1−αe

j0−i∑
j=1

2−(1−αe)l′ ≤ Cε
1
2
1 `(Hj)

1−αe .
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In the second case we use the triangle inequality and (a) for boundary
cubes (which has already been shown) to deduce

|πH − πL| ≤ |πH − πHj̄ |+ |πHj̄ − πHL|

≤ Cε
1
2
1 `(Hj̄)

1−αe + Cε
1
2
1 `(L)1−αe ≤ Cε

1
2
1 `(L)1−αe

It remains to prove the second part of (a) in the case that L,H are
neighbors and both are non-boundary cubes. Let M be the father of
L and we may assume that `(H) ≤ `(L) = 1

2
`(M). Since |c(H) −

c(M)| ≤ 3
√
m`(L) we have that pH ∈ C32rM (pM , π0) ∩ spt(T ) or pH ∈

C2732rM (p[M , π0) ∩ spt(T ) if M is a boundary cube. In both cases, by
(b), BH ⊂ BM (or BH ⊂ B[

M), hence

|πH − πM | ≤ Cε
1
2
1 `(M)1−αe .

Since a symmetric argument holds for L we obtain

|πH − πL| ≤ |πH − πM |+ |πL − πM | ≤ 4Cε
1
2
1 `(L)1−αe .

and this concludes the proof of (a). To prove (c)\ we consider again
the chain of ancestors H = Hj0+1 ⊂ Hj0 ⊂ · · · ⊂ Hj̄ where Hj̄ is
either the first boundary cube in this chain or Hj̄ ∈ CN0 . Let us set
Cj := C48rHj

(p�Hj , π0), (c)\ will follow if we show that for all j ≥ j̄

spt(T ) ∩C36rHj
(p�Hj , πHj) ⊂ spt(T ) ∩Cj (8.26)

(note that the possibility � = [ can only occur for j = j̄). Indeed
the inclusion spt(T ) ∩C36rHj

(p�Hj , πH) ⊂ B�
L will then follow from (b),

the arguments in the last step and simple geometric considerations.
Moreover, assuming (8.26) and using (a) we will have

h(T,C36rHj
(p�Hj , πH)) ≤ h(T,Cj, πH) ≤ h(T,B�

Hj
, πH)

≤ h(T,B�
Hj
, πHj) + C|πH − πHj |rHj

≤ Chε
1

2m
1 `(Hj)

1+αh + Cε1`(Hj)
2−αe ,

from which we easily conclude.
We are thus left to show (8.26). First, note that from (8.24) and

(a) for j ≥ j̄

|pπH (pHj+1
− p�Hj)| ≤ |pπ0(pHj+1

− p�Hj)|+ C|π0 − πH ||pHj+1
− p�Hj |

≤ (3
√
m+ Cε

1
2
1 )`(Hj)

(recall that Hj+1 is a non-boundary cube by assumption). Hence, by
choosing first M0 large and then ε1 small, we always have

C36rHj+1
(pHj+1

, πH) ⊂ C36rHj
(p�Hj , πH). (8.27)
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Now, if Hj̄ = HN0 we deduce from |πH − πHN0
| ≤ Cε

1
2
1 that

C36rHN0
(pHN0

, πH) ⊂ CN0

if ε1 is sufficient small. If Hj̄ is a boundary cube, Corollary 6.4 implies

that C2736rHj̄
(p[Hj̄ , πH) ⊂ C2748rHj̄

(p[Hj̄ , π0). Hence, in both cases, (8.26)

holds for j = j̄. Let us assume now that there exists a first index
j′ ≥ j̄ + 1 such that (8.26) fails. Then there is a point p ∈ spt(T ) such
that

p ∈ spt(T ) ∩C36rHj′
(pHj′ , πH) \Cj′ .

By a simple geometric argument and (a), this implies that

|p⊥π0
(p− pHj′ )| ≥

36rHj′

C|π0 − πH |
≥
CrHj′

ε1

.

On the other hand, by the inclusion (8.27), the validity of (8.26) at the
step j′ − 1 and (b), we have

|p⊥π0
(p− pHj′ )| ≤ |p

⊥
π0

(p− pHj′−1
)|+ |p⊥π0

(pHj′ − pHj′−1
)|

≤ 2h(T,Cj′−1, π0) ≤ CrHj′ .

Taking ε1 small enough the last two inequality are in contradiction,
from which we deduce the validity of (8.26) for j′. �

In particular, a simple additional argument implies Proposition 8.7,
in the following strengthened version:

Proposition 8.25. Under the Assumptions 7.1 and 8.6 the fol-
lowing holds for every couple of neighbors H,L ∈ S ∪ W and any
H,L ∈ S ∪W with H descendant of L:

spt(T ) ∩C36rL(pL, πH) ⊂ BL when L ∈ C \,

spt(T ) ∩C2736rL(p[L, πH) ⊂ B[
L when L ∈ C [,

and the current T satisfies the assumptions of Theorem 7.5 in the cylin-
der C36rL(pL, πH) (resp. of Theorem 7.4 in C2736rL(p[L, πH)).

Proof. The first two claims have already been proved in the pre-
vious proposition. We now wish to prove the applicability of Theorem
7.5 in C36rL(pL, πH), resp. of Theorem 7.4 in C2736rL(p[L, πH). In both
cases let C be the corresponding cylinder and B their bases, namely
B36rL(pπH (pL), πH) and B2736rL(pπH (p[L), πH). We only have to show
the following properties:

pπH (T C) = Q JBK if L ∈ C \ (8.28)

pπH (T C) = Q
q
B+

y
+ (Q− 1)

q
B−

y
if L ∈ C [ (8.29)



8.4. INTERPOLATING FUNCTIONS AND LINEARIZED SYSTEM 151

where, in the second identity, we consider B+ and B− as the regions
of B which are separated by pπH (Γ).

We just show the argument for the second case, since the first one
is entirely analogous and already contained in [16] (in fact also the
argument for the second case is just a modification of the one contained
in [16]).

Assume first that L 6∈ CN0 , let M be the father of L and let
C′ = C2736rM (p[M , π0). Consider that, by case (c)[ of the previous
proposition, we clearly have spt(T ) ∩C ⊂ C′. Consider thus a contin-
uous path of planes [0, 1] 3 t 7→ π(t) such that π(0) = π0, π(1) = πH
and |π(t) − π0| ≤ Cε

1/2
1 and let S := T C′, C(t) := C2736rL(p[L, π(t))

and T (t) := pπ(t)(S C(t)). Observe that, by the height bound on
C′, if ε1 is sufficiently small, then spt(∂S)∩C(t) ⊂ Γ. In particular, if
B(t) = B2736rL(pπ(t)(p

[
L), π(t)) and B(t)± are the corresponding regions

in which pπ(t) subdivides it, we must have

T (t) = k(t)
q
B(t)+

y
+ (k(t)− 1)

q
B(t)−

y

for a suitable integer k(t). However, by a simple continuity argument
on t 7→ T (t), the map t 7→ k(t) must be as well continuous, that is
constant. Since k(0) = Q, we thus must have k(1) = Q as well. On
the other hand T (1) = pπH (T C), thus implying the desired claim.

In case L ∈ CN0 we use the same argument where we define C′ to
be the cylinder C2772rL(p[L, π0). �

8.4. Interpolating functions and linearized system

Consider now a pair H,L ∈ S ∪ W which are either neighbors
or such that H is a descendant of L. By Proposition 8.25 we can
consider corresponding maps f+

HL and fHL as in Section 8.1.4, by ap-
plying Theorem 7.4 and Theorem 7.5 in the cylinders C2736rL(p[L, πH)
and C36rL(pL, πH), respectively. Hence we introduce the corresponding
maps hHL(x) = (h̄HL(x),ΨH(x, h̄HL(x))) where h̄HL solves ∆hHL = L · (x− pπH (pH))

hHL = η ◦ fHL on ∂B8rL(pL, πH) ,
(8.30)

if H and L are both nonboundary cubes,
∆hHL = L · (x− pπH (pH))

hHL = η ◦ f+

HL on ∂B+
278rL(p[L, πH) ,

(8.31)

if L is a boundary cube and H is a non-boundary cube,
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 ∆hHL = L · (x− pπH (p[H))

hHL = η ◦ fHL on ∂B8rL(pL, πH) ,
(8.32)

if L is a nonboundary cube and H is a boundary cube and finally


∆hHL = L · (x− pπH (p[H))

hHL = η ◦ f+

HL on ∂B+
278rL

(p[L, πH) ,

(8.33)

if both H and L are boundary cubes. The constant coefficient matrix
L is given by

Lik = −
∑
j

∆xΨ
j
H(pH)∂2

yixk
Ψj
H(pH) if H ∈ C \ (8.34)

Lik = −
∑
j

∆xΨ
j
H(p[H)∂2

yixk
Ψj
H(p[H) if H ∈ C [. (8.35)

Observe that the third case cannot happen when H is a descendant of
L and thus it can only happen when H and L are neighbors.

In order to simplify our discussion, in what follows we always use the
convention that κH is the orthogonal complement in TpHΣ (resp. Tp[HΣ)

of πH . Moreover, for every map u defined on a domain Ω ⊂ πH and
taking values in π⊥H , we denote by ū its projection on κH . In particular,
if the graph of u is contained in Σ, then we have u = (ū,ΨH ◦ ū).
The same convention, given the obvious adjustments, is adopted for
multivalued maps.

The key estimate leading to the proof of Theorem 8.13 is contained
in the following proposition.

Proposition 8.26. Under the Assumptions 7.1 and 8.6 the fol-
lowing estimates hold for every pair of cubes H and L which are either
neighbors or such that H is a descendant of L:
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∫ (
D(η ◦ f̄HL) : Dζ + ζt · L · (pπH (x− pH))

)
≤Cε1r

m+1+αh
L (rL‖Dζ‖0 + ‖ζ‖0) (8.36)

∀ζ ∈ C∞c (B8rL(pL, πH),κH) if L,H ∈ C \;∫ (
D(η ◦ f̄HL) : Dζ + ζt · L · (pπH (x− p[H))

)
≤Cε1r

m+1+αh
L (rL‖Dζ‖0 + ‖ζ‖0) (8.37)

∀ζ ∈ C∞c (B8rL(pL, πH),κH) if L ∈ C \ and H ∈ C [;∫ (
D(η ◦ f̄HL) : Dζ + ζt · L · (pπH (x− pH))

)
≤Cε1r

m+1+αh
L (rL‖Dζ‖0 + ‖ζ‖0) (8.38)

∀ζ ∈ C∞c (B+
278rL

(p[L, πH),κH) if L ∈ C [ and H ∈ C \;∫ (
D(η ◦ f̄HL) : Dζ + ζt · L · (pπH (x− p[H))

)
≤Cε1r

m+1+αh
L (rL‖Dζ‖0 + ‖ζ‖0) (8.39)

∀ζ ∈ C∞c (B+
278rL

(p[L, πH),κH) if L,H ∈ C [.

Moreover,

‖h̄HL − η ◦ f̄HL‖L1(B8rL
(pL,πH)) ≤ Cε1r

m+3+αh
L if L ∈ C \; (8.40)

‖h̄HL − η ◦ f̄HL‖L1(B+

278rL
(p[L,πH)) ≤ Cε1r

m+3+αh
L if L ∈ C [; (8.41)

‖Dh̄HL‖L∞(B7rL
(pL,πH)) ≤ Cε

1
2
1 r

1−αe
L if L ∈ C \; (8.42)

‖Dh̄HL‖L∞(B+

277rL
(p[L,πH)) ≤ Cε

1
2
1 r

1−αe
L if L ∈ C [. (8.43)

Proof. Proof of (8.36), (8.38) and (8.39). The argument follows
that of [16, Proposition 5.2] with essentially no variations and we report
it here for the reader’s convenience.

In order to simplify our notation we let p = pH in the first and third
cases and p = p[H in the second and fourth ones and we write π,κ and
$ for the planes πH ,κH and TpΣ

⊥. With a slight abuse of notation we
denote by Ψ the map ΨH , so that the graph of Ψ : TpΣ→ TpΣ

⊥ is Σ.
Finally we use the coordinates (x, y, z) ∈ π × κ ×$ to identify points
in Rm+n̄+l = Rm+n and we set f = fHL, f+ = f+

HL, r = rL. To avoid
cumbersome notation we use ‖·‖0 for ‖·‖C0 and ‖·‖1 for ‖·‖C1 .

In all the cases the identities are derived by testing the first variation
condition δT (χ) = 0 for the vector field χ(x, y, z) = (0, ζ(x), DyΨ(x, y)·
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ζ(x)): in the first case the condition will be tested in the cylinder C :=
C8rL(pL, πH), whereas in the second and third cases it will be tested
in the domain C+ := B+

278rL
(p[L, πH) × π⊥H . Note that in both cases

the vector field χ vanishes at the boundaries of the respective domains,
whereas the current T has zero boundary in both C and C+. Finally,
although χ does not have compact support, the currents T C and
T C+ have both bounded support and thus we have δ(T C)(χ) = 0,
δ(T C+)(χ) = 0. Using the formula for the first variation and the
estimates in the Theorem 7.5, in the first case we conclude

|δGf (χ)| = |δ(Gf − T C)(χ) ≤ ‖Dχ‖0M(T C−Gf )

≤ C0‖Dχ‖0r
m(E(T,C, πH) + r2A2)1+σ ≤ C0‖Dχ‖0r

m(ε1r
2−2αe)1+σ .

(8.44)

On the other hand ‖χ‖0 ≤ 2‖ζ‖0 and ‖Dχ‖0 ≤ 2‖ζ‖0 + 2‖Dζ‖0, pro-
vided ε1 is sufficiently small. Choosing αh ≤ σ

2
and αe small enough

so that (2− 2αe)(1 + σ) ≥ 2 + σ
2
, we conclude that

|δGf (χ)| ≤ Cε1r
m+1+αh(r‖Dζ‖0 + ‖ζ‖0) . (8.45)

Using the same argument and the estimates in Theorem 7.4, we gain
the same estimate for the second and third case.

The remaining computations are the same for all the cases and we
give them for case two and three. First we write f+ =

∑
i

q
f+
i

y
and

f̄+ =
∑

i

q
f̄+
i

y
. Gr(f+) ⊂ Σ implies f+ =

∑
i

q
(f̄+
i ,Ψ(x, f̄+

i ))
y
. From

[15, Theorem 4.1] we can infer that

δGf+(χ) =∫
B

∑
i

(
DxyΨ(x, f̄+

i ) · ζ︸ ︷︷ ︸
(A)

+ (DyyΨ(x, f̄+
i ) ·Dxf̄

+
i ) · ζ︸ ︷︷ ︸

(B)

+DyΨ(x, f̄+
i ) ·Dxζ︸ ︷︷ ︸

(C)

)
:
(
DxΨ(x, f̄+

i )︸ ︷︷ ︸
(D)

+DyΨ(x, f̄+
i ) ·Dxf̄

+
i︸ ︷︷ ︸

(E)

)

+

∫
B

∑
i

Dxζ : Dxf̄
+
i + Err . (8.46)

Recalling [15, Theorem 4.1], the error term Err in (8.46) satisfies the
inequality

|Err| ≤ C

∫
|Dχ||Df+|3 ≤ ‖χ‖1

∫
|Df |3 ≤ C‖χ‖1Lip(f+)

∫
|Df+|2 .

(8.47)
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Using now the estimates of Theorem 7.4 and arguing as above we
achieve

|Err| ≤ ε1r
m+1+αh(r‖Dζ‖0 + ‖ζ‖0) . (8.48)

The second integral in (8.46) is obviously Q
∫
B
Dζ : D(η ◦ f̄+). We

therefore expand the product in the first integral and estimate all terms
separately. In order to simplify our computations we shift coordinates
so that p = (0, 0, 0). Recall that this implies that |pπ(pL)| ≤ C0`(L),
or |pπ(p[L)| ≤ C064r if L is a boundary cube.

In particular we have Ψ(0, 0) = 0 and DΨ(0, 0) = 0. Taking into
account the bounds on A, we then can write the Taylor expansion

DΨ(x, y) = DxDΨ(0, 0) · x+DyDΨ(0, 0) · y +O
(
ε

1/2
1 (|x|2 + |y|2)

)
.

In particular we gather the following estimates:

|DΨ(x, f̄+
i )| ≤ Cε

1/2
1 r and DΨ(x, f̄+

i ) = DxDΨ(0, 0) · x+O
(
ε

1/2
1 r1+ah

)
,

|D2Ψ(x, f̄+
i )| ≤ ε

1/2
1 and D2Ψ(x, f̄+

i ) = D2Ψ(0, 0) +O
(
ε

1/2
1 r
)
.

We are now ready to compute the behavior of the summands in (8.46).
First∫ ∑

i

(A) : (D) =

∫ ∑
i

(DxyΨ(0, 0) · ζ) : DxΨ(x, f̄+
i ) +O

(
ε1r

2

∫
|ζ|
)

=Q

∫ ∑
i

(DxyΨ(0, 0) · ζ : DxxΨ(0, 0) · x+O
(
ε1 r

1+αh

∫
|ζ|
)
.

(8.49)

Next, we estimate∫ ∑
i

(A) : (E) = O
(
ε1r

1+αh

∫
|ζ|
)
, (8.50)∫ ∑

i

(B) : ((D) + (E)) = O
(
ε1r

1+αh

∫
|ζ|
)
, (8.51)∫ ∑

i

(C) : (E) = O
(
ε1r

2+αh

∫
|Dζ|

)
. (8.52)
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Finally we compute∫ ∑
i

(C) : (D) =

∫ ∑
i

((DxyΨ(0, 0) · x) ·Dxζ) : DxΨ(x, f̄+
i )

+O
(
ε1 r

2+αh

∫
|Dζ|

)
=Q

∫ ∑
i

(DxyΨ(0, 0) · x) ·Dxζ) : (DxxΨ(0, 0) · x)

+O
(
ε1 r

2+αh

∫
|Dζ|

)
.

Summarizing, the first integral in (8.46) takes the following form:

Q

∫ ∑
i,j,k,s

∂2
xiyj

Ψk(0, 0)ζj(x)∂2
xixs

Ψk(0, 0)xs dx

+Q

∫ ∑
i,j,k,s,r

∂2
xiyj

Ψk(0, 0)xi∂sζ
j(x)∂2

xrxsΨ
k(0, 0)xr dx+ Err ,

where Err satisfies the estimate (8.48). Integrating by parts the second
term we achieve

−Q
∫ ∑

i,j

xi

(∑
j

∆xΨ
k(0, 0)∂2

xiyj
Ψk(0, 0)

)
ζj(x) dx+ Err ,

which completes the proof of the claim.

Proof of (8.40) and (8.41). The estimate is the same in all cases:
we denote by Ω the domain of the function h̄ := h̄HL and observe that
for the difference u := h̄− η ◦ f̄ , resp. u := h̄− η ◦ f̄+, the function u
satisfies u|∂Ω = 0 and∣∣∣∣∫

Ω

Du : Dζ

∣∣∣∣ ≤ Crm+1+αh(‖ζ‖0 + r‖Dζ‖0) ∀ζ ∈ W 1,2
0 (Ω)

(although the estimates in (8.36), (8.38) and (8.39) were proved for ζ ∈
C∞c (Ω), a simple density argument extends it to the case above). Now,
for every v ∈ L2 consider the unique solution ζ := P (v) ∈ W 1,2

0 (Ω) of
∆ζ = v. We then have the estimates

r−1‖P (v)‖0 + ‖D(P (v))‖0 ≤ r‖v‖0 .
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Therefore we can write

‖u‖L1(Ω) = sup
v:‖v‖0≤1

∫
Ω

u · v = sup
v:‖v‖0≤1

∫
Ω

u ·∆(P (v))

= sup
v:‖v‖0≤1

(
−
∫

Ω

Du : D(P (v))

)
≤ Cε1r

m+1+αh sup
v:‖v‖0≤1

(‖P (v)‖0 + r‖D(P (v))‖0)

≤ Cε1r
m+3+αh .

Proof of (8.42). We split h as v + w, where ∆v = 0 in B8rL(pL, πH)

v = η ◦ f̄ on ∂B8rL(pL, πH)
(8.53)

and  ∆w = L · x in B8rL(pL, πH)

w = 0 on ∂B8rL(pL, πH)
(8.54)

The estimate (8.42) follows from the interior regularity for the Laplace
equation. More precisely, for the harmonic part we have

‖Dv‖2
L∞(B7rL

(pL)) ≤ Cr−mL

∫
B8rL

(pL)

|Dv|2

≤ Cr−mL

∫
B8rL

(pL)

|D (η ◦ f̄)|2 ≤ Cε1r
2−2αe
L ,

whereas for w the estimate holds up to the boundary

‖Dw‖L∞(B8rL
(pL)) ≤ CrL‖∆w‖∞ ≤ Cε1r

2
L .

For later use let us note that in particular if L ∈ C \
N0

we have (for some
constant C depending on N0)

4∑
k=0

∥∥Dkv
∥∥
B7rL

(pL)
≤ C ‖Dh‖L2(B8rL

(pL)) ≤ Cε
1
2
1

4∑
k=0

∥∥Dkw
∥∥
B7rL

(pL)
≤ C ‖∆w‖C2(B8rL

(pL)) ≤ Cε1 .

Therefore we conclude that, for any L ∈ C \
N0

,

‖hHL‖C3,κ(B7rL
(pL)) ≤ Cε

1
2
1 . (8.55)
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Proof of (8.43). Let L be a boundary cube, we want to apply Schauder
estimates to prove (8.43). To this aim we first observe that η ◦ f
coincides with the C3,a0 function whose graph describes Γ on γ = pπ(γ).
For this reason we fix a C3,a0 extension of it to the whole domain Ω.
We will show below that, by our assumption on Γ, we can impose

‖φ‖3,a0 ≤ Cε
1/2
1 . As customary we write φ = (φ̄,Ψ(x, φ̄)).

We then split h as v + w + φ̄, where
∆v = 0 in B+

278rL
(p[L, πH)

v = η ◦ f̄ − φ̄ on ∂B+
278rL

(p[L, πH)
(8.56)

and 
∆w = L · x−∆φ̄ in B27 8rL(p[L, πH)

w = 0 on ∂B+
278rL

(p[L, πH) .
(8.57)

Step 1: Definition of φ. Recall that Γ is a C3,a0 graph of a function

ψL over τ1 := Tp[LΓ with ‖ψL‖3,a0 ≤ Cε
1/2
1 . Consider now that |π −

π[L| ≤ Cε
1/2
1 `(L)1−αe ≤ Cε

1/2
1 and hence, if we define τ := pπ(τ1),

under the assumption that ε1 is smaller than a geometric constant we

conclude as well that|τ − τ1| ≤ Cε
1/2
1 `(L)1−αe ≤ Cε

1/2
1 . We can now

invoke Lemma 8.30 below (namely [16, Lemma B.1]) to conclude that

Γ is the graph of a function ψ over τ with ‖ψ‖3,a0 ≤ Cε
1/2
1 . Fix next

a unit vector e orthogonal to τ . We can then write ψ = ψ̃e + φ̃,
where φ̃ = pπ⊥(ψ). Since ∂B+

278rL
(p[L, πH) ∩ B278rL(p[L, πH) ⊂ pπ(Γ),

we infer that the graph of ψ̃ over a suitable subdomain of τ describes
∂B+

278rL
(p[L, πH) ∩B278rL(p[L, πH).

Next, for every x ∈ π we let x = v + te with v ∈ τ and define
φ(x) = φ̃(v). Clearly ‖φ‖3,a0 ≤ Cε1/2. Moreover, when restricted to
∂B+

278rL
(p[L, πH) ∩ B278rL(p[L, πH) the graph of the function φ gives the

portion of Γ lying over it. Hence φ = η ◦ f over ∂B+
278rL

(p[L, πH) ∩
B278rL(p[L, πH). Note in addition that for every q ∈ B[

L,

|TqΓ− τ | ≤ |TqΓ− τ1|+ |τ1 − τ | = |TqΓ− Tp[LΓ|

≤ Cε+ 1
1/2|q − p[L|+ Cε

1/2
1 `(L)1−αe ≤ Cε

1/2
1 `(L)1−αe .

This estimate implies

‖Dφ‖∞ ≤ Cε
1/2`(L)1−αe .

Step 2: Schauder estimates. By interpolation

[Dφ]α ≤ C ‖Dφ‖1−α
∞

∥∥D2φ
∥∥α
∞ ≤ Cε

1
2 `(L)(1−αe)(1−α).
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Since 1
m+1

div(x⊗ x) = x, we have

Lx−∆φ = div

(
1

m+ 1
Lx⊗ x−∇φ

)
= div(F ).

By classical Schauder theory for operators in divergence form and 0-
boundary conditions, we have

[Dw]α ≤ C[F ]α ≤
[

1

m+ 1
Lx⊗ x−∇φ

]
α

≤ Cε
1
2
1 r

(1−αe)(1−α)
L .

We moreover have the elementary estimate

‖Dw‖L2 ≤ C‖F‖L2 ,

which follows from multiplying the equation by w and integrating by
parts. Hence we conclude

‖Dw‖∞ ≤ Crα[Dw]α ≤ Cε
1
2 r1−αe
L .

It remains to estimate the harmonic part ‖Dv‖∞. Since v = 0 on
∂B+

278rL
(p[L, πH)∩B278rL(p[L, πH) we can use a classical estimate on har-

monic functions vanishing on a smooth boundary to deduce that

‖Dv‖2
C0(B+

277rL
(p[L,πH)) ≤ Cr−m

∫
B+

278rL
(p[L,πH)

|Dv|2

≤ Cr−m
∫
B+

278rL
(p[L,πH)

|D(η ◦ f̄ − φ)|2 ≤ Cε1r
2−2αe
L .

Combining all estimates give (8.43). As in the interior situation let us
remark that for L ∈ C [

N0
there is a constant depending on N0 such that

for κ ≤ a0

[D3v]κ,B′ +
3∑

k=0

∥∥Dkv
∥∥
C0(B′)

≤ C‖η ◦ f̄‖C0 + ‖φ‖C0 ≤ Cε
1
2
1

and

[D3w]κ,B′ +
3∑

k=0

∥∥Dkw
∥∥
C0(B′)

≤ C ‖∆w‖C1,κ ≤ Cε
1
2
1 ,

where B′ = C3,κ(B+
277rL

). Therefore

‖hHL‖C3,κ(B+

277rL
(p[L,πH)) ≤ Cε

1
2
1 . (8.58)

�
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We end this section by recalling the following simple consequence of
the regularity theory for harmonic functions vanishing at a sufficiently
smooth portion of the boundary.

Lemma 8.27. Let r < 1 and consider any m− 1 dimensional C3,a0

hypersurface γ ⊂ Rm which passes through the origin and is the graph
of a C3,a0 function ϕ with ‖ϕ‖C3,a0 ≤ 1. Let B+ the subset of B1 lying
over γ. Then there is a constant C(r, a0,m) such that the following
estimate holds for every harmonic function h in B+ which vanishes
along γ:

‖h‖C3,a0 (Br∩B+) ≤ C(r, a0,m)‖h‖L1(B+) . (8.59)

8.5. Tilted L1 estimate

Definition 8.28. Four cubes H, J, L,M ∈ C make a distant rela-
tion between H and L if J,M are neighbors (possibly the same cube)
with same side length and H and L are descendants respectively of J
and M .

Lemma 8.29 (Tilted L1 estimate). Under the Assumptions 7.1 and
8.6 the following holds for every quadruple H, J, L and M in S ∪ W
which makes a distant relation between H and L.

• If J ∈ C \, then there is a map ĥLM : B4rJ (pJ , πH)→ π⊥H such
that

GĥLM
= GhLM C4rJ (pJ , πH)

and

‖hHJ − ĥ�LM‖L1(B2rJ
(pJ ,πH)) ≤ Cε1`(J)m+3+αh/2 , (8.60)

where � = + or � = depending on whether M is a boundary
or a non-boundary cube.
• If both J and M belong to C [, then there is a map ĥLM :
B+

274rJ
(p[J , πH)→ π⊥H such that

GĥLM
= GhLM C274rJ (p[J , πH)

and

‖h+
HJ − ĥLM‖L1(B+

272rJ
(p[J ,πH)) ≤ Cε1`(J)m+3+αh/2 . (8.61)

Before coming to the proof we recall the following two lemmas from
[16].

Lemma 8.30 (Lemma B.1 in [16]). For any m,n ∈ N \ {0} there
are constants c0, C0 > 0 with the following properties. Assume that

(i) κ,κ0 ⊂ Rm+n are m-dimensional planes with |κ − κ0| ≤ c0

and 0 < r ≤ 1;
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(ii) p = (q, u) ∈ κ × κ⊥ and f, g : Bm
7r(q,κ) → κ⊥ are Lipschitz

functions such that

Lip(f),Lip(g) ≤ c0 and |f(q)− u|+ |g(q)− u| ≤ c0 r.

Then there are two maps f ′, g′ : B5r(p,κ0)→ κ⊥0 such that

(a) Gf ′ = Gf C5r(p,κ0) and Gg′ = Gg C5r(p,κ0);
(b) ‖f ′ − g′‖L1(B5r(p,κ0)) ≤ C0 ‖f − g‖L1(B7r(p,κ));
(c) if f ∈ C3,κ(B7r(p,κ)) then f ′ ∈ C3,κ(B5r(p,κ0)) with the esti-

mates

‖f ′ − u′‖C0 ≤ C‖f − u‖C0 + C|κ − κ0|r (8.62)

‖Df ′‖C0 ≤ C‖Df‖C0 + C|κ − κ0| (8.63)

‖D2f ′‖C1,κ ≤ Φ(|κ − κ0|, ‖D2f‖C1,κ) (8.64)

where (q′, u′) ∈ κ0×κ⊥0 coincides with the point (q, u) ∈ κ×κ⊥
and Φ is a smooth function with Φ(·, 0) ≡ 0.

All the conclusions of the Lemma still hold if we replace the exterior
radius 7r and interior radius 5r with ρ and s: the corresponding con-
stants c0 and C0 (and the function Φ) will then depend also on the ratio
ρ
s
.

Lemma 8.31 (Lemma 5.6 of [16]). Fix m,n, l and Q. There are
geometric constants c0, C0 with the following property. Consider two
triples of planes (π,κ, $) and (π̄, κ̄, $̄), where

• π and π̄ are m-dimensional;
• κ and κ̄ are n̄-dimensional and orthogonal, respectively, to π

and π̄;
• $ and $̄ l-dimensional and orthogonal, respectively, to π×κ

and π̄ × κ̄.

Assume An := |π − π̄| + |κ − κ̄| ≤ c0 and let Ψ : π × κ → $, Ψ̄ :
π̄× κ̄ → $̄ be two maps whose graphs coincide and such that |Ψ̄(0)| ≤
c0r and ‖DΨ̄‖C0 ≤ c0. Let u : B8r(0, π̄) → AQ(κ̄) be a map with
Lip(u) ≤ c0 and ‖u‖C0 ≤ c0r and set f(x) =

∑
iJ(ui(x), Ψ̄(x, ui(x)))K

and f(x) = (η ◦ u(x), Ψ̄(x,η ◦ u(x))). Then there are

• a map û : B4r(0, π) → AQ(κ) such that the map f̂(x) :=∑
i J(ûi(x),Ψ(x, ûi(x)))K satisfies Gf̂ = Gf C4r(0, π)

• and a map f̂ : B4r(0, π)→ κ×$ such that Gf̂ = Gf C4r(0, π).

Finally, if g(x) := (η ◦ û(x),Ψ(x,η ◦ û(x))), then

‖f̂ − g‖L1 ≤ C0 (‖f‖C0 + rAn)
(
Dir(f) + rm

(
‖DΨ̄‖2

C0 + An2
))
.

(8.65)
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Proof of Lemma 8.29. We start by examining the first case.
Using Proposition 8.26 we know that ‖h̄HJ − η ◦ f̄HJ‖L1(B8rJ

(pJ ,πH)) ≤
Cε1r

m+3+αh
J . Now, since ΨH is Lipschitz and hHJ = (h̄HJ ,Ψ(x, h̄HJ)),

fHJ = (η ◦ f̄HJ ,ΨH(η ◦ f̄HJ)), we easily conclude that

‖hHJ − fHJ‖L1(B8rJ
(pJ ,πH)) ≤ Cε1r

m+3+αh
J . (8.66)

Similarly,

‖hLM − fLM‖L1(B8rM
(pM ,πL)) ≤ Cε1r

m+3+αh
M ≤ Cε1r

m+3+αh
J

in case M is a non-boundary cube or

‖h+
LM − f+

LM‖L1(B278rM
(p[M ,πL)) ≤ Cε1r

m+3+αh
J

if it is a boundary cube. Since the two situations are entirely analogous,
we just focus on the case where M is a non-boundary cube.

Now both hLM and fLM are Lipschitz (and well defined!) over
B6rJ (pJ , πL) and recall that, due to Proposition 8.24, |pπL(pM −pJ)| ≤
3
√
m`(M). Moreover they satisfy the assumption (ii) of Lemma 8.30

by a simple Chebyshev argument on the L1 estimate above. So we can
apply Lemma 8.30 to get a function f̂LM the function such that

Gf̂LM
C4rJ (pJ , πH) = GfLM C4rJ (pJ , πH) ,

similarly for hLM and to conclude that

‖ĥLM − f̂LM‖L1(B4rJ
(pJ ,πH)) ≤ Cε1r

m+3+αh
J . (8.67)

In order to simplify the notation, shift the center pJ to the origin and
consider next f̂LM , û and g as in Lemma 8.31 once we define f = fLM ,
π = πH and π̄ = πL. Now, the graphs of û and f̄HJ coincides except for
a set of Lebesgue measure bounded by CrmJ (ε1r

2−2αe
J )1+σ because of the

Lipschitz approximation theorems. On the other hand the oscillations

of both functions are bounded by Cε
1/2m
1 r1+αh

J . It is thus easy to verify
that

‖fHJ − g‖L1(B4rJ
(pJ ,πH)) ≤ Cε1r

m+3+αh
J . (8.68)

We now claim that

‖f̂LM − g‖L1(B4rJ
(pJ ,πH)) ≤ Cε1r

m+3+αh/2
J , (8.69)

which combined with (8.66), (8.67) and (8.68) would give the desired
estimate.
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In order to reach (8.69) we wish to apply the estimate (8.65) in
Lemma 8.31. Recall that in our context we have the following esti-
mates:

‖f‖0 ≤ Cε
1/2m
1 r1+αh

J

r = rJ

An ≤ Cε
1/2
1 r1−αe

J

Dir (f) ≤ Cε1r
m+2−2αe
J

‖DΨ̄‖C0 ≤ Cε
1/2
1 rJ .

Hence the estimate (8.69) follows easily from (8.65) once we impose
αh > 4αe.

In the case where both M and J are boundary cubes, the argu-
ment is entirely analogous. The only subtlety is that we cannot apply
directly the lemmas 8.30 and 8.31 since the functions we are dealing
with are only defined on a portion of the respective ball, namely on
B+

276rJ
(p[J , πL). Note however that all functions can be easily extended

to the whole ball B276rJ (p[J , πL) with the following simple trick: on
the boundary γ = B276rJ (p[J , πL) ∩ ∂B+

276rJ
(p[J , πL) the graph of hLM

coincides with the boundary Γ, hence with a C3 function ψ, and the
graph of fLM coincides with Q JψK. Note moreover that ψ satisfies the

estimates r−2
J ‖ψ‖0 + r−1

J ‖Dψ‖0 + ‖D2ψ‖0 ≤ Cε
1/2
1 . Hence it suffices

to extend ψ to B−276rJ
(p[J , πL) to a function ϕ with the same estimates

and hence extend hLM and fLM to B−276rJ
(p[J , πL) by setting them re-

spectively equal to ψ and Q JψK. In this way we keep all the estimates
which were essential for the argument above. �

8.6. Construction estimates and proof of Theorem 8.13

In what follows we use the shorthand notations xH (resp. x[H) for
the center c(H) = pπ0(pH) (resp. pπ0(p[H)) and we write Br(x) for
Br(x, π0).

Proposition 8.32. Let κ := min{αh/4, a0/2}. Under the Assump-
tions 7.1 and 8.6 the following holds for every pair of cubes H,L ∈Pj
3.

(a) ‖gH‖C3,κ(B) ≤ Cε
1/2
1 , where B = B4rH (xH) when H ∈ C \ and

B = B+
274rH

(x[H) when H ∈ C [;

3Recall the definition of Pj given in Section 8.1.5



164 8. CENTER MANIFOLDS

(b) If H and L are neighbors then

‖gH − gL‖Ci(BrH (xH)) ≤ Cε
1/2
1 `(H)3+κ−i ∀i ∈ {0, 1, 2, 3}

when H ∈ C \, (8.70)

‖gH − gL‖Ci(B+

27rH
(x[H)) ≤ Cε

1/2
1 `(H)3+κ−i ∀i ∈ {0, 1, 2, 3}

when H,L ∈ C [; (8.71)

(c) |D3gH(x�H)−D3gL(x�L)| ≤ Cε
1/2
1 |x�H −x�L|κ, where � = if the

corresponding cube is a non-boundary cube and � = [ if it is
a boundary cube;

(d) ‖gH −p⊥π0
(pH)‖C0(B) ≤ Cε

1/2m
1 `(H) if H ∈ C \ and gH |γ∩B = ψ

if H ∈ C [, where B is as in (a);

(e) |πH − T(x,gH(x))GgH | ≤ Cε
1/2
1 `(H)1−αe for every x ∈ B, where

B is as in (a);
(f) If H ′ is the cube concentric to H ∈ Wj with `(H ′) = 9

8
`(H),

then

‖ϕi − gH‖L1(H′) ≤ Cε1`(H)m+3+αh/2 ∀i ≥ j + 1 . (8.72)

Proof. Proof of (a). Consider the chain of ancestors H = Hi ⊂
Hi−1 ⊂ . . . ⊂ HN0 . Fix any j and consider the two cases where Hj is a
boundary cube or where Hj is a non-boundary cube. In the first case
observe that Hj−1 must also be a boundary cube. It follows then that
h̄HHj − h̄HHj−1

is an harmonic function on Ωj := B277rHj
(p[Hj , πH) in

the first case and in Ωj := B7rHj
(pHj , πH) in the second case. Notice

next that, by Proposition 8.26, we have

‖h̄HHj − h̄HHj−1
‖L1(Ωj) ≤ ‖η ◦ f̄HHj − η ◦ f̄HHj−1

‖L1(Ωj) +Cε1r
m+3+αh
Hj−1

.

On the other hand η ◦ f̄HHj − η ◦ f̄HHj−1
vanishes except for a set

of Lebesgue measure at most C`(Hj−1)m(ε1`(Hj−1)2−2αe)1+σ. Taking
into account that the oscillation of both functions are bounded by

Cε
1

2m
1 r1+αh

Hj−1
we also know that

‖η ◦ f̄HHj − η ◦ f̄HHj−1
‖L1(Ωj) ≤ Cε1`(Hj−1)m+3+2αh .

We thus conclude

‖h̄HHj − h̄HHj−1
‖L1(Ωj) ≤ Cε1`(Hj−1)m+3+αh .
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Now, if Hj is a non-boundary cube we immediately conclude from the
mean-value inequality for harmonic functions that

4∑
k=0

`(Hj−1)k‖Dk(h̄HHj − h̄HHj−1
)‖C0(B4rHj

(pHj ,πH)) ≤ Cε1`(Hj−1)3+αh .

(8.73)
In particular we conclude the estimates

‖h̄HHj − h̄HHj−1
‖C3,κ(B4rHj

(pHj ,πH)) ≤ Cε12−jκ . (8.74)

Similarly, using an obvious scaling argument together with Lemma
8.27, when Hj is a boundary cube we conclude

3∑
k=0

`(Hj−1)k‖Dk(h̄HHj − h̄HHj−1
)‖C0(B274rHj

(p[Hj
,πH)) ≤ Cε1`(Hj−1)3+αh

(8.75)

[D3(h̄HHj − h̄HHj−1
)]0,a0,B274rHj

(p[Hj
,πH) ≤ Cε1`(Hj−1)αh−a0 .

(8.76)

In particular,

‖h̄HHj − h̄HHj−1
‖C3,κ(B274rHj

(p[Hj
,πH)) ≤ Cε12−jκ . (8.77)

Summing all the estimates we conclude that if H is not a boundary
cube then

‖h̄H‖C3,κ(B4rh
(pH ,φH)) ≤ ‖h̄HHN0

‖C3,κ(ΩN0
) + Cε1 . (8.78)

If H is a boundary cube we have

‖h̄H‖C3,κ(B+

274rh
(p[H ,φH)) ≤ ‖h̄HHN0

‖C3,κ(ΩN0
) + Cε1 .

Recall that in previously in (8.55), (8.58) we already showed that

‖h̄HHN0
‖C3,κ(ΩN0

) ≤ Cε
1
2
1 ,

composing with ΨH we find the desired regularity for hH . The regu-
larity for gH follows then from Lemma 8.30.

Proof of (b). Consider the function ĥL defined by Lemma 8.29
when we take H = J and L = M . We then have the two estimates

‖hH − ĥL‖L1(B2rJ
(pJ ,πH)) ≤ Cε1`(J)m+3+αh/2 . (8.79)

‖hH − ĥL‖L1(B+

272rJ
(p[J ,πH)) ≤ Cε1`(J)m+3+αh/2 , (8.80)

depending on the two cases under examination (H non-boundary cube
or both H and L boundary cube).
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Observe that the graph of gL coincides with (a portion) of the graph

ĥL. We can thus use Lemma 8.30 to prove

‖gH − gL‖L1(Ω) ≤ Cε1`(J)m+3+αh/2

where Ωi is either BrJ (xJ , π0) or B+
27rJ

(x[J , π0) depending on whether J

is a non-boundary cube or a boundary cube (in the second case we argue
as in the proof of Proposition 8.29: in order to apply Lemma 8.30 we
extend both maps hH and ĥL so that they are equal on B−272rJ

(pJ , πH)

and the Lipschitz constant of both remains bounded by Cε
1/2
1 ). In

order to conclude the estimates we then apply [16, Lemma C.2]. In
the case of boundary cubes it is easy to see that the proof given in
[16] of Lemma [16, Lemma C.2] extends to B+

272rJ
(pJ , πH) with trivial

modifications.

Proof of (c). If the distance between H and L is larger than 2−N0

then there is nothing to prove. Otherwise we can find an ancestor J of
H and an ancestor M of L which make a distant relation and such that
`(J) = `(M) is comparable to |x�H − x�L| up to a geometric constant.
Consider then the chain of ancestors H ⊂ Hj−1 ⊂ . . . ⊂ J . Observe
that, by the same arguments given in the previous step we can find
maps gHHi whose graphs coincide with (subsets of ) the graphs hHHi
and satisfy the estimates

‖gHHi − gHHi−1
‖C3(Ωi) ≤ Cε

1/2
1 `(Hi−1)κ

where the domains Ωi are either BrHi
(xHi , π0) or B27rHi

(x[Hi , π0) de-
pending on whether Hi is a non-boundary cube or a boundary cube.
Moreover, all the maps gHHi enjoy uniform C3,κ bounds by the same
arguments of point (a). We thus conclude that

|D3gHHi(x
�
Hi

)−D3g�HHi−1
(x�Hi−1

)| ≤ Cε
1/2
1 2−iκ .

Summing all the estimates we then reach

|D3gH(x�H)−D3gHJ(x�J )| ≤ Cε
1/2
1 `(J)κ ≤ Cε

1/2
1 |x�H − x�L|κ .

Arguing similarly we conclude the corresponding estimate

|D3gL(x�L)−D3gLM(x�M)| ≤ Cε
1/2
1 |x�H − x�L|κ .

Finally, the obvious adaptation of the argument for (b) gives

|D3gHJ(x�J )−D3gLM(x�M)| ≤ Cε
1/2
1 |x�H − x�L|κ .

Proof of (d). The claim is obvious by construction for boundary
cubes. For non-boundary cubes, consider that the height bound for T
and the Lipschitz regularity for fH give that ‖pπ⊥H (pH) − η ◦ fH‖∞ ≤
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Cε
1/2m
1 `(H). If we set fH := (η ◦ f̄H ,ΨH(x,η ◦ f̄H)) we also get

‖pπ⊥H (pH) − fH‖∞ ≤ Cε
1/2m
1 `(H). On the other hand the Lipschitz

regularity of the tilted H-interpolating function hH and the L1 esti-

mate on hH − fH easily gives ‖pπ⊥H (pH) − hH‖∞ ≤ Cε
1/2m
1 `(H). The

estimate claimed in (d) follows then from Lemma 8.30.

Proof of (e). The estimates (8.42) and (8.43) show that the dis-
tance between any tangent to the graph of hH and πH is at most

Cε
1/2
1 `(H)1−αe in the corresponding regions, which is just a reformu-

lation of (e).

Proof of (f). For nearby neighbors H and L we can conclude the
estimate ‖gH − gL‖L1(H∪L) ≤ Cε1`(H)m+3+αh/2 from the corresponding
estimate for hH − hL and Lemma 8.30. The conclusion is then an
obvious consequence of the definition of the glued interpolation maps
ϕi. �

Proof of Theorem 8.13. The estimate in (a) is a consequence
of Proposition 8.32: the argument is entirely analogous to that of [16,
Theorem 1.17(i)]. Point (b) is a direct consequence of the definition of
ϕi. Points (c) and (d) are a consequence of (a) and of the obvious facts
that by construction the graphs of ϕj are contained in Σ and coincide
with Γ∩C3/2 over γ∩B3/2. Next, take any point q ∈ γ and consider ϕi.
Let H ∈ Ci be any cube which contains q and observe that, since H is
a boundary cube, it must necessarily be that H ∈ Si. In particular we

have |πH − TqGϕi | ≤ Cε
1/2
1 2−i(1−αe) by Proposition 8.32 (b)&(e). Note

moreover that by Theorem 6.3 we have |πH − π(q)| ≤ Cε
1/2
1 2−i(1−αe).

On the other hand, as i → ∞ the planes TqGϕi converge to TqM+,
thus completing the proof of the theorem. �

8.7. Proof of Cor. 8.17 and 8.21, Prop. 8.20 and Theo. 8.19

Since all of the cubes in W are non-boundary cubes, the proofs
follow literally the ones of the corresponding corollaries, proposition
and theorem in [16], where Corollary 8.17 corresponds to [16, Corol-
lary 2.2], Corollary 8.21 corresponds to [16, Corollary 3.2], Proposition
8.20 corresponds to [16, Proposition 3.1] and Theorem 8.19 corresponds
to [16, Theorem 2.4]. Note in particular that the estimates claimed
in our statements match the ones of the statements in [16] once we
identify our parameters a0, αe, αh,M0, N0, Ce, Ch, ε1 with the parame-
ters ε0, δ2, β2,M0, N0, Ce, Ch,m0 in [16]. Moreover, although the excess
E(T,BL) used in [16] differs slightly from ours (since it corresponds to
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minimizing E(T,BL, π) over all planes π, whereas in this note we min-
imize over all planes π ⊂ TpLΣ), it is obvious that it is smaller than the
one used in this note, which suffices to prove all the estimates claimed.
For the reader’s convenience we briefly outline the arguments:

Proof of Corollary 8.17. First of all, while in [16, Corollary
2.2] it is claimed that the boundary of T U is supported in ∂lU, in
our case we claim that it is supported in ∂lU∪Γ. This is a consequence
of the height bounds in (b)[ and (b)\ of Proposition 8.24. In order to
prove the second claim of (a) we proceed similarly to the proof of the
corresponding statement of [16, Corollary 2.2]. First of all consider
that from the first part of the claim we conclude that the current S :=
p]T C1(0, π0) is integer rectifiable and ∂S C1(0, π0) ⊂ Γ. In partic-
ular we must have S = k+ JM+ ∩C1(0, π0)K+k− JM− ∩C1(0, π0)K for
some integers k0 and k1. Next fix any cylinder C = C(x, r, π0) for some
point x ∈ B1(0, π0) \ γ and some 2r < dist(x, γ). We can then repeat
literally the argument of [16, Section 6.1] to show that p]T C(x, r, π0)
is either Q JM+ ∩CK or (Q − 1) JM− ∩CK, depending on whether x
belongs to B+

1 or B−1 . We then must have k+ = Q and k− = Q1

For the proof of (b) and (c) we can apply the same argument of [16,
Section 6.1] used to prove (ii) and (iii) of [16, Corollary 2.2], since the
cylinders and balls considered in the corresponding argument do not
touch Γ. The final conclusion (d) of the corollary follows from the fact
that boundary cubes are always refined, that the corresponding balls
B[
H are always centered on points of Γ and from (b)[ of Proposition

8.24. �

Proof of Theorem 8.19. The construction of the map (F+, F−)
is done separately on the two manifoldsM+ andM− following the ex-
act same procedure of [16, Section 6.2]. Note that for all L ∈ W + and
for all L ∈ W − the cylinders C8rL(pL, πL) which are involved in the cor-
responding argument have empty intersection with Γ and enjoy the rel-
evant estimates once we identify our parameters a0, αe, αh,M0, N0, Ce,
Ch, ε1 with the parameters ε0, δ2, β2,M0, N0, Ce, Ch,m0 in [16]. This
procedure defines F+ onM+ \Γ and F− onM− \Γ−. However, using
the height bound in the boundary cylinders C2736rL(p[L, , πL) of (c)[ in
Proposition 8.24 it is easy to see that F+ (resp. F−) onM+ \Γ (resp.
M− \Γ) can be extended to a unique Lipschitz map on the wholeM+

(resp. M−) by setting F (x) = Q JxK (resp. (Q − 1) JxK) for every
x ∈ Γ ∩M+ (resp. Γ ∩M−). �

Proof of Proposition 8.20. We follow literally the proof of [16,
Proposition 3.1] given in [16, Section 7.1]. Note in particular that all
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the cylinders involved in the argument of that proof do not intersect Γ,
because the cubes H and L involved in the statement of Proposition
8.20 are all non-boundary cubes. �

Proof of Corollary 8.21. Again we can repeat word by word
the proof of [16, Corollary 3.2] given at the end of [16, Section 7.1],
since all the cubes involved in the argument are necessarily non-boundary
cubes. �

8.8. Proof of Proposition 8.23

The proof follows the one of the corresponding statement in [16],
namely [16, Proposition 3.4], with one minor adjustment, which is
needed because our excess is not exactly the excess of [16] (namely here
we minimize only among planes contained in TpΣ). The adjustment
goes as follows. Note first that we know that a cube H ∈ W e must
be a non-boundary cube. In fact the very same argument given in
Proposition 8.24 shows the following simple fact:

Lemma 8.33. For any fixed i ∈ N, if ε1 is chosen sufficiently small,
then for every H ∈ W e the chain of ancestors H = Hj ⊂ Hj−1 ⊂ . . . ⊂
Hj−i consists all of non-boundary cubes (and in particular j− i ≤ N0).

The proof given in [16, Section 7.3] of [16, Proposition 3.4] is then
based on the following two facts:

(a) If H ∈ W e, then the chain of ancestors H = Hj ⊂ L = Hj−1 ⊂
. . . ⊂ Hj−6 consists all of non-boundary cubes;

(b) The following inequality holds:

min
π

E(T,BH , π) ≥ 2−2+2δ2 min
π̄

E(T,BL, π̄) , (8.81)

for some positive δ2: correspondinglyM0 will have to be chosen
large depending on such δ2.

The first condition is covered by Lemma 8.33. As for the second con-
dition, observe that we actually have

min
π⊂TpHΣ

E(T,BH , π) = E(T,BH) ≥ 2−2+2αeE(T,BL)

= 2−2+2αe min
π̄⊂TpLΣ

E(T,BL, π̄) . (8.82)

We now want to show that (8.81) will indeed follow from (8.82), pro-
vided δ2 = αe/2. In order to apply the argument of [16, Section 7.3]
we then just need M0 to be sufficiently large with respect to αe, which
is indeed one of the requirements of Assumption 8.6.
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Proof of (8.81) First of all, in order to simplify our notation, for
every q ∈ Σ we denote by pq the orthogonal projection onto TqΣ.
Moreover, if π is an m-dimensional (oriented) plane, we let ~π be the

unit m-vector orienting it. Consistently, we denote by ~T (p) the unit
m-vector orienting the approximate tangent plane of T at p (which
exists for ‖T‖-a.e. p).

Next, clearly

E(T,BL) ≥ min
π̄

E(T,BL, π̄) . (8.83)

So, we need a reverse inequality between E(T,BH) and minπ E(T,BH , π).
We select thus a π which attains the latter minimum. Notice that we
have the following inequality

1

‖T‖(BH)

∫
BH

|ppH (~π)− ~T (q)|2 d‖T‖(q)

≤ 2

‖T‖(BH)

∫
BH

|ppH (~π)− ppH (~T (q))|2 d‖T‖(q)

+
2

‖T‖(BH)

∫
BH

|ppH (~T (q))− ~T (q)|2 d‖T‖(q)

≤C0E(T,BH) + C0 sup
q∈Σ∩BH

|ppH − pq|2

≤C0Ceε1`(H)2−2αe + C̄ε1`(H)2 ,

where C0 is a geometric constant and the constant C̄ depends only
upon M0. In particular, since Ce is assumed to be sufficiently large
compared to M0 and N0, we conclude

1

‖T‖(BH)

∫
BH

|ppH (~π)− ~T (q)|2 d‖T‖(q) ≤ C0Ceε1`(H)2−2αe .

We next use the obvious inequality |1−|ppH (~π)|| = ||~T (q)|−|ppH (~π)|| ≤
|~T (q)− ppH (~π)| to infer

|1− |ppH (~π)||2 ≤ C0Ceε1`(H)2−2αe .

Observe also that |ppH (~π)| is necessarily smaller than 1, because ppH
is a projection. We thus reach

1− C0Ceε1`(H)2−2αe ≤ |ppH (~π)| ≤ 1 . (8.84)

In particular, since ε1 is assumed to be small with respect to Ce, we
have |ppH (~π)| ≥ 1

2
. Consider now the m-dimensional plane π′ which is

oriented by ppH (~π)/|ppH (~π)|. Clearly π′ ⊂ TpHΣ. Moreover, since ~T (q)
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has norm 1 whereas ppH (~π) has norm at most 1, we have the pointwise
inequality

|~T (q)− π′|2 =

∣∣∣∣~T (q)− ppH (~π)

|ppH (~π)|

∣∣∣∣2 ≤ 1

|ppH (~π)|
|~T (q)− ppH (~π)|2 .

We can thus repeat the computations above to conclude

|ppH (~π)|E(T,BH) ≤ |ppH (~π)|E(T,BH , π
′)

=
|ppH |

2ωm(64rH)m

∫
BH

∣∣∣∣~T (q)− ppH (~π)

|ppH (~π)|

∣∣∣∣2 d‖T‖(q)
≤ 1

2ωm(64rH)m

∫
BH

|~T (q)− ppH (~π)|2 d‖T‖(q) .

(8.85)

Next, arguing as few lines above(∫
BH

|~T (q)− ppH (~π)|2 d‖T‖(q)
)1/2

≤
(∫

BH

|ppH (~T (q))− ppH (~π)|2 d‖T‖(q)
)1/2

+

(∫
BH

|ppH (~T (q))− ~T (q)|2 d‖T‖(q)
)1/2

≤
(∫

BH

|pH(~T (q))− ppH (~π)|2 d‖T‖(q)
)1/2

+ C̄(ωm(64rH)m)
1/2ε

1/2
1 `(H) .

(8.86)

Combining the latter inequality with (8.85) and with

1

2ωm(64rH)m

∫
BH

|ppH (~T (q))− ppH (~π)|2 d‖T‖(q)

≤ 1

2ωm(64rH)m

∫
BH

|~T (q)− ~π|2 d‖T‖(q)

= E(T,BH , π) = min
π̄

E(T,BH , π̄) , (8.87)

we reach the inequality

|ppH (~π)|E(T,BH) ≤ min
π̄

E(T,BH , π̄) + C̄
(

min
π̄

E(T,BH , π̄)
) 1

2
ε

1
2
1 `(H)

+ C̄ε1`(H)2 , (8.88)
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where C̄ depends only upon M0. By Young inequality we thus deduce
that

|ppH (~π)|E(T,BH) ≤ 2
αe
2 min

π̄
E(T,BH , π̄) + Ĉε1`(H)2

where Ĉ depends on M0 and αe. Since H ∈ W e,

E(T,BH) ≥ Ceε1`(H)2−2αe ,

hence, by also using (8.84) and that `(H) ≤ 1,

(1− C0Ceε1)E(T,BH) ≤ 2
αe
2 min

π̄
E(T,BH , π̄) +

Ĉ

Ce

`(H)2αeE(T,BH),

i.e. (
1− C0Ce −

Ĉ

Ce

`(H)2αe

)
E(T,BH) ≤ 2

αe
2 min

π̄
E(T,BH , π̄) .

Since the constant Ĉ depends only on M0, choosing N0 sufficiently large
(which implies that `(H)2αe ≤ 2−2αeN0 is sufficiently small) and then
ε1 small we deduce that

2−αeE(T,BH) ≤ min
π̄

E(T,BH , π̄) . (8.89)

Combining (8.82), (8.83) and the latter inequality we conclude

min
π

E(T,BH , π) ≥ 2−αeE(T,BH) ≥ 2−2+αeE(T,BL)

≥ 2−2+αe min
π̄

E(T,BL, π̄) , (8.90)

thus (8.81) holds with δ2 = αe/2 as promised.



CHAPTER 9

Monotonicity of the frequency function

In this chapter we establish the monotonicity of a suitable frequency
function at a collapsed point. We assume therefore that 0 ∈ Γ is a
collapsed point and that Assumption 8.16 holds. In particular we fix
a center manifold M = M+ ∪ M− as in Theorem 8.13 and an M-
normal approximation as in Theorem 8.19. We will indeed consider
two different frequency functions: one related to the “left side” of the
approximation and the other one related to the “right side”. Without
loss of generality we will carry on our discussion on M+.

Remark 9.1. By our constructionM+ is the graph of a map ϕ+ :
π+

0 ⊃ B+
1 → π⊥0 , where we assume that π0 is the tangent plane to T in

0 ∈ Γ. For convenience we can extend ϕ+ to a C3 map ϕ̃ on the whole
ball B1 ∩ π0. When referring to ϕ+ we will then drop the superscript
+, but we will keep the notationM+ for that portion of the extended
graph {(x, ϕ̃(x)) : x ∈ B1(0, π0)} which lies over B+

1 . The graph of the

function ϕ̃ on the whole B1(0, π0) will instead be denoted by M̃. Note
that in this setting the projection p : p−1(M+)→M+ is of class C2,κ,
cf. with Assumption 8.16.

9.1. Frequency function and main monotonicity formula

In order to define our main quantities, we start with the following
simple lemma which is the curvilinear version of Lemma 4.25.

Lemma 9.2. There exists a continuous function d+ : M+ → R+

which belongs to C2(M+ \ {0}) and satisfies the following properties:

(a) d+(x) = distM+(x, 0) +O(distM+(x, 0)2) = |x|+O(|x|2);
(b) |∇d+(x)| = 1+O(d+), where ∇ is the gradient on the manifold
M;

(c) 1
2
∇2d2(x) = g + O(d+), where ∇2 denotes the covariant Hes-

sian on M (which we regard as a (0, 2) tensor) and g is the
induced metric on M as a submanifold of Rm+n;

(d) ∇d+(x) ∈ TxΓ for all x ∈ Γ, i.e.

∇d+ · ~n+ = 0 on Γ, (9.1)

173
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where ~n+ denotes the outer unit normal to M+ inside M̃.

In particular this implies

∇2d+(x) =
1

d

(
g −∇d+(x)⊗∇d+(x)

)
+O(1) (9.2)

and

∆ d+ =
m− 1

d+
+O(1) (9.3)

where ∆ denotes the Laplace-Beltrami operator onM, namely the trace
of the Hessian ∇2. Moreover:

(S) All the constants estimating the O(·) error terms in the above
estimates can be made smaller than any given η > 0, provided
the parameter ε1 in Assumption 8.6 is chosen appropriately
small (depending on η).

On the “left side” there exists an analogous function d− :M− → R+

satisfying the properties corresponding to (a), (b), (c), (d) and (S).

Proof. For the sake of simplicity we focus on the “right side” and
we drop the subscript + from the function d. As noted in Remark 9.1

we can extend M+ to a C3 manifold M̃ such that Γ ⊂ M̃ is a C3

submanifold of M̃ passing through the origin. Hence there exists a C2

regular map Ξ : U× (−δ, δ)→ M̃, U ⊂ Rm−1, with the properties that

(1) Ξ(0) = 0 and DΞ(0) = 0;

(2) Ξ is a local parametrization of M̃ and y′ 3 U 7→ Ξ(y′, 0) is a
local parametrization of Γ;

(3) ∂mΞ(y′, 0) ⊥ TΞ(y′,0)Γ for all y′ ∈ U .

Hence, if g := Ξ#δ is the pullback metric of M̃ on U× (−δ, δ), we have

gij(y) = δij +O(|y|2), ∂kgij = O(|y|),
and similarly for gij. In particular this implies that distM(Ξ(y), 0) =
|y| + O(|y|2) on M+. We claim that d(x) := |Ξ−1(x)| has the desired
properties. We will check (a) - (c) using the coordinates associated to
the map Ξ. Since

|∇d|2(Ξ(y)) = gij∂id∂jd = gij(y)
yiyj

|y|2
= 1 +O(|y|2)

we have that (b) is satisfied. For the Christoffel symbols we have
Γkij(y) = O(|y|) since ∂igij = O(|y|). Hence (c) follows, because

1

2
∇2d(Ξ(y))ij =

1

2
∂ijd

2 − 1

2
Γkij∂kd

2 = δij +O(|y|2) = gij(y) +O(|y|2) .

Concerning (d) we just note that, by (3), we have gim(y′, 0) = 0 for
all y′ ∈ U , hence gij∂jd ∈ Rm−1 × {0} for all y′ ∈ U and ∇d(Ξ(y)) =
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Ξ#(gij∂jdei). Equations (9.3) and (9.2) are now simple consequences
of (c) and (b).

Claim (S) follows easily from a closer inspection of the above argu-
ment. �

We now fix a cutoff function

φ(t) :=

 1 for 0 ≤ t ≤ 1
2

2(1− t) for 1
2
≤ t ≤ 1

0 for t ≥ 1.
(9.4)

and define

Dφ,d+(N+, r) :=

∫
M+

φ

(
d+(x)

r

)
|DN+|2(x) (9.5)

Hφ,d+(N+, r) := −
∫
M+

φ′
(
d+(x)

r

)
|∇d+(x)|2 |N

+(x)|2

d+(x)
, (9.6)

where all integrals are taken with respect to the standard volume form
on M+.1 The frequency function is then defined as the ratio

Iφ,d+(N+, r) :=
rDφ,d+(N+, r)

Hφ,d+(N+, r)
.

Analogously we define Dφ,d−(N−, r), Hφ,d−(N−, r) and Iφ,d−(N−, r).
The main theorem of this chapter is then the following counterpart

to Theorem 4.15, where we use the notation

C± =
{
y ∈ B1 : p(y) ∈M± and |y − p(y)| ≤ dist(y,Γ)3/2

}
for the horned neighborhoods ofM± in which T is supported (compare
with Corollary 6.4 and Theorem 8.13 (e)).

Theorem 9.3. Let T , Σ and Γ be as in Assumption 8.16 and con-
sider φ and d as above. Then:

(a) either T C+ equals Q JM+K in a neighborhood of 0, in which
case we set I+

0 = +∞;
(b) or there is a positive number I+

0 such that

I+
0 = lim

r↓0
Iφ,d+(N+, r) . (9.7)

The corresponding statements hold on the left side for the current
T C− and the frequency function Iφ,d−(N−, r).

1The convention of omitting the volume form in the integrals taken over M+

and M− will be used systematically in the rest of the paper.
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9.2. Poincaré inequality

From now on, in order to simplify our notation, we drop the sup-
scripts + from N and d and the subscripts d and φ from H, D and
I.

We notice here the following simple consequence of the fact that
N |Γ vanishes identically.

Proposition 9.4. There is a geometric constant C such that

H(r) ≤ CrD(r) for all sufficiently small r. (9.8)

In particular

I(r) ≥ C−1 for all sufficiently small r. (9.9)

Moreover,∫
{d<r}∩M+

|N |2 ≤ Cr2D(r) for all sufficiently small r. (9.10)

Proof. We start noticing that, for r sufficiently small, we can
assume

1

2
≤ |∇d| ≤ 2 (9.11)

and that the domains {d = r}∩M+ and {d < r}∩M+ are diffeomor-
phic to the corresponding half-sphere and half-ball in Rm

+ = {x1 ≥ 0},
with uniform controls on the first derivative of the diffeomorphism and
its inverse. In particular we have the trace Poincaré inequality∫

{d=s}∩M+

|N |2 ≤ Cs

∫
{d<s}∩M+

|D|N ||2 ≤ Cs

∫
{d<s}∩M+

|DN |2 ,

because |N | vanishes identically on Γ.
Integrating the latter inequality, using the coarea formula and (9.11),

we achieve

H(r) = −
∫ r

r
2

1

s
φ′
(s
r

)(∫
{d=s}∩M+

|∇d||N |2
)
ds

≤ −C
∫ r

r
2

φ′
(s
r

)(∫
{d<s}∩M+

|DN |2
)
ds

= Cr

∫ r

r
2

(∫
{d=s}∩M+

|DN |2|∇d|−1

)
φ
(s
r

)
+ Crφ

(r
2

)∫
{d<r/2}∩M+

|DN |2

≤ CrD(r) .
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Next, the inequality (9.9) is a trivial consequence of (9.8). More-
over, (9.8) and (9.11) give∫

{r/2<d<r}∩M+

|N |2 ≤ Cr2D(r) .

On the other hand∫
{d<r/2}∩M+

|N |2 ≤ Cr2

∫
{d<r/2}∩M+

|DN |2 ≤ Cr2D(r)

follows from the usual Poincaré inequality since |N | vanishes identically
on Γ. Thus (9.10) can be achieved summing the last two inequalities.

�

9.3. Differentiating H and D

We compute here the derivatives of H and D.

Proposition 9.5. If D and H be as in the definitions of Section
9.1, then

D′(r) = −
∫
φ′
(
d(x)

r

)
d(x)

r2
|DN |2 ; (9.12)

H ′(r) =

(
m− 1

r
+O(1)

)
H(r) + 2E(r) , (9.13)

where

E(r) := −1

r

∫
φ′
(
d(x)

r

)∑
i

Ni(x) · (DNi(x)∇d(x)) .

Proof. The identity (9.12) is an obvious computation. In order
to compute H ′ we first use the coarea formula on embedded manifolds
to write

H(r) = −
∫ ∞

0

∫
{d=s}

1

s
φ′
(s
r

)
|∇d(x)||N |2(x) dHm−1(x) ds

= −
∫ ∞

0

φ′(t)

t

∫
{d=rt}

|∇d(x)||N |2(x) dHm−1(x)︸ ︷︷ ︸
=:h(rt)

dt. (9.14)

In order to compute h′(t) we consider that ν(x) = ∇d(x)
|∇d(x)| is orthogonal

to the level sets of d in M+ and it is parallel to Γ. Thus, using the
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divergence theorem on M+ we obtain

h(t+ ε)− h(t) =

∫
{d=t+ε}∩M+

|N |2∇d · ν dHm−1

−
∫
{d=t}∩M+

|N |2∇d · ν dHm−1

=

∫
{t<d<t+ε}∩M+

div (|N |2∇d(x))

=

∫
{t<d<t+ε}∩M+

2
∑
i

Ni(x) · (DNi(x)∇d(x))

+

∫
{t<d<t+ε}∩M+

|N |2∆d(x) ,

Dividing by ε, taking the limit (and using the coarea formula once
again) we conclude

h′(t) =

∫
{d=t}∩M+

|∇d|−1

(
2
∑
i

Ni · (DNi∇Md) + |N |2∆d

)
dHm−1 .

(9.15)
Differentiating (9.14) in r, inserting (9.15) and using that, if φ(d(x)/r) 6=
0, then d(x) = O(r), we conclude

H ′(r) (9.16)

=

∫ ∞
0

φ′(σ)

∫
{d=σr}

1

|∇d|

(
2
∑
i

Ni · (DNi∇d) + |N |2∆d)
)
dHm−1 dσ

= 2E(r)− 1

r

∫
φ′
(
d(x)

r

)
|N |2∆d(x)

(9.3)
= 2E(r)− 1

r

∫
φ′
(
d(x)

r

)
|N |2

(
m− 1

r
+O(1)

)
(9.17)

= 2E(r) +

(
m− 1

r
+O(1)

)
H(r) . �

9.4. First variations

In order to derive the two key identities leading to the monotonicity
of the frequency function we will use the first variations of the currents.

Lemma 9.6. Let T , Σ and Γ be as in Assumption 8.16. Then,
provided ε1 is sufficiently small, we have that

(a) C+ ∩ C− = Γ;
(b) T B1 = T+ + T− where T± = T C±;
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(c) ‖T‖(B1) = ‖T+‖(B1) + ‖T−‖(B1);
(d) ∂T+ B1 = Q JΓK and ∂T− B1 = −(Q− 1) JΓK ;
(e) For any current S± such that spt(S±) ⊂ Σ ∩ B1 and ∂S± =

∂(T± B1) we have that ‖T±‖(B1) ≤ ‖S±‖(B1).

Proof. Statement (a) is obvious. Statement (b) is a consequence
of Corollary 6.4 and of Theorem 8.13(c)&(d). Statement (c) comes
directly from (a), (b) and the fact that ‖T‖(Γ) = 0. Statement (e) can
be inferred from (c) and (d): for instance, if S+ is as in the statement
then ∂(T− + S+) = ∂(T B1) and by minimality of T

‖T+‖(B1) + ‖T−‖(B1) = ‖T‖(B1) ≤ ‖T− + S+‖(B1)

≤ ‖S+‖(B1) + ‖T−‖(B1).

The proof of point (d) follows the same idea of the proof of Corollary
1.10. Indeed, first remark that ∂T+ (B1\Γ) = 0, thus spt(∂T+)∩B1 ⊂
Γ. Let r be a retraction of a neighborhood of Γ onto Γ. Since ∂T+ B1

is a flat chain supported in Γ, Federer’s flatness theorem, cf. [23,
Section 4.1.15], implies that R := r](∂T

+ B1) = ∂T+ B1. On the
other hand, since ∂(∂T+ B1) B1 = 0, we also have ∂R B1 = 0 and
we conclude from the Constancy Theorem, cf. [23, Section 4.1.7], that
R = c JΓK B1 for some c ∈ R. Thus ∂T+ = c JΓK B1.

Fix a point p ∈ Γ ∩ B1 and recall that, from Theorem 6.3 and
Theorem 8.13 (e), at every p ∈ Γ ∩B1 there is a unique tangent cone
to T+ and it is T+

p = Q Jπ(p)+K, where π(p) is tangent to TpM, by
Theorem 8.13, and π(p)+ is the inner half portion of π(p), where we
consider M+ as a manifold with boundary Γ. Hence

lim
r→0

∂((ιp,r)]T
+) = ∂(Q

q
π(p)+

y
) = Q JTpΓK .

Since we also know that

lim
r→0

∂((ιp,r)]T
+) = lim

r→0
(ιp,r)](c JΓK B1) = c JTpΓK ,

then we conclude c = Q. A similar argument holds for T−. �

Lemma 9.7. Under the same assumptions and with the same nota-
tions of Lemma 9.6, for all X ∈ C1

c (B1,Rm+n) which are tangent to Γ,
we have that

δT+(X) = −
∫
X⊥(x) · ~HT (x) d‖T+‖(x) (9.18)

where X⊥ is the component of X orthogonal to Σ and ~HT (x) is the
mean curvature vector of (3.1). Analogously

δT−(X) = −
∫
X⊥(x) · ~HT (x) d‖T−‖(x) .
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Proof. This proof follows the same ideas of Section 3.4. Without
loss of generality, we focus on T+. Since T+ is stationary with respect
to variations which are tangential to Γ and Σ, we have the identity

δT+(X) = −
∫
X(x) · ~HT (x) d‖T+‖(x)

for all X ∈ C1
c (B2) tangent to Γ, where ~HT is defined in (3.1) (cf. for

instance [35, Lemma 9.6]). Note next that, by the explicit formula for
~HT in (3.1), ~HT (x) is orthogonal to TxΣ, which in turn contains the
tangent plane to T at x. Thus in the integral of the right hand side we
can substitute X with X⊥. �

In what follows we let p : p−1(M+) → M+ be the retraction of
a normal neighborhood of M+ to M+. In this section we will use
Lemma 9.7 with two specific choices of vector fields:

• the outer variations, where Xo(p) := φ
(
d(p(p))

r

)
(p− p(p)).

• the inner variations, where Xi(p) := −Y (p(p)) with

Y =
1

2
φ

(
d

r

)
∇d2

|∇d|2
. (9.19)

Note that Y tangent is to M and to Γ.

Consider now the map F (p) :=
∑

i Jp+Ni(p)K onM+ and the current
TF associated to its image, cf. [15]. By Lemma 9.7 ,

δTF (Xo) = (δTF (Xo)− δT+(Xo))︸ ︷︷ ︸
Erro4

+δT+(Xo)

(9.18)
= Erro4 −

∫
X⊥o (x) · ~HT (x) d‖T+‖(x)︸ ︷︷ ︸

Erro5

.

Since Xi is also tangent to Γ, by Lemma 9.7, we write

δTF (Xi) = (δTF (Xi)− δT+(Xi))︸ ︷︷ ︸
Erri4

+δT+(Xi)

(9.18)
= Erri4 −

∫
X⊥i (x) · ~HT (x) d‖T+‖(x)︸ ︷︷ ︸

Erri5

.

Hence

δTF (Xi) = Erri4 + Erri5 .
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9.4.1. Outer variation. The following proposition holds (for the
proof, see [15, Theorem 4.2]).

Proposition 9.8 (Expansion of outer variations). Let ϕ := φ
(
d(p)
r

)
and denote by A and HM the second fundamental form and the mean
curvature of M+, respectively. Then

δTF (Xo) =

∫
M+

(
ϕ |DN |2 +

∑
i

(Ni ⊗Dϕ) : DNi

)
−Q

∫
M+

ϕ〈HM,η ◦N〉︸ ︷︷ ︸
Erro1

+
3∑
j=2

Erroj (9.20)

where

|Erro2| ≤ C

∫
M+

|ϕ||A|2|N |2 (9.21)

|Erro3| ≤ C

∫
M+

(
|ϕ|
(
|DN |2|N ||A|+ |DN |4

)
+ |Dϕ|

(
|DN |3|N |+ |DN ||N |2|A|

))
. (9.22)

9.4.2. Inner variation. Consider the one-parameter family of biLip-
schitz homeomorphisms Ξε ofM+ generated by −Y . We observe that
Xi is then the infinitesimal generator of the one-parameter family of
biLipschitz homeomorphisms Φε of p−1(M) defined by

Ξε(p) := Ψε(p(p)) + p− p(p) .

Therefore, we can follow the computations of [15, Theorem 4.3] to
prove a suitable Taylor expansion for the inner variation. In what fol-
lows, we will denote by DMY the (1, 1) tensor which expresses the
covariant derivative of the vector field Y (which is tangent to M), in
particular, when Z is a vector field tangent toM, DMZ Y is the projec-
tion onto TM of the standard euclidean derivative DZY . Accordingly
divMY will denote the trace of DMY , namely

divMY =
m∑
i=1

〈DMY (ei), ei〉

where e1, . . . , em is an orthonormal frame of TM. Note that, in par-
ticular,

divMY =
m∑
i=1

〈DeiY, ei〉 .
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Proposition 9.9 (Expansion of inner variations). The following
formula holds:2

δTF (Xi) =

∫
M+

(∑
j

DNj : (DNjD
MY )− |DN |

2

2
divM Y

)
+

3∑
j=1

Errij,

(9.23)

where

Erri1 = Q

∫
M+

(
〈HM,η ◦N〉 divMY + 〈DYH,η ◦N〉

)
, (9.24)

|Erri2| ≤ C

∫
M+

|A|2
(
|DY ||N |2 + |Y ||N | |DN |

)
, (9.25)

|Erri3| ≤ C

∫
M+

(
|Y ||A||DN |2

(
|N |+ |DN |

)
+ |DY |

(
|A| |N |2|DN |+ |DN |4

))
. (9.26)

The proof of the previous theorem follows literally the same com-
putations of [15, Section 4.3]. The only subtle point is that in the final
part of that proof the integration by parts needed to handle the term
J2 in [15, Eq. (4.17)] is valid in our context because the vectorfield Z,
on which the integration by parts is performed, vanishes on Γ.

9.5. Key identities

In this section we use the Taylor expansions of the first variations to
derive the key identities which lead to the monotonicity of the frequency
function. We introduce therefore the quantity

G(r) := − 1

r2

∫
M+

φ′
(
d

r

)
d

|∇d|2
∑
j

|DNj · ∇d|2 .

2Recall that each Nj is a map taking values in Rm+n and thus we understand
DNj as a map from TM into Rm+n. More precisely, if Nj = (N1

j , . . . , N
m+n
j ) is

the expression of Nj into its components and if Z is a vector field tangent to M,
then

DNj(Z) = (DXN
1
j , . . . , DZN

m+n
j ) .

With DNjD
MY we then understand the following map on TM:

DNjD
MY (Z) = DNj(D

MY (Z)) = (DDMY (Z)N
1
j , . . . DDMY (Z)N

m+n
j ) .

Accordingly, the scalar product DNj : (DNjD
MY ) is given by

DNj : (DNjD
MY ) =

∑
`

〈De`Nj , DDMY (e`)Nj〉 =
∑
k,`

De`N
k
j DDMY (e`)N

k
j

where e1, . . . , em is an orthonormal frame on TM.
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Proposition 9.10. The following two inequalities hold

|D(r)− E(r)| ≤
5∑
j=1

|Erroj | (9.27)

∣∣∣∣D′(r)− (m− 2

r
+O(1)

)
D(r)− 2G(r)

∣∣∣∣ ≤ 2

r

(
5∑
j=1

|Errij|

)
. (9.28)

Proof. For the first identity it suffices to check that∫
M+

(
ϕ |DN |2 +

∑
i

(Ni ⊗Dϕ) : DNi

)
= D(r)− E(r) ,

which is an obvious computation. For the second identity we need to
show that ∫

M+

2
∑
j

DNj : (DNjD
MY )− |DN |2divM Y

= rD′(r)− ((m− 2) +O(r))D(r)− 2rG(r)

Recalling the definition of Y in (9.19), that is

Y =
1

2
φ

(
d

r

)
∇d2

|∇d|2
,

we easily compute, using Lemma 9.2 (b) (c) and (9.2)

DMY =
d

r
φ′
(
d

r

)
∇d⊗∇d
|∇d|2

+
1

2
φ

(
d

r

)
∇2d2

|∇d|2

− φ
(
d

r

)
2(d∇2d∇d)⊗∇d)

|∇d|4

=
d

r
φ′
(
d

r

)
∇d⊗∇d
|∇d|2

+ φ

(
d

r

)(
g +O(d)

)
, (9.29)

where we recall that g is the metric induced on M by the Euclidean
ambient manifold. In particular

divM(Y ) =
d

r
φ′
(
d

r

)
+ φ

(
d

r

)
(m+O(d)) .

Hence, using also that, on {φ 6= 0}, d = O(r), we obtain
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∫
M+

2
∑
j

DNj : (DNjD
MY )− |DN |2divM Y

=
2

r

∫
M+

φ′
(
d

r

)
d

|∇Md|2
∑
j

|DNj∇d|2

+

∫
M+

φ

(
d

r

)
(2−m+O(r))|DN |2 −

∫
M+

φ′
(
d

r

)
|DN |2

= −2rG(r)−
(
(m− 2) +O(r))D(r) + rD′(r),

which concludes the proof.
�

9.6. Estimates on the error terms

9.6.1. Families of subregions. In order to estimate the various
error terms we select an appropriate family of subregions of B+

r :=
{p ∈ π+

0 : d(ϕ(p)) < r}) . First of all we introduce a suitable family of
cubes in the Whitney decomposition:

Definition 9.11. The family T ⊂ W consists of :

(i) all L ∈ W e ∪W h which intersect B+
r ;

(ii) all L ∈ W e which are domains of influence of some L′ ∈ W n

intersecting B+
r , i.e., L′ ∈ W n(L) (cf. Definition 8.22).

Next, for any L ∈ T note that

sep(L,B+
r ) := inf{|q − p| : q ∈ L, p ∈ B+

r } ≤ 3
√
m`(L) .

For each such L we define an appropriate “satellite” ball B(L) with
the following properties:

(A) B(L) has radius comparable to `(L) (say `(L)/4));
(B) the concentric ball with twice the radius is contained in B+

r ;
(C) B(L) is close to L (comparably to `(L)).

If B`(L)/2(c(L)) ⊂ B+
r , then we simply set B(L) = B`(L)/4(c(L)).

If instead B`(L)/2(c(L)) 6⊂ B+
r , we then use the following selecting

procedure.

(i) First consider a point q ∈ ∂B+
r at minimum distance from L.

(ii) Observe that, since L ∈ W , it is a non-boundary cube. Thus
dist(q, γ) ≥ `(L) and in particular d(ϕ(q)) = r.

(iii) Let v be the exterior unit normal to ∂B+
r at q and let qL :=

q − `(L)
2
v.
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(iv) Recalling claim (S) in Lemma 9.2 and the estimates on ϕ
we see that ∂B+

r \ γ is locally convex and that the principal
curvatures of ∂B+

r \ γ can be assumed to be all smaller than
2
r
. Since `(L) < r, this implies that B`(L)/2(qL) ⊂ B+

r . We
finally set B(L) := B`(L)/4(qL).

Definition 9.12. Given a cube L ∈ T , the ball B(L) chosen above
will be called the satellite ball of L.

Note that, by simple geometric arguments and by the properties of
d, we can assume that

|qL − c(L)| ≤ 5
√
m`(L) and dist(L, qL) ≤ 4

√
m`(L). (9.30)

We next select a suitable countable subfamily T of T with the
property that, for any pair of distinct H,L ∈ T , the corresponding
balls B(L) and B(H) are disjoint. We denote by S the supremum
of `(L) for L ∈ T . We start selecting a maximal subfamily T1 in T
of cubes L with `(L) ≥ S/2 such that the corresponding balls B(L)
are pairwise disjoint. We then add to T1 a maximal subfamily T2

in T of cubes L with S/4 ≤ `(L) ≤ S/2 such that the balls B(L′)
corresponding to L′ ∈ T1 ∪ T2 are all pairwise disjoint. We proceed
inductively with the selection of the family Tk ⊂ T such that:

(i) it consists of cubes with side 2−k−1S ≤ `(L) ≤ 2−kS;
(ii) the balls B(L′) with L′ ∈ T1 ∪ . . . ∪ Tk−1 ∪ Tk are pairwise

disjoint;
(iii) Tk is maximal among the families satisfying (i) and (ii).

T is the union of all the Tj. A simple geometric argument and (9.30)
ensures that

(Cov) If H ∈ T , then there is L ∈ T such that the distance between
H and L is at most 20

√
m`(L) and even though there might

be more than one L, we fix for each H an arbitrary choice of
an L with such a property.

Therefore we can partition T into (disjoint!) families T (L) with L ∈ T
with the property that for each H ∈ T (L), the distance between H and
L is at most 20

√
m`(L) and `(H) ≤ 2`(L). For each L ∈ T we denote

by W (L) the family of cubes⋃
H∈T (L)

W n(H) ∪ {H} .

Furthermore we denote by U(L) the following region in M+:⋃
H∈W (L)

Φ(H) .
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From now on we fix an enumeration {Li} of T and we denote:

• by Ui the corresponding regions U(Li) ∩ B+
r ;

• by Bi the regions Φ(B(Li));
• by `i the scale `(Li).

where, here and in the following, we set

B+
r =M+ ∩ {d < r} .

9.6.2. Lower and upper bounds in the subregions. First of
all observe that

c
`i
r
≤ inf

p−1(Bi)
ϕ (9.31)

for a geometric constant c (recall that ϕ(p) = φ
(d(p(p))

r

)
). In particular

sup
p−1(Ui)

ϕ− inf
p−1(Ui)

ϕ ≤ C
`i
r
≤ C inf

p−1(Bi)
ϕ ,

which leads to

sup
p−1(Ui)

ϕ ≤ C inf
p−1(Bi)

ϕ , (9.32)

where C is a geometric constant. Since we have p−1(Ui)∩M+ = Ui and
the same for Bi, the above estimates, when restricted toM+, become:

c
`i
r
≤ inf
Bi
ϕ (9.33)

and

sup
Ui
ϕ ≤ C inf

Bi
ϕ . (9.34)

Observe that

max{`(H) : H ∈ W (Li)} ≤ C`i

and ∑
H∈W (Li)

`(H)m ≤ C`mi

Thus, as a consequence of the estimates in Theorem 8.19 and Corollary
8.17 (b) (namely, applying the corresponding estimates in each cube
in W (Li) and summing the respective contributions) we achieve the
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following:

Lip
(
N |Ui

)
≤ CεαL

1 `αL
i (9.35)

‖N‖C0(Ui) + sup
p∈spt(T+)∩p−1(Ui)

|p− p(p)| ≤ Cε
1/2m
1 `1+αh

i (9.36)

‖T+ −TF‖(p−1(Ui)) ≤ Cε1+αL
1 `m+2+αL

i (9.37)∫
Ui
|DN |2 ≤ Cε1`

m+2−2αe
i (9.38)∫

Ui
|η ◦N | ≤ Cε1`

2+m+
αL
2

i + C

∫
Ui
|N |2+αL .

(9.39)

Note in particular that (9.39) follows from choosing a = 1 in (8.15) and
V = L.

The second important ingredients in order to estimate the various
error is the following lemma.

Lemma 9.13. Under the assumptions of Theorem 9.3, for a suffi-
ciently small r the following inequalities hold:

ε1

∑
i

`m+2+2αh
i inf

p−1(Bi)
ϕ ≤ CD(r) (9.40)

ε1

∑
i

`m+2+2αh
i ≤ C

∫
B+
r

|DN |2 ≤ C(D(r) + rD′(r)) , (9.41)

for a geometric constant C. Moreover we have

ε1 sup
i
`i ≤ C (rD(r))

1
m+3+αh and ε1 sup

i

(
inf

p−1(Bi)
ϕ `i

)
≤ CD(r)

1
m+2+αh .

(9.42)

Proof. First of all observe that every cube Li ∈ T belongs to
either W h or to W e. For every cube Li ∈ T ∩W h, as a consequence
of Corollary 8.21, we must have Li ∩ B+

r 6= ∅. Hence Bi ⊂ M ∩
C2
√
m`(Li)(pLi) and therefore Proposition 8.20(S3) applies. Recalling

that G(N(x), Q Jη ◦N(x)K) ≤ |N |, for every cube Li ∈ T ∩ W h we
can estimate ∫

Bi
|N |2 ≥ c0ε

1/m
1 `m+2+2αh

i . (9.43)

By estimate (8.16) in Proposition 8.23 , for every Li ∈ T ∩ W e we
have∫

Bi
ϕ|DN |2 ≥ c0ε1`

m+2−2αe
i inf

Bi
ϕ = c0ε1`

m+2−2αe
i inf

p−1(Bi)
ϕ . (9.44)
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Summing the last two inequalities over i, using that {Bi} are disjoint
and contained in {d < r}∩M+ and the simple observation that 2+αh ≥
2− 2αe, we easily conclude

ε1

∑
i

`m+2+2αh
i inf

p−1(Bi)
ϕ ≤ C0

∫
B+
r

(
|N |2 + ϕ|DN |2

)
.

Thus, (9.40) can be inferred from (9.10).
Note that, analogously, for Li ∈ T ∩W e we have also∫

Bi
|DN |2 ≥ c0ε1`

m+2−2αe
i . (9.45)

Arguing as above with (9.45) in place of (9.44) and exploiting that
2 + αh ≥ 2− 2αe, we conclude

ε1

∑
i

`m+2+2αh
i ≤ C0

∫
B+
r

|DN |2 .

Since φ′(t) = −2 on [1/2, 1], clearly∫
{r/2<d<r}∩M+

|DN |2 ≤ rD′(r) .

On the other hand we trivially have∫
{d<r/2}∩M+

|DN |2 ≤ D(r) .

Thus, (9.41) follows easily.
Finally the second estimate of (9.42) is a direct consequence of

(9.40) and the first follows combining (9.40) with (9.31). �

9.6.3. Estimates on the error terms. We are ready to prove the
main estimates on the various error terms appearing in the inequalities
of Proposition 9.10. We first introduce the auxiliary term

S(r) :=

∫
φ

(
d

r

)
|N |2 . (9.46)
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Proposition 9.14. There are positive numbers C and τ such that

|Erro1|+ |Erro3|+ |Erro4| ≤ CD(r)1+τ (9.47)

|Erro2| ≤ CS(r) ≤ Cr2D(r) (9.48)

|Erro5| ≤ CS(r) + CD(r)1+τ ≤ Cr2D(r) + CD(r)1+τ

(9.49)

|Erri1|+ |Erri3|+ |Erri4| ≤ CD(r)τ (D(r) + rD′(r)) (9.50)

|Erri2| ≤ CrD(r) (9.51)

|Erri5| ≤ CrD(r) + CD(r)τ (D(r) + rD′(r)). (9.52)

Proof. Since αL is independent of αe, αh (compare Theorem 8.19),
we can choose αe, αh such that

αL

2
≥ 4αh ≥ 4αe .

We let τ � αe ≤ αh ≤ αL/8.

Proof of (9.47). Recalling that ‖ϕ‖C3,κ ≤ Cε
1/2
1 , which in turn

implies ‖HM‖C0(M+) ≤ Cε
1/2
1 , we get from (9.39)

|Erro1| ≤ C

∫
M+

ϕ|HM+ ||η ◦N |

(9.34)

≤ Cε
1/2
1

∑
j

(
sup
Uj

ϕ ε1`
2+m+αL/2
j + C

∫
Uj
ϕ |N |2+αL

)
(9.34)

≤ Cε
1/2
1

∑
j

(
inf
Bj
ϕ ε1`

2+m+αL/2
j + C

∫
Uj
ϕ |N |2+αL

)
(9.36)

≤ Cε
1/2
1

∑
j

(
inf
Bj
ϕ ε1`

2+m+4αh
j + C`8αh

j

∫
Uj
ϕ|N |2

)
(9.40)&(9.42)

≤ CD(r)1+τ + CD(r)τ
∫
B+
r

ϕ|N |2 ,

where in the last line we have used also that the intersection of distinct
domains Uj has zero measure. Using (9.10) we conclude

|Erro1| ≤ CD(r)1+τ .
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Concerning Erro3, from Proposition 9.8 and recalling that |Dϕ| ≤ C
r

we
get

|Erro3| ≤
∫
ϕ
(
|DN |2|N |+ |DN |4

)
︸ ︷︷ ︸

I1

+C r−1

∫
B+
r

|DN |3|N |︸ ︷︷ ︸
I2

+ C r−1

∫
B+
r

|DN ||N |2︸ ︷︷ ︸
I3

.

We estimate separately the three terms:

I1 ≤

(
sup
B+
r

|N |+ sup
B+
r

|DN |2
)∫

B+
r

ϕ|DN |2

≤ C sup
i

(
sup
Ui
|N |+ Lip

(
N
∣∣
Ui

))∫
B+
r

ϕ|DN |2

(9.35)&(9.36)

≤ C sup
i
`2αL
i

∫
B+
r

ϕ|DN |2 ≤ CD(r)1+τ .

Moreover, recalling that αL ≥ 4αe,

I2

(9.35)&(9.36)

≤ Cr−1
∑
j

ε
1/2m+αL

1 `1+αh+αL
j

∫
Uj
|DN |2

(9.38)

≤ Cr−1
∑
j

ε
1+1/2m+αL

1 `m+3+αh+αL−2αe

j

(9.33)

≤ C
∑
j

`m+2+7αh
j inf

Bj
ϕ

(9.40) & (9.42)

≤ CD(r)1+τ ,

and

I3

(9.35)

≤ Cr−1
∑
j

εαL
1 `αL

j

∫
Uj
|N |2

(9.42)

≤ Cr−1D(r)τ
∫
B+
r

|N |2

(9.10)

≤ CrD(r)1+τ ,

provided τ > 0 is sufficiently small.
Recalling that

Erro4 = δ(TF − T+)(Xo) ,

we can estimate

|Erro4| ≤
∫
p−1(B+

r )

|DXo| d‖TF − T+‖ .
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Since

|DXo(p)| ≤ C

(
|p− p(p)|

r
+ ϕ(p)

)
,

we can estimate

|Erro4| ≤ C
∑
j

∫
p−1(Uj)

(
|p− p(p)|

r
+ ϕ(p)

)
d‖TF − T+‖

(9.36)&(9.37)

≤ C
∑
j

(
r−1ε

1/2m
1 `1+αh

j + sup
p−1(Uj)

ϕ

)
ε1+αL

1 `m+2+αL
j

(9.31)&(9.32)

≤ C
∑
j

inf
p−1(Bj)

ϕ ε1+αL
1 `m+2+αL

i

(9.40)&(9.42)

≤ CD(r)1+τ .

Proof of (9.48). Since ‖AM+‖C0 ≤ C‖φ‖C2 ≤ Cε
1/2
1 , it follows

easily that

|Erro2| ≤ CS(r) ≤ C

∫
B+
r

|N |2 .

Thus the estimate follows from (9.10).

Proof of (9.49). Recall that

Erro5 = −
∫
X⊥o · ~HT (x) d‖T+‖(x) ,

where ~HT (x) is the trace of the second fundamental form AΣ of Σ

restricted to the tangent space ~T (x) to the current T+ at x. For further

use we introduce the notation h(~λ) for the trace of AΣ on the m-plane

oriented by the m-vector ~λ. In particular ~HT (x) = h(~T (x)). We can
therefore write

|Erro5| ≤
∣∣∣∣∫ 〈X⊥o , h(~TF )〉d‖TF‖

∣∣∣∣︸ ︷︷ ︸
I1

+C‖AΣ‖0

∫
|X⊥o |d‖T+ −TF‖︸ ︷︷ ︸

I2

.

(9.53)

Recall that ‖AΣ‖0 ≤ ε
1/2
1 . Since |Xo(p)| ≤ Cϕ(p(p)), the second term

is estimated by CD(r)1+τ by arguing as in the bound for Erro4. As for
the first term note that

|X⊥o (p)| ≤ ϕ(p(p))|pTpΣ⊥(p− p(p))| ≤ Cϕ(p(p))‖AΣ‖0|p− p(p)|2 .
Hence, using the Lipschitz bound for N to pass the integration on the
domain B+

r , we conclude

I1 ≤ C

∫
ϕ|N |2 = CS(r)

(9.10)

≤ Cr2D(r) .
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We now estimate the error terms coming from inner variations.
First let us record here the following easy consequence of (9.19) and
(9.29):

|Y (p)| ≤ ϕ(p(p)) d(p(p)) |DY |(p) ≤ C1B+
r

(p(p)) . (9.54)

Proof of (9.50). By Proposition 9.9,

|Erri1| ≤ C

∫
B+
r

(|HM|+ |DHM|)|η ◦N | ≤ C

∫
B+
r

|η ◦N |

(9.39)

≤
∑
j

(
ε1`

m+2+αL/2
j +

∫
Uj
|N |2+αL

)
(9.36)

≤
∑
j

(
ε1`

m+2+αL/2
j + `αL

j

∫
Uj
|N |2

)
(9.41)&(9.42)

≤ CD(r)τ (D(r) + rD′(r)) + CD(r)τ
∫
B+
r

|N |2

(9.10)

≤ CD(r)τ (D(r) + rD′(r)) .

Using (9.54) and Proposition 9.9,

|Erri3| ≤ C

∫
B+
r

(|DN |3 + |DN |2|N |+ |DN ||N |2) .

The third integrand can be treated like I3 in the estimate of Erro3 and
thus can be bounded by Cr2D(r)1+τ . As for the first two we argue as
follows:∫

B+
r

(|DN |3 + |DN |2|N |)
(9.35)&(9.36)

≤
∑
j

εαL
1 `αL

j

∫
Uj
|DN |2

(9.42)

≤ CD(r)τ
∫
B+

|DN |2 ≤ CD(r)τ (D(r) + rD′(r)) .

Concerning Erri4, using again (9.54), we estimate

|Erro4| ≤ C
∑
j

‖TF − T+‖(p−1(Ui))
(9.37)

≤ C
∑
j

ε1+αL
1 `m+2+αL

j

(9.41)&(9.42)

≤ CD(r)τ (D(r) + rD′(r)) . (9.55)
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Proof of (9.51). By Proposition 9.9 and once more (9.54),

|Erri2| ≤ C

∫
B+
r

|N |2 + Cr

∫
ϕ|N ||DN |

≤ C

∫
B+
r

|N |2 + r2

∫
ϕ|DN |2

(9.10)

≤ Cr2D(r) .

Proof of (9.52). Arguing as for Err5
o, we write

|Erri5| ≤
∣∣∣∣∫ 〈X⊥i , h(~TF )〉d‖TF‖

∣∣∣∣︸ ︷︷ ︸
J1

+C‖AΣ‖0

∫
|X⊥i |d‖T −TF‖︸ ︷︷ ︸

J2

.

(9.56)
The term J2 can be estimated arguing exactly as for the term I2 in
(9.53) and we get J2 ≤ CrD(r)1+τ (recall also (9.54)).

In order to treat the first term we proceed as in [17, Section 4.3].
Denote by ν1, . . . , νl an orthonormal frame for TpΣ

⊥ of class C2,a0

(cf. [15, Appendix A]) and set hjp(
~λ) := −

∑m
k=1〈Dvkνj(p), vk〉 whenever

v1 ∧ . . .∧ vm = ~λ is an m-vector of TpΣ (with v1, . . . , vm orthonormal).
For the sake of simplicity, we write

hj(p) := hjp(~TF (p)) and h(p) :=
l∑

j=1

hj(p)νj(p),

ĥj(p(p)) := hjp(p)(
~M+(p(p))) and ĥ(p(p)) :=

l∑
j=1

ĥj(p(p))νj(p(p)).

where ~M(p) denotes the m-vector orienting TpM. Consider the expo-
nential map exp(p) : Tp(p)Σ→ Σ and its inverse ex−1

p(p). Recall that:

• the geodesic distance dΣ(p, q) is comparable to |p− q| up to a
constant factor;

• νj is C2,a0 and ‖Dνj‖C1,a0 ≤ Cε
1/2
1 ;

• exp(p) and ex−1
p(p) are both C2,a0

and ‖d exp(p)‖C1,a0 + ‖d ex−1
p(p)‖C1,a0 ≤ ε

1/2
1 ;

• |hjp| ≤ C‖AΣ‖C0 ≤ Cε
1/2
1 ;
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where all the constants involved are geometric. We then conclude that

h(p)− ĥ(p(p)) =
∑
j

(νj(p)− νj(p(p)))hj(p)

+
∑
j

νj(p(p))(hj(p)− ĥj(p(p)))

=
∑
j

Dνj(p(p)) · ex−1
p(p)(p)h

j(p) +O(|p− p(p)|2)

+
∑
j

νj(p(p))(hj(p)− ĥj(p(p))). (9.57)

On the other hand, Xi(p) = Y (p(p)) is tangent to M+ in p(p) and

hence orthogonal to ĥ(p(p)) and 〈Xi(p), νj(p(p))〉 = 0 for all j. Thus
using (9.54)

〈Xi(p), h(p)〉 = 〈Xi(p), h(p)− ĥ(p(p))〉

=
∑
j

〈Y (p(p)), Dνj(p(p)) · ex−1
p(p)(p)〉h

j(p) +O
(
r|p− p(p)|2

)
.

(9.58)

Recalling that p ∈ spt(TF ), we can bound |p − p(p)| ≤ |N(p)| and
therefore conclude the estimate

〈Xi(p), h(p)〉 =
∑
j

〈Y (p(p)), Dνj(p(p)) · ex−1
p(p)(p)〉h

j(p) +O
(
r|N |2(p(p))

)
.

(9.59)

We now use the area formula for multivalued maps and the Taylor
expansion for the area functional in [15, Theorem 3.2]. Recalling that
p(Fi(x)) = x we get

J1 =

∣∣∣∣∫ 〈Xi, h(p)〉d‖TF‖
∣∣∣∣ =

∣∣∣∣∣
Q∑
i=1

∫
M+

〈Y, h(Fi(x))〉JFi(x)dHm(x)

∣∣∣∣∣
(9.59)

≤

∣∣∣∣∣
∫
M+

l∑
j=1

Q∑
i=1

〈Y (x), Dνj(x) · ex−1
x (Fi(x))〉hj(F (x))dHm(x)

∣∣∣∣∣
+ Cr

∫
ϕ (|N |2 + |DN |2)
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Using the Taylor expansion for ex−1
x at x (and recalling that Fi(x)−x =

Ni(x)) we conclude∣∣∣ Q∑
i=1

ex−1
x (Fi(x))

∣∣∣ ≤ ∣∣d ex−1
x (η ◦N(x))

∣∣+O(|N |2)

≤ C|η ◦N(x)|+ C|N |2 .

Next consider that |〈Y,Dνj · v〉| ≤ Crϕ‖AΣ‖C0|v| ≤ Crϕ ε
1/2
1 |v| for

every tangent vector v and |hj(F (x))| ≤ C‖AΣ‖C0 ≤ ε
1/2
1 . We thus

conclude with the estimate

J1 ≤ C ε1r

∫
ϕ |η ◦N |+ Cr

∫
ϕ(|N |2 + |DN |2) .

Using the Poincaré inequality and the same argument as for Erro1, we
conclude

J1 ≤ CrD(r)1+τ + CrD(r) . �

9.7. Proof of Theorem 9.3

First of all notice that, if D(r) = 0 for some r, then N ≡ Q J0K
on B+

r . This means that no cube of W e ∪ W h intersects B
+

r = {p ∈
π+

0 : d(ϕ(p)) ≤ r}. On the other hand from Corollary 8.21 we easily

conclude that no cube of W intersects the region B
+

r/2 (observe that

no cube L ∈ W is a boundary cube and thus, if it intersects B
+

r/2, we

have `(L)� r). In particular, B+
r/2 is contained in the contact set and

thus there is a neighborhood of 0 where T+ coincides with Q JM+K.
Thus, without loss of generality we can assume that D(r) > 0.

Notice that for the same reason we can assume that there is a sequence
of radii rj ↓ 0 such that H(rj) > 0. More specifically, we claim that
there is a radius r0 sufficiently small for which, for all r < r0, H(r) > 0
and all the estimates of the previous sections apply. Indeed, let ]ρ, r0[
be a maximal interval over which H 6= 0. On this interval we compute
the derivative of log I(r) using (9.13):

d

dr
log I(r) =

1

r
+
D′(r)

D(r)
− H ′(r)

H(r)
= O(1) +

2−m
r

+
D′(r)

D(r)
− 2E(r)

H(r)
.

(9.60)

Next, by (9.27), (9.47), (9.48) and (9.49),

|D(r)−E(r)| ≤ C(D(r)1+τ +CS(r)) ≤ C(D(r)1+τ + r2D(r)) . (9.61)
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Note that

D(r) ≤
∑
j

∫
Uj
|DN |2

(9.38)

≤ C
∑
j

ε1`
m+2−2αe
j ≤ Cr2−2αe

∑
j

`mj .

Recalling that all Lj’s are disjoint and contained in B4
√
mr, we easily

conclude that D(r) ≤ Crm+2−2αe . In particular, (9.61) implies

D(r)(1− Crτ ) ≤ E(r) ≤ D(r)(1 + Crτ ) . (9.62)

Assuming r0 is sufficiently small, we infer

D(r)

2
≤ E(r) ≤ 2D(r) . (9.63)

In particular, inserting (9.62) in (9.60), we obtain

d

dr
log I(r) ≥ O(1)+

2−m
r

+
D′(r)

E(r)
−2E(r)

H(r)
−CD

′(r)(S(r) +D(r)1+τ )

D(r)2
.

(9.64)
Using (9.28), (9.50), (9.51) and (9.52),

d

dr
log I(r) ≥ O(1) +

2G(r)

E(r)
− 2E(r)

H(r)
− CD

′(r)(S(r) +D(r)1+τ )

D(r)2

− 1

rE(r)

5∑
j=1

|Errij|

≥ O(1) +
2G(r)

E(r)
− 2E(r)

H(r)
− CD

′(r)(S(r) +D(r)1+τ )

D(r)2

− CD(r)

E(r)

(
1 +

D(r)τ

r
+

D′(r)

D(r)1−τ

)
(9.63)

≥ O(1) +
2G(r)

E(r)
− 2E(r)

H(r)
− CD

′(r)S(r)

D(r)2

− CD(r)τ

r
− C D′(r)

D(r)1−τ . (9.65)

By Cauchy–Schwartz G(r)H(r) ≥ E(r)2. Moreover, we have already
estimated −D(r) ≥ −Cr. Inserting the latter inequalities in (9.65) and
integrating, we obtain

log
I(r)

I(s)
≥ −C(rτ − sτ )− C(D(r)τ −D(s)τ )− C

∫ r

s

D′(σ)

D(σ)2
S(σ) dσ

≥ −Crτ + C

(
S(r)

D(r)
− S(s)

D(s)

)
− C

∫ r

s

S ′(σ)

D(σ)
dσ , (9.66)
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for every ρ < s < r < r0. Recall that S(σ) ≤ Cσ2D(σ) for every
σ ∈]ρ, r0[. Moreover,

S ′(σ) = −
∫

d

σ2
φ′
(
d

σ

)
|N |2 ≤ CH(σ)

(9.8)

≤ CσD(σ) .

In particular, we conclude

log
I(r)

I(s)
≥ −Crτ . (9.67)

From the latter inequality we conclude immediately that I(s) is uni-
formly bounded and thus that H(ρ) = limr↓ρH(r) cannot vanish if
ρ > 0. Since ]ρ, r0[ is a maximal interval on which H is positive, we
conclude that it is positive on the whole ]0, r0[.

Furthermore, it follows directly from (9.67) that the limit

I+
0 := lim

r↓0
I+(r)

exists. Finally, from (9.9) we conclude I0 > 0.





CHAPTER 10

Final blow-up argument

In this chapter we conclude the proof of Theorem 1.6. In particular
we show that alternative (b) in Theorem 9.3 cannot hold. This leaves
alternative (a), which therefore shows that, under the assumptions of
the theorem, the origin is in fact a regular boundary point. On the other
hand, such point was a generic collapsed point of an area-minimizing
current which was later suitably rescaled and translated in order to
fulfill the Assumption 8.16.

The core of the argument is to derive a suitable contradiction to
the linear theory with a blow-up of the approximating

(
Q− 1

2

)
-map

(N+, N−). In order to state our main theorem we introduce the fol-
lowing notation.

Recall thatM is the union ofM+ andM− and is, therefore, a C1,1

submanifold. Moreover M coincides with the graph of the functions
ϕ+ and ϕ− on the domains B+

1 and B−1 . In order to simplify the
notation we denote by ϕ the map on B1 which coincides with both on
the respective domains. In particular we are ready to define suitable
multivalued maps

N ±(x) =
∑
i

q
N ±

i (x)
y

given by the formulas

N ±
i (x) = pκ0

(
N±i (x,ϕ±(x))

)
,

where we recall that κ0 is the plane T0Σ ∩ T0M⊥ = {0} × Rn̄ × {0}.
Observe that the pair (N +,N −) is a

(
Q− 1

2

)
-valued function with

interface (γ, 0). We next define

D(r) =

∫
B+
r

|DN +|2 +

∫
B−r

|DN −|2 = D+(r) + D−(r)

and the corresponding rescaled multivalued functions

N ±
r (x) :=

∑
i

q
r
m/2−1D(r)−

1/2N ±
i (rx)

y
.

Definition 10.1. The domains of the rescaled functions N ±
r are

divided by (suitable) rescalings of γ, which in turn are converging to

199
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the (m − 1)-dimensional plane T0γ. For this reason we introduce the
notation B+

r,ρ (and B−r,ρ) for the intersection of the domain of N +
r (re-

spectively of N −
r ) with the disk Bρ(0, π0).

Note that the regions B±r , which are subsets of the domains of the
maps N ±, coincide with the sets B±1,r. Observe that a simple conse-
quence of the estimates in the previous chapter is that

D(r) ≤ Cε1r
m+2−2αe , (10.1)

Lip(N ±|Br) ≤ CεαL
1 rαL . (10.2)

We are now ready to state the key step of our final contradiction
argument.

Theorem 10.2. If alternative (b) in Theorem 9.3 would hold in any
of the two regions C±, then, up to a subsequence, the pair (N +

r ,N −
r )

would converge in B1 locally strongly in L2 and in energy to a
(
Q− 1

2

)
Dir-minimizer (N +

0 ,N −
0 ) which collapses at the interface (T0γ, 0) such

that

(i) (N +
0 ,N −

0 ) is nontrivial;
(ii) η ◦ N ±

0 ≡ 0.

Remark 10.3. Observe that, although the notation N ±
0 might sug-

gest that the “blow-up” map is unique, namely independent of the se-
quence {rk}k, we do not claim such uniqueness, nor we need it for our
purposes.

By convergence in energy we mean that for every R ∈ (0, 1)

lim
k→∞

(∫
B+
R

|DN +
rk
|2 +

∫
B−R

|DN −
rk
|2
)

=

∫
B+
R

|DN +
0 |2 +

∫
B−R

|DN −
0 |2

Since by Theorem 4.5 any
(
Q− 1

2

)
Dir minimizer (N +

0 ,N −
0 ) which

collapses at the interface must satisfy

N +
0 = Q

q
η ◦ N +

0

y
and N −

0 = (Q− 1)
q
η ◦ N −

0

y
,

the two properties (i) and (ii) above are incompatible. In particular we
conclude

Corollary 10.4. Alternative (a) in Theorem 9.3 must hold for
both T C+ and T C−, i.e. 0 is a boundary regular point for the current
T .



10.1. ASYMPTOTICS FOR D(r) 201

10.1. Asymptotics for D(r)

Lemma 10.5. Under the assumptions of Theorem 10.2 for every
λ ∈ (0, 1) one has

∞ > lim sup
r↓0

D(λr)

D(r)
≥ lim inf

r↓0

D(λr)

D(r)
> 0 . (10.3)

Observe that (i) in Theorem 10.2 is then a simple consequence of
the above lemma and convergence in energy.

Proof. Observe that, since T0M = π0 and N± are orthogonal to
M, we easily conclude that

D±(r) = (1 +O(r))

∫
B±r

|DN±|2 . (10.4)

Furthermore, if one among I+
0 and I−0 is +∞, then the corresponding

energy vanishes identically. Thus, under the assumption that they are
finite, it suffices to show

∞ > lim sup
r↓0

(∫
B±r

|DN±|2
)−1 ∫

B±λr

|DN±|2

≥ lim inf
r↓0

(∫
B±r

|DN±|2
)−1 ∫

B±λr

|DN±|2 > 0 . (10.5)

To fix ideas consider the case of N+ and notice that, in the notation
of the previous chapter, we must simply show

∞ > lim sup
r↓0

D(r)−1D(λr) ≥ lim inf
r↓0

D(r)−1D(λr) > 0 . (10.6)

Observe that the quantities D and H defined in (9.5) and (9.6) are
integrals over (portions of) the “right center manifold” M+. Hence,
from now on we use a more consistent notation for the remaining com-
putations of this chapter, namely D+ and H+ (and analogously I+

and E+). In order to prove the desired estimate notice first that, by
Proposition 9.5, and (9.62) we have

d

dr
log

(
H+(r)

rm−1

)
=

2E+(r)

H+(r)
+O(1) =

2

r
(1 +O(rτ ))I+(r) +O(1)

Next, by choosing r sufficiently small, we can assume that

I+
0

2
≤ (1 +O(rτ ))I+(r) ≤ 2I+

0 .
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Thus, integrating the inequality above between s and t ≥ s, we con-
clude

e−C(t−s)
(
t

s

)m−1+I+
0

≤ H+(t)

H+(s)
≤ eC(t−s)

(
t

s

)m−1+4I+
0

.

Since

lim
r↓0

rD+(r)

H+(r)
= I+

0 ,

we can argue as in Corollary 4.26 (c) to conclude (10.6). �

10.2. Vanishing of the average

In this section we wish to show that

Lemma 10.6. Under the assumptions of Theorem 10.2 we have

lim
r→0

(∫
B+

1

|η ◦ N +
r |+

∫
B−1

|η ◦ N −
r |

)
= 0 . (10.7)

Indeed we have the stronger estimate

lim
r↓0

D(r)−1r−(1+τ ′)

(∫
B+
r

|η ◦ N +|+
∫
B−r

|η ◦ N −|
)

(10.8)

≤ lim
r↓0

D(r)−(1+τ ′)r−1

(∫
B+
r

|η ◦ N +|+
∫
B−r

|η ◦ N −|
)

= 0 .

(10.9)

for any τ ′ smaller than the parameter τ of Proposition 9.14.

Notice that (ii) in Theorem 10.2 is then a trivial consequence of the
lemma and of Lemma 10.5.

Proof. In view of the same considerations as in the proof of Lemma
10.5, in order to show (10.7) it suffices to show that, under the condition
that alternative (b) holds,

lim
r→0

1

rm/2+1D+(r)1/2

∫
B+
r

|η◦N+| = lim
r→0

D+(r)1/2

rm/2
1

rD(r)

∫
B+
r

|η◦N+| = 0.

(10.10)
where we are using the notation of the previous chapter. By (10.1) and
(10.4),

lim
r→0

D+(r)1/2

rm/2
= 0. (10.11)

We now claim that∫
B+
r

|η ◦N+| ≤ Cr

(∫
B+
r

|DN+|2
)1+τ

. (10.12)
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where C and τ are as in Proposition 9.14. The latter inequality, to-
gether with (10.1), clearly implies (10.9). Moreover the combination of
(10.11) and (10.12) implies (10.10). Hence the proof of the lemma will
be concluded once we show (10.12). To this aim, with the notation of
the previous chapter, we estimate∫

B+
r

|η ◦N+| ≤
∑
j

∫
Uj
|η ◦N+| .

Applying (8.15) with a = r we easily conclude∫
B+
r

|η ◦N+| ≤ Cr
∑
j

ε1`
m+2+αL/2
j +

C

r

∫
B+
r

|N+|2+αL .

On the other hand, using (9.36), (9.41) and (9.42) we then conclude∫
B+
r

|η ◦N+| ≤ Cr

(∫
B+
r

|DN+|2
)1+τ

+
C

r

(∫
B+
r

|DN+|2
)τ ∫

B+
r

|N+|2 .

Combining the above estimates with the Poincaré inequality∫
B+
r

|N+|2 ≤ Cr2

∫
B+
r

|DN+|2

we then conclude the proof of (10.12) and of the Lemma. �

10.3. Minimality and convergence in energy

In this section we complete the proof of Theorem 10.2. In order
to be consistent with our notation on the domains of the functions
N ±

r , we let B±0,R denote the intersections of the domain of definitions

of the blow-up maps N ±
0 with the disk Br(0, π0). By the Rellich-

Kondrakov embedding we know that we can extract a subsequence
(N +

rk
,N −

rk
) converging locally strongly in L2(B1) to some

(
Q− 1

2

)
-map

(N +
0 ,N −

0 ). The fact that the latter collapses at the interface (T0γ, 0)
comes from trace theory (cf. for instance [13], [29]). Observe that, by
semicontinuity of the Dirichlet energy we have

lim inf
k→∞

(∫
B+
rk,R

|DN +
rk
|2 +

∫
B−rk,R

|DN −
rk
|2
)

≥
∫
B+

0,R

|DN +
0 |2 +

∫
B−0,R

|DN −
0 |2 (10.13)

for every R ∈ (0, 1).
Assume without loss of generality that the inferior limit on the

left hand side is actually a limit. Choose now any
(
Q− 1

2

)
competitor
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(u+, u−) with interface (T0γ, 0) which coincides with (N +
0 ,N −

0 ) on B1\
BR. We now want to show that, for any given positive η > 0,

lim
k→∞

(∫
B+
rk,R

|DN +
rk
|2 +

∫
B−rk,R

|DN −
rk
|2
)
≤
∫
B+

0,R

|Du+|2+

∫
B−0,R

|Du−|2+η .

(10.14)
Clearly this will show both the convergence in energy (by choosing u± =
N ±

0 ) and the local minimality of N ±
0 . Hence the proof of Theorem 10.2

will be concluded once we show (10.14).
Without loss of generality we can assume that η ◦ u± = 0. Indeed,

recall that η ◦ N ±
0 ≡ 0 and thus, since∫

B±1

|Du±|2 ≥
∫
B±1

∑
i

|D(u±i − η ◦ u±)|2 ,∑
i Ju
± − η ◦ u±K would be a better competitor with zero average.

It is convenient to introduce the energy difference

Ek :=

(∫
B+
rk,1

|DN +
rk
|2 +

∫
B−rk,1

|DN −
rk
|2
)
−

(∫
B+

0,1

|Du+|2 +

∫
B−0,1

|Du−|2
)
,

so that our claim reduces to

lim
k→∞

Ek ≤ η .

Note also that we can assume that Ek ≥ 0 otherwise there is nothing
to prove, in particular(∫

B+
0,1

|Du+|2 +

∫
B−0,1

|Du−|2
)
≤ lim

k→∞

∫
B+
rk,1

|DN +
rk
|2+

∫
B−rk,1

|DN −
rk
|2 = 1 ,

(10.15)
where the last equality follows by the normalization of N ±

rk
.

Our first step is then to produce a new
(
Q− 1

2

)
-map (N̂ +

k , N̂ −
k )

with interface (γ, 0) and satisfying the following four properties:

(a) (N̂ +
k , N̂ −

k ) coincides with (N +,N −) outside Brk ;

(b) the Lipschitz constants Lip(N̂ ±
k ) converge to 0 as k →∞;

(c) the following inequality holds for the energy:∫
B+
rk

|DN̂ +
k |

2 +

∫
B−rk

|DN̂ −
k |

2 ≤
∫
B+
rk

|DN +|2

+

∫
B+
rk

|DN −|2 + r2−m
k D(rk)

(
−Ek +

η

2

)
; (10.16)

(d) |η ◦ N̂ +
k | ≤ C|η ◦ N ±|;
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First, by Lemma 5.8, we can choose a sequence of approximants (u+
j , u

−
j )

which converge in energy to (u+, u−) in B0,1, satisfy η ◦ u±j ≡ 0 and
with Lipschitz constant controlled by j,

Lip(u±j ) ≤ j.

Next, choose a sequence of diffeomorphisms Φk of B1 which converges
in C1 to the identity and maps the rescalings γrk := r−1

k γ onto T0γ.
We then define

(u+
j,k, u

−
j,k) = (u+

j ◦ Φk, u
−
j ◦ Φk).

Note that

lim
k→∞

lim
j→∞

∫
B±rk,1

|Du±j,k|
2 = lim

k→∞

∫
B±rk,1

|D(u± ◦ Φk)|2 =

∫
B±0,1

|Du±|2

(10.17)
and

lim
k→∞

lim
j→∞

∫
B±rk,1

\Φ−1
k (B±0,R)

G2(u±j,k,N ±
rk

) = 0 . (10.18)

Using the interpolation Lemma 4.9 and proceeding as in Section 4.1.4
we obtain

(
Q− 1

2

)
-maps (w+

j,k, w
−
j,k) with the following properties for a

sufficiently large k and small λ:

(a1) (w+
j,k, w

−
j,k) coincide with (u±j,k, u

±
j,k) on Φ−1

k (BR(0, π0)) and with

(N +
rk
,N −

rk
) outside Bsk(0, π0) for some R < sk < 1 such that

Φ−1
k (BR(0, π0)) ⊂ Bsk(0, π0);

(b1) The Lipschitz constant of (w+
k,j, w

−
k,j) is estimated as1

Lip(w±k,j) ≤ C
(

Lip(N ±
rk

) + Lip(u±k,j) +
1

λ
sup

B±1 \Φ
−1
k (B±0,R)

G(u±j,k,N ±
rk

)
)

≤ C
(

Lip(N ±
rk

) + Lip(u±k,j)

+
1

λ(1−R)

∫
B±1 \Φ

−1
k (B±0,R)

G(u±j,k,N ±
rk

)
)

;

1Here we are using the simple inequality ‖f‖L∞(E) ≤ |E|−1‖f‖L1(B1) +

diam(E)Lip(f)
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(c1) The energy of (w+
j,k, w

−
j,k) can be estimated as∫

B+
rk,1

|Dw+
j,k|

2 +

∫
B−rk,1

|Dw−j,k|
2

≤ (1 + ‖Φk − Id‖C1)
(∫

B+
0,R

|Du+
j |2 +

∫
B−0,R

|Du−j |2
)

+

∫
B+
rk,1
\Bsk (0,π0)

|DN +
rk
|2 +

∫
B−rk,1

\Bsk (0,π0)

|DN −
rk
|2

+ Cλ

∫
B+
rk,1
\Φ−1

k (BR(0,π0))

(|Du+
j,k|

2 + |DN +
rk
|2)

+ Cλ

∫
B−rk,1

\Φ−1
k (BR(0,π0))

(|Du−j,k|
2 + |DN −

rk
|2)

+
C

λ

∫
B+
rk,1
\Φ−1

k (BR(0,π0))

G2(u+
j,k,N +

rk
)

+
C

λ

∫
B−rk,1

\Φ−1
k (BR(0,π0))

G2(u−j,k,N −
rk

)

≤
∫
B+
rk,1

|DN +
rk
|2 +

∫
B−rk,1

|DN −
rk
|2 +

η

4
− Ek + oj,k(1) . (10.19)

where

lim
j→∞

lim
k→∞

oj,k(1) = 0

and we have chosen λ� η (recall also (10.15)).
(d1) |η ◦w±k | ≤ C|η ◦N ±

rk
|. This can be easily seen as follows: first

of all we can subtract the average from N ±
rk

, and interpolate

it to 0, which is the average of the competitors u±j , hence we
can interpolate between the maps (u+, u−) and the average-
free part of (N +

rk
,N −

rk
): a simple inspection of the proof of

Lemma 4.9 shows that this can be done while keeping the
average of the interpolation equal to 0. Hence we can add
back the average to the resulting maps in order to get w±k .
Note that in estimating the Dirichlet energies we are using the
crucial fact that the Dirichlet energy of a multivalued map
equals the sum of the Dirichlet energies of its average and
average-free part.

Next we set

N̂ ±
j,k(x) =

∑
i

r
r

1−m/2
k D(rk)

1/2(w±j,k)i(r
−1
k x)

z
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and

N̂ ±
j = N̂ ±

j,kj

for kj appropriately large. Observe that (N̂ +
j , N̂ −

j ) clearly satisfies
property (a). Moreover,

Lip(N̂ ±
j,k) ≤ CLip(N ±) + Cr

−m/2
k D(rk)

1/2j + Cη−1oj,k(1) .

In particular, taking into account (10.1) and (10.2),

Lip(N̂ ±
j,k) ≤ Cη−1εαL

1 rαL
k + Cε

1/2
1 r1−αe

k j + Cη−1r
−m/2
k D(rk)

1/2j

+ Cη−1oj,k(1).

Thus, choosing first j large and then kj much larger, we achieve (b).
Finally (10.16) follows from (10.19).

We next define a suitable Lipschitz map Λ between a neighborhood
U of the origin in Σ onto a neighborhood of the origin in T0Σ. Fix
therefore z ∈ U ∩ Σ. First of all we define x ∈ π0 = T0M as the only
point such that (x,ϕ(x)) = p(z), where p is the projection onto M.
Next, we let κ0 := T0Σ∩ T0M⊥ and we define y := pκ0(z − p(z)). We
then set Λ(z) := (x, y) ∈ T0Σ and Λv(z) = y.

We partition U into U+ and U− according on whether p(z) belongs
toM+ orM−. So, we can regard Λ as two maps Λ+ and Λ− which are
C2,κ on the corresponding domains and which agree on the common
boundary U+ ∩ U− = p−1(Γ) ∩ U . Observe that the differentials of
Λ± at the origin are the identity in both cases. Thus, using the inverse
function theorem, we can find two inverse maps Ψ± defined onB±r (π0)×
Br(κ0).

We are thus ready to define the competitor maps (N̂+
k , N̂

−
k ) in the

form

N̂±k (x,ϕ(x)) = Ψ±(x, N̂ ±
k (x))− (x,ϕ(x)) ,

namely

N̂±k (x,ϕ(x)) =
∑
i

r
Ψ±(x, (N̂ ±

k )i(x))− (x,ϕ(x))
z
.

Observe that

N̂ ±
k (x)) = pκ0(N̂k(x,ϕ(x))) .

We thus conclude easily that:

(a2) (N̂+
k , N̂

−
k ) coincide with (N+, N−) outside of C2rk ∩M;

(b2) the Lipschitz constants of N̂±k on C2rk ∩M converge to 0;
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(c2) for k large enough we have the energy comparison∫
C2rk

∩M+

|DN̂+
k |

2 +

∫
C2rk

∩M−
|DN̂−k |

2

≤
∫
C2rk

∩M+

|DN+|2 +

∫
C2rk

∩M−
|DN−|2 + D(rk)

(
−Ek +

3η

4

)
.

(10.20)

(d2) |η ◦ N̂±k | ≤ C|η ◦ N±|, since on p−1(Brk) we have 0 = η ◦
N̂ ±

k (x)) = pκ0(η ◦ N̂k(x,ϕ(x))).

Now we consider the current Sk in C2rk induced by the multi-valued
map

F̂±k (x,ϕ(x)) =
∑
i

r
(x,ϕ(x)) + (N̂±k )i(x,ϕ(x))

z

Observe that, since Sk = TF on C2rk \Crk , arguing as for the estimate
in (9.55) we easily conclude that

‖Sk−T‖(C2rk\Crk) ≤ C

(∫
C3rk

∩M+

|DN+
k |

2 +

∫
C4rk

∩M−
|DN−k |

2

)1+τ

.

In turn, using Lemma 10.5, we can control the right hand side with
D(rk)

1+τ . In particular, for a suitable σk ∈ (rk, 2rk)

M(∂((Sk − T ) Cσk)) ≤
C

rk
D(rk)

1+τ .

In particular, by the isoperimetric inequality we conclude the existence
of a current Zk with ∂Zk = ∂((Sk − T ) Cσk), spt(Zk) ⊂ Σ and such
that

M(Zk) ≤ Cr
−m/(m−1)
k D(rk)

m(1+τ)/(m−1)

≤ CD(rk)
1+τ

(
D(rk)

1+τ

rmk

) 1
m−1

≤ CD(rk)
1+τ ;

where we used the bound D(r) ≤ Crm+2−2αe (compare the argument
leading to (9.63)). In particular, the current

T̂k = Sk Cσk + T (Rm+n \Cσk) + Zk

is an admissible competitor to check the minimality of T , since it co-
incides with T outside a compact set and it has boundary JΓK. In
particular we conclude that

M(Sk Cσk) ≥M(T Cσk)− CD(rk)
1+τ . (10.21)
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Next, since T coincides with TF on a large set (compare with (9.55))
using again the same estimate as above, we conclude also

M(Sk Cσk) ≥M(TF+ Cσk) + M(TF− Cσk)− CD(rk)
1+τ .

On the other hand, since F and F̂k coincide outside of Crk , we can
write

M(TF̂+
k

Crk) + M(TF̂−k
Crk) ≥M(TF+ Crk) + M(TF− Crk)

− CD(rk)
1+τ . (10.22)

Using now the Taylor expansion in [15, Theorem 3.2] we easily conclude
that ∣∣∣∣∣M(TF+ Crk)−

1

2

∫
Crk∩M+

|DN+|2 −QHm(Crk ∩M+)

∣∣∣∣∣
≤ C

∫
Crk∩M+

(|η ◦N+|+ |N+|2 + |N+||DN+|2 + |DN+|3) .

By the estimate on |N+| and Lip(N+), we have∫
Crk∩M+

|N+||DN+|2 + |DN+|3

(9.35)&(9.36)&(9.42)

≤ C

(∫
C2rk

∩M+

|DN+|2
)1+τ

≤ CD(rk)
1+τ ,

where in the last inequality we have also used Lemma 10.5. By the
Poincaré inequality (and Lemma 10.5)∫

Crk∩M+

|N+|2 ≤ Cr2
k

∫
Crk∩M+

|DN+|2 ≤ Cr2
kD(rk) .

Finally, by Lemma 10.6,∫
Crk∩M+

|η ◦N+| ≤ CrkD(rk)
1+τ .

We thus conclude∣∣∣∣∣M(TF+ C2rk)−
1

2

∫
C2rk

∩M+

|DN+|2 −QHm(C2rk ∩M+)

∣∣∣∣∣
≤Cr2

kD(rk) + CD(rk)
1+τ . (10.23)
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Similarly,∣∣∣∣∣M(TF− C2rk)−
1

2

∫
C2rk

∩M−
|DN−|2 − (Q− 1)Hm(C2rk ∩M−)

∣∣∣∣∣
≤ Cr2

kD(rk) + CD(rk)
1+τ . (10.24)

Observe next that the similar Taylor expansions hold for F̂±k replacing
F±, namely∣∣∣∣∣M(TF̂+

k
C2rk)−

1

2

∫
C2rk

∩M+

|DN̂+
k |

2 −QHm(C2rk ∩M+)

∣∣∣∣∣
≤Cr2

kD(rk) + o(1)D(rk) , (10.25)

and∣∣∣∣∣M(TF̂−k
C2rk)−

1

2

∫
C2rk

∩M−
|DN̂−k |

2 − (Q− 1)Hm(C2rk ∩M−)

∣∣∣∣∣
≤ Cr2

kD(rk) + o(1)D(rk) . (10.26)

Indeed:

• the linear term is estimated in the same way using |η ◦ N̂±k | ≤
C|η ◦Nk|;
• the quadratic term is estimated by the Poincaré inequality and∫

Crk∩M+

|DN̂+
k |

2 +

∫
Crk∩M−

|DN̂−k |
2 ≤ CD(rk) ,

since we can assume without loss of generality that Ek ≥ −2;
• finally |N̂+

k ||DN̂
+
k |2 + |DN̂+

k |3 = o(1)|DN̂+
k |2. Indeed, by (b2)

Lip(N̂+
k ) = o(1) and supx∈B+

2rk

|N̂+
k (x)| ≤ CrkLip(N̂+

k ) = o(rk),

since N̂+
k is vanishing on Γ.

Inserting the Taylor expansions (10.23)–(10.26), we conclude∫
Crk∩M+

|DN̂+
k |

2 +

∫
Crk∩M−

|DN̂−k |
2

≥
∫
Crk∩M+

|DN+|2 +

∫
Crk∩M−

|DN−|2 − o(1)D(rk) . (10.27)

Combining now (10.20) and (10.27) we achieve

D(rk)

(
−Ek +

3η

4

)
≥ −o(1)D(rk) .

Dividing by D(rk) and choosing k large enough we achieve the desired
inequality Ek ≤ η.
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