Accepted paper
Inserted: 11 jun 2014
Last Updated: 9 jun 2023
Journal: J. Reine Angew. Math.
Year: 2015
Abstract:
We investigate weighted Sobolev spaces on metric measure spaces $(X,d,m)$. Denoting by $\rho$ the weight function, we compare the space $W^{1,p}(X,d,\rho m)$ (which always concides with the closure $H^{1,p}(X,d,\rho m)$ of Lipschitz functions) with the weighted Sobolev spaces $W^{1,p}_\rho(X,d,m)$ and $H^{1,p}_\rho(X,d,m)$ defined as in the Euclidean theory of weighted Sobolev spaces. Under mild assumptions on the metric measure structure and on the weight we show that $W^{1,p}(X,d,\rho m)=H^{1,p}_\rho(X,d, m)$. We also adapt results by Muckenhoupt and recent work by Zhikov to the metric measure setting, considering appropriate conditions on $\rho$ that ensure the equality $W^{1,p}_\rho(X,d,m)=H^{1,p}_\rho(X,d,m)$.
Download: