Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

A. Farina - J. Serrin

Entire solutions of completely coercive quasilinear elliptic equations

created by farina on 16 Sep 2010

[BibTeX]

Accepted Paper

Inserted: 16 sep 2010

Journal: Journal of Differential Equations
Year: 2010

Abstract:

\noindentAbstract. {\it A famous theorem of Sergei Bernstein says that every entire solution $u = u(x)$, $x \in *R*^{2}$ of the minimal surface equation $$ {\rm div}\,\left\{ {Du \over \sqrt{1 + Du
{2}}} \right\} = 0 $$ is an affine function; no conditions being placed on the behavior of the solution $u$.

Bernstein's Theorem continue to hold up to dimension $ n = 7$ while it fails to be true in higher dimensions, in fact if $x \in *R*^{n}$, with $n \geq 8$, there exist entire non-affine minimal graphs (Bombieri, De Giorgi and Giusti).

Our purpose is to consider an extensive family of quasilinear elliptic-type equations which has the following strong Bernstein-Liouville property, that $u \equiv 0$ for {\it any} entire solution $u$, no conditions whatsoever being placed on the behavior of the solution (outside of appropriate regularity assumptions). In many cases, moreover, no conditions need be placed even on the dimension $n$. We also study the behavior of solutions when the parameters of the problem do not allow the Bernstein--Liouville property, and give a number of counterexamples showing that the results of the paper are in many cases best possible.}


Download:

Credits | Cookie policy | HTML 5 | CSS 2.1