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Abstract. A famous theorem of Sergei Bernstein says that every entire solution u = u(x),
x ∈ R2 of the minimal surface equation

div

{
Du√

1 +Du|2

}
= 0

is an affine function; no conditions being placed on the behavior of the solution u.
Bernstein’s Theorem continue to hold up to dimension n = 7 while it fails to be true

in higher dimensions, in fact if x ∈ Rn, with n ≥ 8, there exist entire non-affine minimal
graphs (Bombieri, De Giorgi and Giusti).

Our purpose is to consider an extensive family of quasilinear elliptic-type equations
which has the following strong Bernstein-Liouville property, that u ≡ 0 for any entire so-
lution u, no conditions whatsoever being placed on the behavior of the solution (outside
of appropriate regularity assumptions). In many cases, moreover, no conditions need be
placed even on the dimension n. We also study the behavior of solutions when the param-
eters of the problem do not allow the Bernstein–Liouville property, and give a number of
counterexamples showing that the results of the paper are in many cases best possible.
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1. Introduction.

We shall study entire solutions of quasilinear elliptic equations of the form

(1) divA(x, u,Du) = B(x, u,Du)

and also of the corresponding inequality

(1′) divA(x, u,Du) ≥ B(x, u,Du)

under various coercive conditions on the vector-valued function A and the scalar function
B. The simplest typical example of equation (1), though far from the more general ones
which we shall consider later, is the equation

(2) ∆pu = |u|q−1u

with p > 1, q ≥ 0. For the semilinear case p = 2, q > 1, H. Brezis [1] showed in 1984
that if u = u(x), x ∈ Rn, is an entire C1 distribution solution of (2), then u ≡ 0. The
remarkable nature of this result is that no boundedness conditions of any sort are imposed
on the solution. Moreover the condition q > 1 is best possible, for if q ≤ 1 there exist
non-trivial (even positive) entire solutions, see results A, B below. As we shall see, Brezis’s
result continues to hold for equation (2) provided q > p− 1, where again this condition is
best possible.

Throughout the paper we shall assume the general coercive (weak ellipticity) condi-
tions

(3)
A(x, z, ρ) · ρ ≥ 0, B(x, z, ρ)z ≥ 0,
A(x, z, 0) = 0, B(x, 0, 0) = 0,

for all x ∈ Rn, z ∈ R and ρ ∈ Rn, together with the property that

(4)

A(x, z, ρ) · ρ+ B(x, z, ρ)z = 0

implies either z = 0 or ρ = 0.

Further conditions on the quantities A and B will be needed only for large values of x, say
|x| ≥ R0 >> 1. Before stating these conditions it is worth pointing out several further
model examples of our conclusions.

Example 1. Let u = u(x) be an entire C1 distribution solution of the equation

(5) div [A(x, u,Du) |Du|p−2Du] = b(x, u,Du)|u|q−1u

where p > 1, q ≥ 0, and A(x, z, ρ), b(x, z, ρ) are non-negative measurable functions such
that

(5′) A(x, z, ρ) ≤ Const. |x|s|z|r, b(x, z, ρ) ≥ Pos.Const. |x|−t
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for |x| ≥ R0, z 6= 0, ρ ∈ Rn, with r ≥ 0, s, t ∈ R. In writing (5), and in later work, we
define |u|q−1u to vanish at all points where u = 0.

It is clear that (3) is satisfied, with moreover

A(x, z, ρ) · ρ+ B(x, z, ρ)z = A(x, z, ρ)|ρ|p + b(x, z, ρ)|z|q+1.

The first line of the coercivity condition (4) then implies that

A(x, z, ρ)|ρ|p = b(x, z, ρ)|z|q+1 = 0;

in turn the second line applies provided that

(5′′) A(x, z, ρ) + b(x, z, ρ) > 0 for z 6= 0, ρ ∈ Rn, and almost all x ∈ Rn.

Under these conditions, the conclusion for Example 1 is that if q > p+ r − 1 and either

(6′) s+ t ≤ p

or

(6′′) s+ t > p, q(s+ t− p)− (q − p− r + 1)(t− n) < 0,

then u ≡ 0 in Rn; see below.
Brezis’ result is the special case p = 2, A ≡ b ≡ 1, r = s = t = 0 (see the appendix,

Section 13, for a fuller discussion of Brezis’ theorem and its relation to our work).

Example 2. Let u = u(x) be an entire C1 solution of the equation

(7) div

{
A(x)

Du√
1 + |Du|2

}
= b(x)f(u),

where A, b are non-negative measurable functions such that

(7′) A(x) ≤ Const. |x|s, b(x) ≥ Pos.Const. |x|−t,

for almost all |x| ≥ R0, with s, t in R, and f(z) is a non-decreasing function with a single
zero, z = 0. Here the coercivity condition (4) is valid when A(x) + b(x) > 0 (a.e.) in Rn.

The conclusion is that if s+t < 1 then u ≡ 0; see Section 5. Moreover, if f(z) = |z|q−1z
the conclusion continues to hold if s+ t < 1 + q (when 0 < q ≤ 1), and if s+ t ≤ 2 (when
q > 1); see Section 6. Note that the last result is the same as that for the case p = 2,
r = 0 of Example 1. For a complete statement of results concerning equation (7), see the
comments at the end of Section 6.

When A ≡ b ≡ 1, the first of these results is due to Farina [3] and Tkachev [15]; the
first result in the form stated is due to Serrin [14].
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For the main results of the paper we shall require the following “large radii conditions”,
namely that for almost all |x| ≥ R0 and all z ∈ R\{0}, ρ ∈ Rn, there exists an exponent
p ≥ 1 such that

(8) |A(x, z, ρ)|p ≤ CA|x|s|z|r[A(x, z, ρ) · ρ]p−1

and also

(9) B(x, z, ρ) sign z ≥ CB|x|−t|z|q

where CA and CB are positive constants, and q ≥ 0, r ≥ 0, s, t ∈ R.

Remark. The structural condition (8) is very general and the authors have not encoun-
tered it before. Indeed, to the best of our knowledge existing results related to the problem
under consideration (see [6] and the literature cited therein) deal almost exclusively with
(particular cases of) equations of the form (5) or (7), which, in turn, are special cases of
the equations we consider here. To see this, observe that, e.g., equation (5) is obtained
from (1) by taking

(5′′′) A(x, z, ρ) = A(x, z, ρ)|ρ|p−2ρ, 0 ≤ A(x, z, ρ) ≤ CA|x|s|z|r, p > 1,

a typical p-ellipticity-type condition, which obeys (3), (8) but at the same time is obviously
more restrictive than (8).

Remark. Despite the large number of defining parameters (n, p, q, r, s, t) in conditions
(8)-(9), it turns out, most surprisingly, that just two combinations, e.g.

q − p− r + 1, and s+ t− p

(and in particular their signs), are relevant in the formulations of almost all our conclusions.

With the help of conditions (8), (9), and assuming the coercive relations (3) and (4),
Theorem 1 (Section 3) shows that any entire C1 distribution solution of equation (1) must
vanish identically, provided that p > 1, q > p+ r − 1 and either

(10′) s+ t ≤ p,

or

(10′′) s+ t > p, qν < t− n (so t > n).

where ν = (s+ t− p)/(q − p− r + 1).

On the other hand, Theorem 3 (Section 5) shows that any entire C1 distribution
solution of equation (1) must vanish identically provided, that p = 1, q > r (= p + r − 1)
and either

s+ t < 1
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or
s+ t ≥ 1, qν < t− n, (so t > n).

or
s+ t = 1, s+ n− 1 = 0, (so t = n).

where ν = (s+ t− 1)/(q − r).

The inequality case (1′) is treated in Theorem 2 of Section 3 (respectively, Theorem 3
of Section 5), the corresponding conclusion being that u ≤ 0. For the opposite inequality
one finds similarly that u ≥ 0.

The conclusion u ≡ 0 of Example 1 follows at once as a special case of Theorem 1,
when one notes that (6′′) is equivalent to (10′′).

We note that in the case (10′) of Theorem 1 and in the first case of Theorem 3 the
conclusion u ≡ 0 holds independently of the dimension n, as in Brezis’ theorem. In the
remaining cases of these results, on the other hand, the conclusion holds only under explicit
restriction of the dimension, as in Bernstein’s theorem.

It is interesting to inquire whether the parameter conditions of Theorem 1 are nec-
essary for the conclusion u ≡ 0 to be valid. This is indeed the case (with one exception
noted as an open problem in Section 12). This also leads us to ask more generally what
happens when any one of these conditions is not satisfied, but otherwise the remaining
conditions, of course including (3), (4), (8), (9), continue to hold. The results for these
cases are perhaps unexpected, and not entirely simple:

A. If q = p + r − 1 ≥ 0 and s + t < p, then any entire C1 distribution solution of
(1) which has at most algebraic growth at infinity must vanish identically. This result is
essentially sharp since in this case there exist exponentially growing solutions of the form
eκx1 , κ > 0, e.g., for the equation (5) with A = 1 and b = (p− 1)κ2.

B. If 0 ≤ q < p+ r − 1 and s+ t < p, then any entire C1 distribution solution of (1)
which satisfies

(11) u(x) = o(|x|ν) ν =
p− s− t

p+ r − q − 1

must vanish identically.
The exponent ν is best possible, in the sense that for all n ≥ 1, p > 1, q, r ≥ 0 with

0 ≤ q < p+ r − 1, s+ t < p, qν > t− n,

there are non-negative functions A = A(x, z) and b = b(x) satisfying the large radii con-
ditions (5′), (5′′) and such that the corresponding equation (5) admits the explicit entire
positive smooth solution

(12) u(x) = (1 + |x|2)ν/2,
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see Example 6 of Section 11. This example equally shows that the conditions of Theorem
1 are sharp.

Theorems A and B for the special case of Example 1 with A ≡ 1 were given in [14],
Section 3. In this paper, moreover, equations are treated which are not necessarily of
divergence form.

C. If q > p+ r − 1, s+ t > p, and

ν =
s+ t− p

q − p− r + 1
≥ t− n

q
,

then any entire C1 distribution solution of (1) satisfies

(13) liminf |x|→∞
|u(x)|
|x|ν

≤ C,

where the constant C is universal, that is, depends only on n, p, q, r, s, t and the constants
in (8) and (9).

The exponent ν in (13) is best possible, in the sense that the function u in (12) is
again a solution of (5). Figure 1 shows the values of s, t for which Theorems 1 and C hold,
corresponding to fixed values of n, p, q, r.

D. If p > 1, 0 ≤ q ≤ p+ r − 1 and s+ t = p, then any entire C1 distribution solution
of (1) which is bounded must vanish identically.

We note that a related and overlapping result is included in Theorem 1 of [7].

The following result covers the remaining possibility when 0 ≤ q ≤ p + r − 1, and
indeed requires only that conditions (3) and (4) be valid.

E. Any entire C1 distribution solution of (1) which is o(1) as |x| → ∞ must vanish.

The condition o(1) as |x| → ∞ is sharp, as shown by Example 8 in Section 11. A
further result in the same direction is given in Section 4, see Theorem F.

The results A, B, C are proved in Section 3, the results D and E in Section 4.
In Section 5 we consider in more detail the special case p = 1 of (8), see Theorem

3. Moreover, in Theorem 4 we partially generalize Theorem 3 by replacing the large radii
condition (9) by the more general condition (5.4), which involves a general function f with
a single zero at the origin (and not necessarily non-decreasing).

The mean curvature equation of Example 2 is treated in Section 6, along with the
possibility that condition (8) is satisfied for multiple values of the parameter p.

It is possible to weaken the hypotheses of the main results in a number of important
and significant ways.

1. First, the “large radii conditions” can be relaxed, by making, in essence, the change
of variables v = g(u). More precisely, let g ∈ C0(R) ∩ C1(R \ {0}) be such that g(0) = 0
and g′(z) > 0 for all z 6= 0. Then (8)–(9) can be generalized, namely to the form that, for
almost all |x| ≥ R0 and all z ∈ R\{0}, ρ ∈ Rn, there exists an exponent p ≥ 1 such that

(8′) |A(x, z, ρ)|p ≤ CA|x|s |g(z)|r [g′(z)A(x, z, ρ) · ρ]p−1
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and

(9′) B(x, z, ρ) sign z ≥ CB|x|−t |g(z)|q

where CA and CB are positive constants, and q ≥ 0, r ≥ 0, s, t ∈ R.

Conditions (8)-(9) are recovered by taking g(z) = z, while the case g(z) = tanh(z)
and g(z) = ez−1 show the generality of the modified conditions. We emphasize also that g
need not be differentiable at z = 0, so that a straightforward change of variables v = g(u)
cannot be applied.

Under the modified conditions (8’),(9’) all the results of Theorems 1-9 hold in un-
changed form, while Theorems A-E remain valid with obvious modifications. We note
explicitly the remarkable case in which the function g is bounded. Under this assumption
we can extend the conclusions of Theorems 1-4 to cover the full range 0 ≤ q <∞ of values
of the exponent q, rather than the previously restricted set q > p+ r − 1. See Section 10
for the relevant proofs.

2. Conditions (8)-(9) (and equally (8′)-(9′)) can also be weakened in another, and
somewhat surprising direction, so as to apply only for a disjoint sequence of shells

Ti = BκRi
\BRi

, i = 1, 2, 3, · · · ,

where κ is a constant greater than 1 and Ri, i = 1, 2, 3, · · ·, is an arbitrary sequence of
radii tending to infinity. We take this up in Section 7.

3. In Section 8 we show that the condition that the solution u be of class C1 can
be replaced by the weak assumption that u ∈ W 1,σ

loc (Rn) for some σ ≥ 1, this requiring
however a more technically delicate discussion.

4. Finally, in Section 9 we consider the possibility that the exponent r is negative. This
entails first of all that one must restrict consideration to solutions which avoid the value
zero, that is, to solutions which are either everywhere positive or everywhere negative.With
this proviso, the previous considerations carry over without difficulty. See Theorems 8 and
9 for a precise statement of the results for this case; it is worth noting that, in some
circumstances, the results apply even when the parameter q is negative!

Case (i) of Theorem 8 extends earlier work of Usami [16], Naito and Usami [12],
Mitidieri and Pohozaev[10], and Filippucci [5], [6].

In related work [4] we treat a further generalization of condition (9), in which a factor
|Du|`, ` > 0 is added to the right side, a possibility first introduced by Martio and Porru
[8] and studied in detail by Filippucci [6].

Other important and closely related work corresponding to Examples 1 and 2 is due to
Mitidieri and Pohozaev [10] (see also [15],[5],[6],[7],[9],[11]); all of these works are, however,
restricted to positive (or non-negative) solutions u. For further references and discussions
of the literature, see [6].
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2. Preliminaries.

We begin with several preliminary lemmas which will be of importance throughout
the paper. First we make precise the meaning of a C1 distribution solution u = u(x) of
(1), namely that

(2.1)
∫
{A(x, u,Du) ·Dη + B(x, u,Du)η} = 0

for all functions η ∈ C1(Rn) having compact support in Rn. Naturally one must require
further that the functions A(·, u,Du), B(·, u,Du) in (2.1) are locally integrable in Rn. It is
worth adding that, under these integrability conditions, if u ∈ C2 is an almost everywhere
(Rn) classical solution of (1), then u is a distribution solution as well.

For the inequality (1′) the meaning of solution is the same, with the exception that
equality in (2.1) is now replaced by ≤ and the test function η must also be non-negative.

We suppose throughout the rest of the paper, with the exception of Section 10, that
conditions (8)-(9) are in force. Everything stands or falls, depending on the following
lemma.

Lemma 1. Let u = u(x) be an entire C1 distribution solution of the inequality (1′). Then
for every α > 0, β ≥ p ≥ 1, R1 ≥ R0 > 0, and for every compactly supported non-negative
locally Lipschitz continuous test function ϕ we have

(2.2)

α

∫
BR1∩{u>0}

A(x, u,Du) ·Duuα−1ϕβ + β

∫
BR1

A(x, u,Du) ·Dϕ [u+]αϕβ−1

+
∫
Rn

B(x, u,Du) [u+]αϕβ ≤ C1

∫
Rn\BR1

|x|s[u+]α+p+r−1ϕβ−p |Dϕ|p,

where
C1 = α1−p βp CA

and CA is the constant appearing in (8).

Proof. For (1′) we use the non-negative test function

ηε = [u+ + ε]αϕβ .

where 0 < ε < 1. This is Lipschitz continuous in Rn so that, as is clear (trivial mollifica-
tion), it can be used in the corresponding inequality version of (2.1). This gives∫

B(x,u,Du)ηε

≤− α

∫
A(x, u,Du) ·Du+ [u+ + ε]α−1ϕβ − β

∫
A(x, u,Du) ·Dϕ [u+ + ε]αϕβ−1.
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Since Du+ = 0 a.e. in the set {u ≤ 0} we can rewrite this as

0 ≤ α

∫
{u>0}

A(x, u,Du) ·Du [u+ + ε]α−1ϕβ

≤ −
∫
B(x, u,Du)ηε − β

∫
A(x, u,Du) ·Dϕ [u+ + ε]αϕβ−1.

By letting ε → 0 we obtain (using Fatou’s Lemma and (3) for the first integral, and
Lebesgue’s dominated theorem for the others)

(2.3) ∫
B(x,u,Du)[u+]αϕβ

≤− α

∫
{u>0}

A(x, u,Du) ·Duuα−1ϕβ − β

∫
A(x, u,Du) ·Dϕ [u+]αϕβ−1,

all the integrals being finite.
We now rewrite the last inequality as follows:∫
B(x, u,Du)[u+]αϕβ

≤ −α
∫

BR1∩{u>0}
A(x, u,Du) ·Du uα−1ϕβ − β

∫
BR1

A(x, u,Du) ·Dϕ [u+]αϕβ−1

− α

∫
{Rn\BR1}∩{u>0}

A(x, u,Du) ·Du uα−1ϕβ − β

∫
Rn\BR1

A(x, u,Du) ·Dϕ [u+]αϕβ−1.

Using the large radii condition (8), we can estimate the second integrand on the line above
(since α > 0 it is enough to do so on the set {u > 0}).

First, when p > 1, by virtue of the (weighted) Young inequality

xy ≤ εp

p
xp +

1
p′εp′

yp′ with εp =
(
p− 1
pα

)p−1

, p′ =
p

p− 1
,

we obtain (use (8))

(2.4)

−βA(x, u,Du) ·Dϕuαϕβ−1 ≤ βC
1/p
A |x|s/p uα+r/p(A(x, u,Du) ·Du)1/p′ |Dϕ|ϕβ−1

= [βC1/p
A |x|s/p u(α+p+r−1)/p|Dϕ|ϕ−1+β/p] · [(A(x, u,Du) ·Du)1/p′ u(α−1)/p′ϕβ/p′ ]

≤ C1|x|s uα+p+r−1 |Dϕ|pϕβ−p + αA(x, u,Du) ·Duuα−1ϕβ .
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When p = 1 condition (8) reduces to A(x, u,Du) ≤ CA |x|s |u|r, so the above inequality is
immediate, even without the last term.

The proof is now completed by collecting the above inequalities.

In what follows we fix the test function ϕ as follows:

(2.5) ϕ(x) = ϕR(x) = ψ

(
|x|
R

)
,

where

ψ(τ) =

{ 1, 0 ≤ τ ≤ 1,
2− τ, 1 < τ < 2,
0, τ ≥ 2.

Lemma 2. Let u = u(x) be an entire C1 distribution solution of the inequality (1′). Then
for every α > 0, β ≥ p ≥ 1, R ≥ R1 ≥ R0 we have

(2.6)

min{α, 1}
∫

BR1∩{u>0}
[A(x, u,Du) ·Du+ B(x, u,Du)u]uα−1

+ CB

∫
Rn\BR1

|x|−t [u+]α+qϕβ ≤ C1

∫
B2R\BR

|x|s[u+]α+p+r−1|Dϕ|p ϕβ−p

where C1 is the constant appearing in Lemma 1.

Proof. Using ϕ = ϕR in Lemma 1, we find (with R ≥ R1 ≥ R0)

α

∫
BR1∩{u>0}

A(x, u,Du) ·Duuα−1 + 0 +
∫

BR1

B(x, u,Du) [u+]α

+
∫
Rn\BR1

B(x, u,Du)[u+]αϕβ ≤ C1

∫
B2R\BR

|x|s[u+]α+p+r−1|Dϕ|p ϕβ−p,

since ϕ ≡ 1, Dϕ = 0 in BR ⊃ BR1 , while Dϕ = 0 outside B2R.
Next, using (9) to estimate (from below) the first integral on the last line, we obtain

(2.6).

Lemma 3. Let u = u(x) be an entire C1 distribution solution of the inequality (1′). Then
for every α > 0, p ≥ 1 and R ≥ 2R0, we have∫

BR\BR/2

|x|−t [u+]α+q ≤ C2R
s+t−p

∫
B2R\BR

|x|−t [u+]α+p+r−1,

where
C2 =

pp

αp−1

CA
CB

2[s+t]+ .
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Proof. Take R1 = R/2 ≥ R0 and β = p. In the first integral of the second line of (2.6)
we have ϕ = 1 in BR, while Dϕ = 1/R in the shell B2R\BR. Hence using (3) we obtain∫

BR\BR/2

|x|−t [u+]α+q ≤ 2[s+t]+C1C
−1
B Rs+t−p

∫
B2R\BR

|x|−t[u+]α+p+r−1.

Lemma 4. Let u = u(x) be an entire C1 distribution solution of the inequality (1′) and
assume q > p+ r − 1. For α > 0, p ≥ 1 and R ≥ R1 ≥ R0 we have

(2.7)

C−1
B min{α, 1}

∫
BR1∩{u>0}

[A(x, u,Du) ·Du+ B(x, u,Du)u]uα−1

+
∫

BR\BR1

|x|−t [u+]q+α ≤ C3R
(q+α)ν+n−t,

where ν = (s+ t− p)/(q + 1− p− r) and

(2.8) C3 =
(pµ)pµ

α(p−1)µ

(
CA
CB

)µ

2[µ(s+t)−t]++nωn, µ = (q + α)/(q − p− r + 1),

with ωn the measure of the unit ball in Rn.

Proof. Since α > 0, p ≥ 1, r ≥ 0, we see that µ is greater than 1 and its conjugate
exponent is µ′ = (q + α)/(α+ p+ r − 1).

Choose β = pµ > p in (2.6). Applying Young’s inequality with the exponents µ and
µ′ to the last integrand in (2.6) gives

C1C
−1
B |x|s[u+]α+r+p−1ϕβ−p |Dϕ|p

≤ 1
µ′

[
|x|−t/µ′ [u+]α+r+p−1ϕβ−p

]µ′

+
1
µ

[
C1C

−1
B |x|t/µ′+s|Dϕ|p

]µ

.

Inserting this inequality into (2.6), using R ≥ R1 and observing that (β − p)µ′ = β, (2.6)
then yields

C−1
B min{α, 1}

∫
BR1∩{u>0}

[A(x, u,Du) ·Du+ B(x, u,Du)u]uα−1

+
1
µ

∫
Rn\BR1

|x|−t [u+]q+αϕβ ≤ 1
µ

[
C1C

−1
B

]µ
∫

B2R\BR

|x|tµ/µ′+sµ|Dϕ|pµ.

The desired conclusion then follows (a) by multiplying the last inequality by µ, and
then using the relations µ/µ′ = µ − 1 and (s + t/µ′)µ − pµ = (q + α)ν − t together with
the fact that Dϕ = 1/R in the shell B2R\BR, to estimate the last integral, and then (b)
by estimating the preceding integral by noting as in Lemma 3 that ϕ ≡ 1 in BR.
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Lemma 5. Let h(R) be a non-negative function such that for all R ≥ R2 > 0 there holds

(2.9) h(R) ≤ θh(2R)

and

(2.10) h(R) ≤ CRδ,

where C, δ, θ are constants, C > 0, δ ∈ R and 0 < θ < 2−δ. Then h(R) = 0 for R ≥ R2.

Proof. By an ` times iteration of (2.9) we find that, for every R ≥ R2 and every positive
integer l,

h(R) ≤ θ`h(2`R).

Therefore, by (2.10) we obtain

h(R) ≤ C(2δθ)`Rδ = Cξ`Rδ,

where ξ = 2δθ ∈ (0, 1) by assumption. The desired result then follows by letting ` → ∞
in the last inequality.

3. Main results, I.

In this section we shall prove Theorems 1, 2, A, B and C, assuming throughout that
conditions (3), (4), (8), (9) are valid.

Theorem 1. Assume p > 1, q > p+ r − 1 and either

(i) s+ t ≤ p

or
(ii) s+ t > p, ν =

s+ t− p

q − p− r + 1
<
t− n

q
.

Then any entire C1 distribution solution u of the equation (1) must vanish everywhere.

Theorem 1 is a consequence of the following results for the inequality version of equa-
tion (1).

Theorem 2 (i). Assume p > 1, q > p+ r − 1 and

s+ t ≤ p.

Then any entire C1 distribution solution u of the inequality (1′) must be non-positive.

Proof. Consider first the case s + t < p. Since ν < 0 we can choose α so large (say,
α = 1 + [(t − n)/ν]+) that the exponent (q + α)ν + n − t < 0 in (2.7) is negative. Then
letting R→∞ in (2.7) one obtains

(3.1)
∫

BR1∩{u>0}
[A(x, u,Du) ·Du+ B(x, u,Du)u]uα−1 = 0.

12



Hence, because R1 can now be allowed arbitrarily large, and because of (3), we get

(3.2) A(x, u,Du) ·Du+ B(x, u,Du)u = 0 a.e. in the set {u > 0}.

From (4) it follows that Du = 0 almost everywhere in {u > 0}. Therefore Du+ = 0
almost everywhere in Rn, and thus u+ ≡ γ ≥ 0 in Rn.

If γ > 0, then by (3.2) again and the fact that Du ≡ 0 a.e. on {u > 0}, we obtain
γB(x, γ, 0) = 0 for almost all x such that u(x) > 0. In view of (9) the latter entails
{u > 0} ⊂ BR0 (up to a set of Lebesgue measure zero) which clearly contradicts u+ ≡ γ > 0
in all of Rn. Hence necessarily γ = 0, and so in turn u ≤ 0 in Rn, which completes the
proof when s+ t < p. The case s+ t = p will be treated in Section 4.

Theorem 2 (ii). If p > 1, q > p + r − 1 and s + t > p, then any entire C1 distribution
solution of (1′) must be non-positive provided the exponents n, p, q, r, s, t are such that

ν =
s+ t− p

q − p− r + 1
<
t− n

q
(t > n).

Proof. Since νq < t − n there exists α > 0 such that (q + α)ν + n − t < 0. Therefore,
by letting R → ∞ in (2.7) we are led to the conclusion u ≤ 0, exactly as in the proof of
Theorem 2 (i).

Proof of Theorem 1, Case (i). By Theorem 2 (i) we have u ≤ 0. On the other hand
the function v = −u solves an equation of the form (1) with, in an obvious notation,
Ã(x, z, ρ) = −A(x,−z,−ρ) and B̃(x, z, ρ) = −B(x,−z,−ρ). Since Ã and B̃ also satisfy the
large radii conditions (8) and (9), it follows that v ≤ 0 by another application of Theorem
2 (i). Thus u ≡ 0.

The proof of Theorem 1, Case (ii), is the same, only using Theorem 2 (ii) instead of
Theorem 2 (i).

Theorem A. If q = p+r−1 ≥ 0 and s+ t < p, then any entire C1 distribution solution of
(1) (respectively, (1′)) which has at most algebraic growth at infinity must vanish identically
(solution of (1)) or satisfy u ≤ 0 (solution of (1′)).

Proof. From Lemma 3, with α = 2, p+ r − (1 + q) = 0 and R ≥ 2R0, we obtain

h(R) ≡
∫

BR\BR/2

[u+]q+2 ≤ 4|t|C2R
s+t−p

∫
B2R\BR

[u+]q+2 = 4|t|C2R
s+t−ph(2R).

Also by direct estimation,

h(R) ≤ CRδ, δ = (q + 2)d+ n

for some constant C and for all R suitably large, say R ≥ R2, where d > 0 is the algebraic
growth rate of u at infinity. Since s + t < p we can choose R2 even larger if necessary so
that also

4|t|C2R
s+t−p ≤ 2−δ−1 ≡ θ

13



for R ≥ R2.
Applying Lemma 5 gives h(R) = 0 for all R ≥ R2, whence u ≤ 0 for all |x| ≥ R2/2.

In turn, if R ≥ R2/2 then u ≤ 0 in B2R\BR.
Let R1 ≥ R0 be given, and suppose (as we can) that R2 ≥ 2R1. Therefore (2.6) holds

when R ≥ R2/2 ≥ R1. But in this case the right side of (2.6) vanishes, and we obtain
(3.1). Then letting R1 →∞ gives (3.2). It now follows as in the proof of Theorem 2 that
u ≤ 0 in Rn. Finally if u is a solution of (1) then u ≡ 0.

Theorem B. If 0 ≤ q < p+ r − 1 and s+ t < p, then any entire C1 distribution solution
of (1) (respectively, (1′)) which satisfies

(3.3) u(x) = o(|x|ν) ν =
s+ t− p

q − p− r + 1

must vanish identically (solution of (1)) or satisfy u ≤ 0 (solution of (1′)).

Proof. From Lemma 3, with α = 2, p+ r − q − 1 > 0, and R ≥ 2R0, we obtain

h(R) ≡
∫

BR\BR/2

[u+]q+2 ≤ 4|t|C2R
s+t−p

∫
B2R\BR

[u+]q+2+(p+r−1−q) = o(1)h(2R)

by (3.3). Also, as above,

h(R) ≤ CRδ, δ = (q + 2)ν + n

for all R suitably large. Applying Lemma 5 as in Theorem A, we conclude that h(R) = 0
for R ≥ R2, for a suitably large value R2. The rest of the proof is the same as for Theorem
A.

Remark. A more careful use of Lemma 5 shows that we can replace the condition (3.3)
in Theorem B by the relation u(x) ≤ C|x|ν , where C is a (small) constant depending only
on the given parameters of the problem.

Theorem C. If q > p+ r − 1 and s+ t > p, and

ν =
s+ t− p

q − p− r + 1
≥ t− n

q
,

then any entire C1 distribution solution of (1) satisfies

(3.4) liminf |x|→∞
|u(x)|
|x|ν

≤ C,

where C is the universal constant

(3.5) C = [cpp(q − p− r + 2)1−p CA/CB]1/(q−r−p+1).
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and c = 22(s+t)−p+(q+1)ν+n−t+1.

Proof. The proof is by contradiction. Let us suppose that (3.4) is not satisfied; then by
the continuity of u (and up to changing u to −u, if necessary) there are constants C ′ > C
and R2 ≥ 2R0 such that

(3.6) u+(x) ≥ C ′|x|ν , |x| ≥ R2.

From (3.6) and Lemma 3 we obtain, for every α > 0 and for every R ≥ R2,

(C ′(R/2)ν)q−p−r+1

∫
BR\BR/2

|x|−t [u+]α+p+r−1

≤
∫

BR\BR/2

|x|−t [u+]α+q ≤ C2R
s+t−p

∫
B2R\BR

|x|−t [u+]α+p+r−1.

Therefore

(3.7)

∫
BR\BR/2

|x|−t [u+]α+p+r−1 ≤ 2s+t−p C2(C ′)−(q−p−r+1)

∫
B2R\BR

|x|−t [u+]α+p+r−1;

this inequality of course continues to hold in the limit C ′ → C.
Fix α = q − p − r + 2 > 1 so that α + p + r − 1 = q + 1, and consider the function

h = h(R) given by

h(R) ≡
∫

BR\BR/2

|x|−t[u+]q+1

for R ≥ R2. From Lemma 4 (with α = 1 and replacing R by R/2) we have

h(R) ≤ C3R
δ

where δ = (q + 1)ν + n− t. On the other hand, inequality (3.7) together with the explicit
choice (3.5) for C shows that, for all R ≥ R2,

h(R) ≤ 2−δ−1h(2R),

whence applying Lemma 5 with θ = 2−δ−1 and C = C3 we find that h(R) = 0 for all
R ≥ R2. This implies u+ = 0 on Rn\BR2 , which contradicts (3.6).
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4. Main results, II.

We continue to assume conditions (3), (4), (8), (9), and shall prove Theorems D and
E and complete the proof of Theorem 2 (i). To this purpose we note that, by using the
modified test function

η = [(u− γ)+]αϕβ , γ > 0, α > 1,

in (2.1) and proceeding as in the proofs of Lemmas 1–3 we easily obtain the following
modified version of Lemma 3.

Lemma 3γ. Let u = u(x) be an entire C1 distribution solution of the inequality (1′). Then
for every α > 1, γ > 0, p ≥ 1 and R ≥ 2R0, we have∫

BR\BR/2

|x|−t [u+]q[(u− γ)+]α ≤ C2R
s+t−p

∫
B2R\BR

|x|−t [u+]r[(u− γ)+]α+p−1,

where C2 is the constant appearing in Lemma 3, that is

(4.1) C2 =
pp

αp−1
2[s+t]+ CA

CB
.

We are now ready to complete the proof of Theorem 2.

Completion of proof of Theorem 2: the case p > 1, q > p+ r − 1, s+ t = p.
Let γ > 0 and consider the (slightly modified) function h(R) given by

(4.2) h(R) ≡
∫

BR\BR/2

|x|−t[u+]r[(u− γ)+]α+p−1

where γ > 0, R ≥ 2R0. Noting that

[u+]q = [u+]q−p−r+1[u+]r [u+]p−1 ≥ γq−p−r+1[u+]r [(u− γ)+]p−1,

Lemma 3γ now yields, after a crucial use of the assumption s+ t = p,

(4.3) γq−p−r+1h(R) ≤ C2 h(2R), R ≥ 2R0,

Also by Lemma 4, for any α > 0,

(4.4)
∫

BR\BR/2

|x|−t[u+]α+q ≤ C3R
δ, δ = n− t

since ν = 0 because s+ t = p (once again, this assumption is crucial).
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Since p > 1 there exists α = α(γ) so large that (4.1), (4.3) give h(R) ≤ 2−δ−1h(2R).
Furthermore, for this value of α, condition (4.4) and the assumption q > p+ r − 1, imply

h(R) ≤ (2t+ωn + C3)Rδ

(consider separately the case when 0 ≤ u+(x) ≤ 1 and when u+(x) ≥ 1). Applying Lemma
5 then yields h(R) = 0 for R ≥ 2R0, that is u(x) ≤ γ for |x| ≥ R0. Letting γ → 0 now
implies u(x) ≤ 0 for |x| ≥ R0. Hence fixing R1 ≥ 2R0 and using Lemma 2 as in the proof
of Theorem A, we obtain u ≤ 0 everywhere, and the proof is complete.

Remark. Note that this proof fails when p = 1, showing why the conclusions of Theorem
1 and those of Theorem 3 are different. The reason for this discrepancy is that the above
proof is crucially based on the fact that the constant C2 = C2(α, p) in (4.1) satisfies C2 ↘ 0
as α → ∞ whenever p > 1. Clearly, this is no longer true for p = 1. For the same reason
the following result holds only for p > 1.

Theorem D. If p > 1, 0 ≤ q ≤ p + r − 1 and s + t = p, then any entire C1 distribution
solution of (1) (respectively (1′))) which is bounded must vanish identically (solution of
(1)) or satisfy u ≤ 0 (solution of (1′)).

Proof. Set
h(R) =

∫
BR\BR/2

|x|−t[u+]q+α, R ≥ 2R0,

with α > 1 still to be determined. By Lemma 3 and the fact that s+ t = p we then get

h(R) ≤ C2

∫
B2R\BR

[u+]p+r−q−1|x|−t[u+]q+α ≤ C2||u||p+r−1−q
∞ h(2R) ≡ Ĉ2h(2R).

Moreover
h(R) ≤ 2t+ωn||u||q+α

∞ Rn−t.

Fix α so large that Ĉ2 ≤ 2−n+t−1, which is possible in view of (4.1) and the assump-
tions that p > 1 and u is bounded. By Lemma 5 we then get h(R) = 0 for R ≥ 2R0. The
rest of the proof is essentially the same as for Theorem A.

Theorem E. Let conditions (3), (4) hold. Then any entire C1 distribution solution of (1)
which is o(1) as |x| → ∞ must vanish.

Proof. Suppose u is o(1) as |x| → ∞. It follows that for every γ > 0 the function
η = (u − γ)+ is locally Lipschitz continuous and hence can be used as a test function in
(2.1). This gives∫

Rn∩{u>γ}
[A(x, u,Du) ·Du+ B(x, u,Du) (u− γ)+] = 0.

By (3) we have B ≥ 0 when u > 0. Thus

A(x, u,Du) ·Du+ B(x, u,Du) (u− γ) = 0 a.e. in the set {u > γ}.
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In turn, by letting γ → 0 we have

A(x, u,Du) ·Du+ B(x, u,Du)u = 0 a.e. in the set {u > 0}.

From (4) it follows that Du = 0 almost everywhere in {u > 0} and therefore Du+ = 0 a.e.
on Rn. This yields u+ = Const. = 0, since u is o(1) as |x| → ∞, and thus u ≤ 0 on Rn.
That u ≡ 0 on Rn then follows as in the case of Theorem 1.

Remark. It is interesting to observe that Theorem E has been obtained without using
the large radii conditions (8), (9), but only conditions (3) and (4).

There is a final result of interest in the same direction, extending Theorems B–E under
the additional restriction s+ n < p. As for Theorem E, not all the condition (3), (4), (8),
(9) are required for this result, only (3), (4) and (8).

Theorem F. Suppose s + n < p, p ≥ 1. Then any entire C1 distribution solution of (1)
which is bounded must be identically constant.

Proof. Without the help of condition (9), the result of Lemma 2 still continues to hold,
with however the first integral on the second line of (2.6) omitted. Moreover, the right
side of inequality (2.6) in the present case is less than

Const.Rs+n−p ||u||α+q+r−1
∞ .

Using s + n < p and letting R → ∞ we immediately obtain (3.1). The proof is then
completed as before, noting however that the case of constant solutions is no longer ruled
out by (9).

5. The case p = 1.

This section is devoted to the special case p = 1. The first conclusion is an extension
of Theorem 1 and Theorem 2.

Theorem 3. Assume p = 1, q > r. Let u = u(x) be an entire C1 distribution solution of
equation (1) (respectively (1′)) with either

s+ t < 1,

or
s+ t ≥ 1, ν =

s+ t− 1
q − r

<
t− n

q
,

or
s+ t = 1, s+ n− 1 = 0.

Then u ≡ 0 in Rn if u is a solution of (1), or u ≤ 0 if u is a solution of (1′).

Proof. Clearly, it is enough to consider the case of inequality (1′). For the first case, that
is s+ t < 1, we have ν < 0. Hence if α is chosen sufficiently large, then by letting R→∞
in (2.7) followed by R1 →∞, we get

[A(x, u,Du) ·Du+ B(x, u,Du)u] = 0 a.e. in the set {u > 0}.
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By (3), (4) we now conclude in the usual way that u ≤ 0 in Rn.

For the second case, qν + n − t < 0. Therefore we can choose α suitably near 0 so
that (q + α)ν + n− t < 0 in (2.7), and then conclude as in the first case that u ≤ 0. The
remaining possibility is more involved. Here we have s+ t = 1 and t = n; hence by letting
R→∞ in (2.7) there results, for every α > 0,∫

Rn\BR1

|x|−n[u+]α+q ≤ C4.

where C4 is independent of α, see (2.8) with p = 1. This clearly entails the limit condition

(5.1) lim
R→∞

∫
B2R\BR

|x|−n[u+]α+q = 0.

From Lemma 2 with β = 1 = p, however,

(5.2)

C−1
B min{α, 1}

∫
BR1∩{u>0}

[A(x, u,Du) ·Du + B(x, u,Du)u]uα−1

+
∫
Rn\BR1

|x|−n [u+]α+qϕ ≤ C1C
−1
B

∫
B2R\BR

|x|1−n[u+]α+r|Dϕ|

≤ C5

∫
B2R\BR

|x|−n[u+]α+r,

where C5 does not depend on R since |x| |Dϕ| is bounded (≤ 2).
Take α = 1 + q − r in (5.2). Then letting R → ∞ in (5.2) and applying (5.1) with

α = 1, we obtain finally (!)

[A(x, u,Du) ·Du+ B(x, u,Du)u]u = 0 a.e. in the set {u > 0}

and the required conclusion u ≡ 0 follows as before.

As already noted in Sections 3 and 4, the conclusions of Theorem A, B, C and E, F
continue to hold when p = 1, while Theorem D requires the additional restriction p > 1
(see the Remark before Theorem D in Section 4).

The case p = 1 is special also for another reason. In particular, consider equation (1)
(and inequality (1’)) when

(5.3) |A(x, z, ρ)| ≤ CA|x|s,

with also (9) replaced by

(5.4) B(x, z, ρ) signz ≥ CB|x|−t|f(z)|,
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where CA and CB are positive constants, s, t ∈ R and f : R → R is a measurable function
such that

(5.5) f(0) = 0, liminfz→t f(z) signz > 0 when t ∈ [−∞, 0) ∪ (0,+∞].

Condition (5.5) is obviously satisfied by any non-decreasing function f with a single
zero at 0, or by a lower semicontinuous function f such that

f(0) = 0; f(z) signz > 0 when z 6= 0; liminfz→±∞f(z) signz > 0.

Under the conditions (5.3)–(5.5), and assuming also that conditions (3), (4) continue
to hold, the following result is valid, corresponding to the case r = 0 of Theorem 3. Sur-
prisingly, even under these weaker assumptions, the following result is sharp (see Example
9 in Section 11).

Theorem 4. Assume that conditions (5.3) − (5.5) hold. Let u = u(x) be an entire C1

distribution solution of equation (1) (respectively, (1′)), with either

s+ t < 1

or
s+ t ≥ 1, s+ n− 1 < 0

or
s+ t = 1, s+ n− 1 = 0.

Then u ≡ 0 in Rn if u is a solution of (1), or u ≤ 0 if u is a solution of (1′).

The proof is based on the following lemma.

Lemma 6. Let f satisfy condition (5.5). Then there exists f̂ ∈ C0(R)∩C1(R \ {0}) such
that f̂(0) = 0, f̂ ′(z) > 0 for all z 6= 0 and

f̂(z) > f(z) when z < 0, f̂(z) < f(z) when z > 0.

We omit the proof, which can be carried out by a straight hands-on construction.
Returning to the proof of Theorem 4, it is enough to consider the case of inequality

(1′). By virtue of Lemma 6, the proof can be reduced at once to the case where f ∈
C0(R) ∩ C1(R \ {0}) and is such that f(0) = 0 and f ′(z) > 0 for all z 6= 0. These are
however exactly the conditions on the function g in conditions (8′) and (9′). But then
Theorem 4 becomes a corollary of the later results in Section 10; we give the full proof in
Section 10.

Example 2 is an obvious special case of Theorem 4.
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6. Operators allowing multiple values of p.

In this section we study the case where the function A satisfies the large radii condition
(8) for multiple values of the exponent p. Thus, when condition (9) is in force, we can use
this information to improve the previous results.

More precisely, we consider the case of functions A which satisfy the large radii con-
dition (8) for all p such that

p1 ≤ p ≤ p2

for given constants p1, p2 ≥ 1. [If (8) is satisfied for p = p1 and for p = p2 > p1, then it is
easy to check that it also holds for all p in [p1, p2].]

In particular, note that the classical case of Example 2 satisfies (8) with 1 ≤ p ≤ 2,
see below. More generally, consider the operator

A(x, z, ρ) = A(x, z, ρ)
|ρ|ξ−2ρ

(1 + |ρ|2)σ/2
, ξ > 1, σ ≥ 0,

with
0 ≤ A(x, z, ρ) ≤ CA|x|s|z|r.

A straightforward calculation shows that condition (8) then reduces to

1 ≤ (|ρ|2/σ)p−ξ + (|ρ|2/σ)p−ξ+σ,

which is valid exactly when ξ−σ ≤ p ≤ ξ. Example 2 is then the special case ξ = 2, σ = 1
and A(x, z, ρ) = A(x).

Observe also that when p1 = p2 (= p), we are led exactly to the situation studied in
Sections 3, 4 and 5. Therefore, throughout this section we always suppose that p2 > p1.

The main results of the present section are :

Theorem 5. Assume 1 ≤ p1 < p2 <∞ and r ≥ 0, s, t ∈ R. Let condition (8) hold for all
p ∈ [p1, p2]. Also suppose that (9) is in force.

(a) Assume q > p2 + r − 1 and either

(i) s+ t ≤ p2

or

(ii) s+ t > p2, min
{

s+ t− p1

q − p1 − r + 1
− t− n

q
,

s+ t− p2

q − p2 − r + 1
− t− n

q

}
< 0.

Then any entire C1 distribution solution of equation (1) must vanish everywhere.

(b) Assume p1 + r − 1 < q ≤ p2 + r − 1 and either

(i) s+ t < 1 + q − r
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or
(ii) s+ t ≥ 1 + q − r,

s+ t− p1

q − p1 − r + 1
<
t− n

q
.

Then any entire C1 distribution solution of equation (1) must vanish everywhere.

Theorem 6. Assume 1 ≤ p1 < p2 <∞ and r ≥ 0, s, t ∈ R. Let condition (8) hold for all
p ∈ [p1, p2]. Also suppose that (9) is in force.

Under the assumptions (a) or (b) of Theorem 5 any entire C1 distribution solution of
the inequality (1′) must be non-positive.

Note that in the conditions of Theorems 5 and 6 there is no appearance of the param-
eter p, since the main exponents are now p1 and p2.

A simple calculation shows that conditions (i), (ii) of Theorem 5 (a) can be written
alternatively as

(6.1) s < max
{
p2 − t,

p2 + r − 1
q

(n− t) + p2 − n,
p1 + r − 1

q
(n− t) + p1 − n

}
(the equality in (i) being unstated). The graph of the borderline condition has two corners,
at s = p2 − n, t = n and at s = 1− n− r, t = n+ q, see Figure 2.

Similarly, conditions (i), (ii) of Theorem 5 (b) can be written

(6.2) s < max
{

1 + q − r − t,
p1 + r − 1

q
(n− t) + p1 − n

}
.

Here there is a (single) corner at s = 1− n− r, t = n+ q.

Clearly Theorem 5 is a consequence of Theorem 6.

Case (a), (i) of Theorem 6 follows at once from Theorem 2(i) by taking p = p2. Case
(a), (ii) is a consequence of Theorem 2(ii) by taking first p = p1 and then p = p2.

To obtain case (b), (i) we take p = q − r + 1 − ε, with ε so small that p1 < p ≤ p2.
Then q > p+ r − 1 and the result again follows from Theorem 2(i), after letting ε→ 0.

Case (b), (ii) is a consequence of Theorem 2(ii) by taking p = p1.

Corollary. Consider the equation

(6.3) div

{
A(x, u,Du)

Du√
1 + |Du|2

}
= b(x, u,Du) |u|q sign u

with 0 ≤ A(x, z, ρ) ≤ CA |x|s |z|r and b(x, z, ρ) ≥ CB |x|−t.

(a) Assume q > r + 1 and either

s+ t ≤ 2

or

s < max
{
r + 1
q

(n− t) + 2− n,
r

q
(n− t) + 1− n

}
.
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(b) Assume r < q ≤ r + 1 and

s < max
{

1 + q − r − t,
r

q
(n− t) + 1− n

}
.

Then any entire C1 distribution solution of (6.3) must vanish everywhere and any entire
C1 distribution solution of the corresponding inequality must be non-positive.

The corollary is just the special case p1 = 1, p2 = 2 of Theorem 5 and Theorem 6.

Remark. The case r = 0 of the corollary is particularly simple: Part (a) states that if
q > 1 and either

s+ t ≤ 2

or

s < max
{

1
q

(n− t) + 2− n, 1− n

}
.

then u ≡ 0, while part (b) shows that if 0 < q ≤ 1 and

s < max{1 + q − t, 1− n}.

then again u ≡ 0. The result of Example 2 in the introduction is an immediate consequence.

The conclusion of the corollary can also be compared with the result of Theorem 1 in
the case p = 2. First suppose that q ≥ r + 1. Then both results equally assert that u ≡ 0
if s+ t ≤ 2 or if

(6.4) s <
r + 1
q

(n− t) + 2− n

(equivalent to νq + n− t < 0). However when t > n+ q the corollary gives a better result
than (6.4), namely that u ≡ 0 even when

s <
r

q
(n− t) + 1− n;

in other words, very surprisingly, a better result than Theorem 1 !
Equally surprising, in case p = 2, q = 1, r = s = t = 0 equation (5) has exponentially

growing solutions, while in the case of equation (7) with s = t = 0, f(u) = |u|qsign u, if
0 < q ≤ 1 then again u ≡ 0.

7. Shell conditions.

The large radii conditions (8),(9) (equally, (5.3), (5.4)) are in fact much stronger than
necessary for the conclusions of the paper. In particular, let Ri, i = 1, 2, 3, · · ·, be a given
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sequence of radii tending to infinity, and consider the corresponding sequence of disjoint
shells Ti in Rn, defined by

Ti = BκRi
\BRi

, i = 1, 2, 3, · · · ,

where κ > 1 is a (fixed) constant and Ri+1 > κRi. The conditions (8),(9) then in fact
need to hold only for x ∈ Ti, i = 1, 2, 3, · · ·, with the exception that for Theorems A - D
we also require the special radii restriction (exponential growth)

(7.1) Ri ≤ λLi, i ≥ i0,

for some fixed λ > 0, L > 1 and i0 ≥ 1.
To this end, observe that when the test function (2.5) in Section 2 is replaced by

ϕ = ϕi = ψ

(
|x|
Ri+1

)
,

where ψ is now given by

ψ(τ) =
1

κ− 1

{κ− 1, 0 ≤ τ ≤ 1,
κ− τ, 1 < τ < κ,
0, τ ≥ κ,

then Lemma 2 takes essentially the same form with only the exception that R1 can be
taken as Ri (since Dϕ = 0 in BRi+1), that is

(7.2)

C−1
B min{α, 1}

∫
BRi

∩{u>0}
[A(x, u,Du) ·Du+ B(x, u,Du)u]uα−1

+
∫
Rn\BRi

|x|−t [u+]α+qϕβ ≤ C1C
−1
B

∫
Ti+1

|x|s[u+]α+r+p−1|Dϕ|p ϕβ−p.

Similarly Lemma 3 has the same form except the integral on the left can now be taken
over Ti (since ϕ = 1 on this set), that is

(7.3)
∫

Ti

|x|−t [u+]α+q ≤ C2R
s+t−p
i+1

∫
Ti+1

|x|−t [u+]α+p+r−1,

where C2 now depends also on κ since Dϕ = 1/Ri+1(κ− 1) in Ti+1.
Finally in Lemma 4 the first integral on the left is to be taken over BRi

the second
over Ti, and the value R on the right side is replaced by Ri+1, that is for α > 0,

(7.4)

C−1
B min{α, 1}

∫
BRi

∩{u>0}
[A(x, u,Du) ·Du+ B(x, u,Du)u]uα−1

+
∫

Ti

|x|−t [u+]q+α ≤ C3R
(q+α)ν+n−t
i+1 ,
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where C3 now depends also on κ. Note that up to this point we have not used the restriction
(7.1).

We also shall require a more abstract (discrete) version of Lemma 5.

Lemma 5′. Let hi, i ≥ i0 ≥ 1 be a sequence of non-negative numbers satisfying

(7.5) hi ≤ θhi+1,

and

(7.6) hi ≤ CKi,

where C, K, θ are positive constants with θK < 1 Then hi = 0 for i ≥ i0.

Proof. Fix i ≥ i0. By an ` times iteration of (7.5) we find that

hi ≤ θ`hi+` ≤ Cθ`Ki+`,

by (7.6). Thus in turn
hi ≤ CKi(θK)`.

The desired result follows by letting `→∞ in the last inequality and using the condition
θK < 1.

The main results of this section can now be stated.

Theorem 1′. Let conditions (8), (9) hold on the sequence of shells Ti, i = 1, 2, 3, · · ·.
Assume q > p+ r − 1 and either

s+ t < p,

or
s+ t ≥ p, ν <

t− n

q
,

Then any entire C1 distribution solution u of the equation (1) must vanish everywhere.

Theorem 2′. Let conditions (8), (9) hold on the sequence of shells Ti, i = 1, 2, 3, · · ·.
Assume q > p+ r − 1 and either

s+ t < p,

or
s+ t ≥ p, ν <

t− n

q
,

Then any entire C1 distribution solution u of the equation (1′) must be everywhere non-
positive.

Theorem 1′ is a consequence of Theorem 2′, so it is enough to prove the latter. But
this is obtained exactly as for Theorem 2 (resp. Theorem 3, for p = 1), by letting i→∞
in (7.4), rather than R→∞ in (2.7) .
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Since the sequence Ri is essentially arbitrary, the shells Ti can have arbitrarily large
gaps separating them! With respect to Theorems 1 and 2, however, this is partially paid
for by not allowing the limit case s + t = p for all values of n and t. To obtain this final
case of Theorem 1′, as well as the corresponding extensions of Theorems A–D, it is enough
to add the restriction (7.1).

Theorem A′. Let conditions (8), (9) hold on the sequence of shells Ti, i = 1, 2, 3, · · ·,
where the radii Ri satisfy condition (7.1). If q = p + r − 1 ≥ 0 and s + t < p, then any
entire C1 distribution solution of (1) which has at most algebraic growth at infinity must
vanish identically.

Proof of Theorem A′. As in the proof of Theorem A, we take α = 2, p+ r− q − 1 = 0.
Define

(7.7) hi ≡
∫

Ti

|u+|q+2 ≤ L2|t|C2R
s+t−p
i+1

∫
Ti+1

|u|q+2 = L2|t|C2R
s+t−p
i+1 hi+1

in view of (7.3). Also by direct estimation, for all i suitably large, say i ≥ i0,

(7.8) hi ≤ Const. Rδ
i , δ = (q + 2)d+ n,

where d > 0 is the algebraic growth rate of u at infinity. On the other hand, by (7.1) we
have

(7.9) hi ≤ Const. λδLδi = CKi,

with K = Lδ and an appropriate constant C.
Now choose i0 even larger if necessary, so that for any i ≥ i0 we have also

L2|t|C2R
s+t−p
i+1 ≤ 1/2K ≡ θ.

Thus (7.7) yields hi ≤ θhi+1, whence applying Lemma 5′ gives hi = 0 for all i ≥ i0, that
is u(x) ≤ 0 for x ∈ Ti, i ≥ i0.

Now, using (7.2) rather than (2.6), the required conclusion follows exactly as in the
proof of Theorem A.

Theorem B′. Let conditions (8), (9) hold on the sequence of shells Ti, i = 1, 2, 3, · · ·,
where the radii Ri satisfy condition (7.1). If 0 ≤ q < p + r − 1 and s + t < p, then any
entire C1 distribution solution of (1) which satisfies

u(x) = o(|x|ν) ν =
p− s− t

p+ r − q − 1

must vanish identically.

Theorem D′. Let conditions (8), (9) hold on the sequence of shells Ti, i = 1, 2, 3, · · ·,
where the radii Ri satisfy condition (7.1). If p > 1, 0 ≤ q ≤ p+ r − 1 and s+ t = p, then
any entire C1 distribution solution of (1) which is bounded must vanish identically.
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Theorem 1′′. Let conditions (8), (9) hold on the sequence of shells Ti, i = 1, 2, 3, · · ·,
where the radii Ri satisfy condition (7.1). Assume p > 1 and q > p+ r − 1 and

s+ t = p.

Then any entire C1 distribution solution u of the equation (1) must vanish everywhere.

Taking account of the argument used above to obtain (7.9), the proof of Theorems
B′, D′ and 1′′ are essentially the same as for the proof of Theorems B, D and 1 (where for
Theorem 1′′ we use Lemma 3γ instead of Lemmas 1-3).

8. Entire solutions in Sobolev spaces.

The assumption that u is a distribution solution of class C1 of (1), or (1′), is stronger
than necessary, though it has the advantage of avoiding technical difficulties. In particular,
we may equally consider entire solutions of (1) of class W 1,1

loc (Rn), with the definition (2.1)
continuing to apply for functions η ∈ C1(Rn) having compact support in Rn.

To state the main results of the section, it is convenient first to introduce the following
(c.f. [13], Section 3.1)

Definition. A distribution solution u ∈ W 1,σ
loc (Ω), 1 ≤ σ ≤ ∞, of (1) in a domain Ω is

called σ-regular if A(·, u,Du) ∈ Lσ′

loc(Ω) and B(·, u,Du) ∈ L1
loc(Ω).

The following results, exactly corresponding to Theorems 1, 2 and 3, (Sections 3, 5)
are then valid under the assumptions (3),(4),(8),(9).

Theorem 7. Assume p > 1, q > p + r − 1. Let u be an entire σ-regular distribution
solution of equation (1) (respectively, (1′)) with either

(i) s+ t ≤ p

or
(ii) s+ t > p, ν =

s+ t− p

q − p− r + 1
<
t− n

q
.

Then u ≡ 0 in Rn if u is a solution of (1), or u ≤ 0 if u is a solution of (1′).

Theorem 7′. Assume p = 1, q > r. Let u = u(x) be an entire σ-regular distribution
solution of equation (1) (respectively, (1′)) with either

s+ t < 1,

or
s+ t ≥ 1, ν =

s+ t− 1
q − r

<
t− n

q
,

or
s+ t = 1, s+ n− 1 = 0.

Then u ≡ 0 in Rn if u is a solution of (1), or u ≤ 0 if u is a solution of (1′).
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The requirement in Theorems 7 and 7′ that u be σ-regular is an important condition
which can significantly constrain the class of a solution. See e.g. Example 3 below.

Proof of Theorem 7 and Theorem 7′. It is enough (cfr. the proofs of Theorems 1-3)
to prove Lemmas 2-4 (and Lemma 3γ) for the case when u is an entire σ-regular solution
of inequality (1′) in the space W 1,σ

loc (Rn).
To this end we distinguish between the cases σ = ∞ and σ ∈ [1,∞). The first case

is immediate by observing that members of W 1,∞
loc (Rn) always have a locally Lipschitz

continuous representative, and that σ-regularity is then simply the natural condition thatA
and B are locally integrable, and that the desired Lemmata hold true with the same proofs
if we consider locally Lipschitz continuous solutions u instead of C1 solutions (indeed, all
that we used in proving these lemmata was the property that u ∈ C1 implies u+ ∈ C0,1

loc ).
The case σ ∈ [1,∞) is more involved, requiring a more delicate test function than

before, that is
η = ηN,ε,h = [{u+

N + ε}α]h ϕβ

where α > 0, ε > 0, β ≥ p, fN is the function f truncated above at the value N ,
namely fN = f when f < N and fN = N when f ≥ N , and fh denotes the mollification
(regularization) of the function f with mollification radius h. Using the relation Dfh =
[Df ]h we then have

DηN,ε,h = α
[
{u+

N + ε}α−1Du+
N ]

]
h
ϕβ + β

[
{u+

N + ε}α
]
h
ϕβ−1Dϕ.

Therefore the inequality version of (2.1) becomes∫
B(x, u,Du)ηN,ε,h ≤− α

∫
A(x, u,Du) ·

[
{u+

N + ε}α−1Du+
N

]
h
ϕβ

− β

∫
A(x, u,Du) · Dϕ

[
{u+

N + ε}α
]
h
ϕβ−1.

The integrals are finite because, by σ-regularity, A(·, u,Du) ∈ Lσ′

loc(R
n) and B(·, u,Du) ∈

L1
loc(R

n); while the remaining factors are bounded and ϕ is compactly supported in Rn.

We can let h → 0 in the last inequality. We note first that the factors {u+
N + ε}α

and {u+
N + ε}α−1 are positive and uniformly bounded (depending on ε and N). Since

Du+
N ∈ Lσ

loc(R
n) it follows that, for both integrals on the right-hand side, one has [·]h → [·]

in the norm of Lσ
loc according to standard mollification theory. For the integral on the left

we have [·]h → [·] pointwise almost everywhere (see e.g., [2], Theorem 6 of Appendix C).
Consequently, using Hölder’s inequality (for the integrals on the right) and dominated
convergence (for the integral on the left), there results∫

B(x, u,Du)ηN,ε ≤− α

∫
{0<u<N}

A(x, u,Du) · Du{u+
N + ε}α−1ϕβ

− β

∫
A(x, u,Du) · Dϕ {u+

N + ε}αϕβ−1
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where all the integrals are well-defined. Next, as in the proof of Lemma 1 one can let
ε→ 0, to obtain finally, by Fatou’s Lemma and dominated convergence,

(8.2)

∫
B(x, u,Du)[u+

N ]αϕβ ≤− α

∫
{0<u<N}

A(x, u,Du) · Duuα−1ϕβ

− β

∫
A(x, u,Du) · Dϕ [u+

N ]αϕβ−1,

all the integrals being finite. Inequality (8.2) exactly corresponds to (2.3), with the only
exceptions being that u+ is replaced by u+

N and the integration set {u > 0} is replaced by
{0 < u < N}.

This being the case, by keeping N fixed we can now proceed exactly as in Section 2
to obtain (cfr. (2.6))

(8.3)

C−1
B min{α, 1}

∫
BR1∩{0<u<N}

[A(x, u,Du) ·Du+ B(x, u,Du)u]uα−1

+
∫
Rn\BR1

|x|−t [u+
N ]α+qϕβ ≤ C1C

−1
B

∫
B2R\BR

|x|s[u+
N ]α+p+r−1|Dϕ|p ϕβ−p

where C1 is the constant appearing in Lemma 1 and then (cfr. the last display line in the
proof of Lemma 4)

(8.4)

C−1
B min{α, 1}

∫
BR1∩{0<u<N}

[A(x, u,Du) · Du+ B(x, u,Du)u]uα−1

+
1
µ

∫
Rn\BR1

|x|−t [u+
N ]q+α ≤ 1

µ

[
C1C

−1
B

]µ
∫

B2R\BR

|x|tµ/µ′+sµ|Dϕ|pµ.

The last integral can be estimated by C3R
νq+n−t as in the proof of Lemma 4, with C3

independent of N . Thus, for fixed R ≥ R1 ≥ R0 we can let N → ∞ in (8.4) and use
monotone convergence for the first two integrals to obtain the inequality (2.7) (that is,
Lemma 4) for the present case.

To get Lemma 2, observe that the last integral in (8.3) has the estimate∫
B2R\BR

|x|s[u+
N ]α+p+r−1|Dϕ|p ϕβ−p ≤ 2(s+t)+ Rs+t−p

∫
B2R\BR

|x|−t[u+
N ]α+p+r−1

≤ 2(s+t)+ Rs+t−p

[∫
B2R\BR

|x|−t[u+
N ]α+q +

∫
B2R\BR

|x|−t

]

since q > p+r−1 (consider separately the case when 0 ≤ u+
N (x) ≤ 1 and when u+

N (x) > 1).
But then by (8.4) the right side is bounded by

2(s+t)+
[
C3R

ν(q+α)+s+n−p + 2|t|ωnR
s+n−p

]
.
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Therefore, for fixed R ≥ R1 ≥ R0, all the integrals in (8.3) are uniformly bounded inde-
pendently of N , so we can let N → ∞ in (8.3) and use monotone convergence to obtain
inequality (2.6) (that is, Lemma 2) for the present case. Finally, Lemma 3 is a direct
consequence of Lemma 2 (from the above arguments, it is also clear that Lemma 3γ holds
true for the present case).

The proofs of Theorems A, B, D use only Lemmas 2-4, so these results also hold
equally when u is a σ-regular entire solution of (1), while Theorem E obviously remains
true in this case.

Remark. Inequalities (2.6) and (2.7) for σ-regular solutions imply in particular that the
integrand on the left hand side is locally integrable on the set {u > 0}. Since neither
A ·Du uα−1 nor B uα is a priori integrable on this set, the conclusion is deeper lying than
might have seemed at first sight. Indeed, the proof of Theorems 7 and 7′ crucially uses all
the major convergence theorems of Lebesgue theory, Dominated Convergence, Monotone
Convergence, and Fatou’s Lemma.

Remark. A slight weakening of the hypotheses of Theorem 7 is obtained by replacing the
set of σ-regular solutions in W 1,σ

loc (Rn) by the set W 1,σ(tr)
loc (Rn), 1 ≤ σ ≤ ∞, where the

latter consists of functions u ∈W 1,1
loc (Rn) such that :

i) A(·, u,Du) ∈ Lσ′

loc(R
n) and B(·, u,Du) ∈ L1

loc(R
n).

ii) for any N > 0 the truncated functions uN (= truncation of u above by N) and u−N

(= truncation of u below by −N) are in W 1,σ
loc (Rn).

This is allowable since the proof remains word-for-word unchanged.

Example 3. Consider equation (5) with

A = |z|r, b(x) = 1,

where p > 1 , r ≥ 0. We are interested in what restrictions, if any, are placed on the
Sobolev class W 1,σ

loc (Rn) of a solution by the condition that u be σ-regular, that is (since
|A| = |u|r |Du|p−1 and |B| = |u|q), that |u|r|Du|p−1 ∈ Lσ′

loc(R
n) and |u|q ∈ L1

loc(R
n).

First, we emphasize, as an independent condition, that |u|q ∈ L1
loc(R

n). It is also
necessary that σ ≥ p, for otherwise we have σ′ > p′ and (p− 1)σ′ > p, which means that
u would again need to be in Lp

loc(R
n), at least.

This being shown, if r = 0 it is easy to see that we can take for σ any value ≥ p. If
next p > n, r > 0, then in view of Morrey’s lemma we can again take for σ any value ≥ p
while if p = n and r > 0, we can similarly use any σ > p. To treat the remaining case
p < n, r > 0, we have by Hölder’s inequality (provided σ > p, which is surely necessary in
this case)∫

BR

|u|rσ′ |Du|(p−1)σ′ ≤
(∫

BR

|u|rσ/(σ−p)

)1−(p−1)/(σ−1)

·
(∫

BR

|Du|σ
)(p−1)/(σ−1)

.

The first integral on the right can be estimated (a) by using the Sobolev inequality, that
is u ∈ L

nσ/(n−σ)
loc when σ < n and u ∈ W 1,σ

loc , and (b) by applying the condition |u|q ∈
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L1
loc(R

n). Therefore it is not hard to see that A is locally in Lσ′ if

σ ≥ σ0 = Min
{

(p+ r)
n

n+ r
, p

q

q − r

}
;

here obviously p < σ0 < n, as needed.
Note that if σ0 ≥ nq/(n + q), or if one simply asks that σ0 ≥ nq/(n + q), then

q ≤ nσ/(n− σ) and the condition |u|q ∈ L1
loc(R

n) becomes redundant.

9. The case r < 0. Nonexistence of positive solutions.

Rather than seeking conditions under which all entire solutions of (1) must vanish
identically, one may instead ask the related question, whether there can exist everywhere
positive solutions. For this end, the large radii condition (9) can be be significantly weak-
ened, specifically so as to apply for the full range of parameters q, r, s, t ∈ R, and moreover
to hold only for |x| ≥ R0, z > 0, ρ ∈ Rn. We get the following result.

Theorem 8. Suppose q > p+ r − 1 and either

(i) s+ t ≤ p, (s+ t < 1 when p = 1),

or
(ii) s+ t > p, p+ r − 1 ≥ 0, qν < t− n,

where ν = (s+ t− p)/(q − p− r + 1), (so q > 0, t > n), or

(iii) s+ t > p, p+ r − 1 < 0, s+ n− p < 0.

Then the inequality (1′) has no everywhere positive entire C1 distribution solutions.

Theorem 8 in the case r ≥ 0 is just Theorem 2; it seems preferable however not to
restrict the statement only to the case r < 0. Surprisingly, q may be negative in cases (i)
and (iii).

Proof. One checks that Lemmas 1-3 hold when α > 0; and that Lemma 4 is valid if
additionally α+p+r−1 ≥ 0 and q > p+r−1. First consider case (i) with s+ t < p. Then
ν < 0 in (2.7), and by choosing α > 0 sufficiently large we can secure that α+p+r−1 ≥ 0
as well as (q + α)ν + n − t < 0. Then as in the proof of Theorem 2 (i) one finds that
the set {u > 0} is empty; that is there can be no everywhere positive solutions. The case
s+ t = p > 1 can be treated separately as in Section 4.

For case (ii) we have ν > 0. Since p + r − 1 ≥ 0 we can choose α > 0 so small that
again (q + α)ν + n− t < 0.

For case (iii) again ν > 0. The main conditions

α > 0, α+ p+ r − 1 ≥ 0, (q + α)ν + n− t < 0
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can be simultaneously met by choosing α so that

0 < −(p+ r − 1) ≤ α <
1
ν

(t− n− νq).

To see that this is possible, it is enough to check that

t− n− νq + ν(p+ r − 1) > 0.

But by direct calculation this is equivalent to s+ n− p < 0.

Theorem 8 can be extended without difficulty to operators allowing multiple values
of p.

Theorem 9. Assume 1 ≤ p1 < p2 < ∞ and q, r, s, t ∈ R. Let condition (8) hold for all
p ∈ [p1, p2], and define

θ1 = (p1 + r − 1)+, θ2 = (p2 + r − 1)+.

Finally suppose that (9) is in force.

(a) Assume q > p2 + r − 1 and either

(i) s+ t ≤ p2

or

(ii) s < max
{
θ1
q

(n− t) + p1 − n,
θ2
q

(n− t) + p2 − n

}
(note that if either θ1 > 0 or θ2 > 0 then q > 0, so (ii) is well-defined).

Then the inequality (1′) has no everywhere positive entire C1 distribution solutions.

(b) Assume p1 + r − 1 < q ≤ p2 + r − 1 and either

(i) s+ t < 1 + q − r

or
(ii) s <

θ1
q

(n− t) + p1 − n.

Then the inequality (1′) has no everywhere positive entire C1 distribution solutions.

Proof. A simple calculation shows that cases (ii) and (iii) in Theorem 8 can be combined
and rewritten in the form

(ii) s+ t > p, s <
θ

q
(n− t) + p− n,

where θ = (p + r − 1)+. Theorem 9 is now a direct consequence of the proof technique
of Theorem 6; see particularly the reformulations (6.1) and (6.2) of the conditions of
Theorems 5 and 6.
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Remark. In the same way, one can easily show under corresponding conditions that there
are no everywhere negative solutions of the inequality reverse to (1′). Similarly, for the
case of non-positive or non-negative solutions u of (1′) or of its reverse inequality, the
conclusion is that u ≡ 0.

An interesting special case of Theorem 9 occurs when p2+r−1 ≤ 0. Then θ1 = θ2 = 0
and the conditions of Theorem 9 (a) become q > p2 + r − 1 and either s + t ≤ p2 or
s+ n− p2 < 0, while for Theorem 9 (b) they are

p1 + r − 1 < q ≤ p2 + r − 1

and either s+ t < 1 + q − r or s+ n− p1 < 0.
On the other hand, in the special (but important) case p1 = 1, p2 = 2, q > 1, r = 0,

one finds that there can be no positive entire solutions whenever either

s+ t ≤ 2

or

s < max
{

1
q

(n− t) + 2− n, 1− n

}
.

10. Conditions (8′)–(9′)

In this section we consider a generalization of the large radii conditions (8)−(9). More
precisely we will assume that for almost all |x| ≥ R0 and all z ∈ R\{0}, ρ ∈ Rn, there
exists an exponent p ≥ 1 such that

(8′) |A(x, z, ρ)|p ≤ CA|x|s|g(z)|r[g′(z)A(x, z, ρ) · ρ]p−1,

and

(9′) B(x, z, ρ) sign z ≥ CB|x|−t|g(z)|q

where g ∈ C0(R)∩C1(R\{0}) is a function satisfying g(0) = 0 and g′(z) > 0 for all z 6= 0,
CA and CB are positive constants, and q ≥ 0, r ≥ 0, s, t ∈ R.

As already observed, conditions (8)− (9) are recovered by choosing g(z) = z.
Under the new conditions (8′)−(9′) the conclusions of Theorems 1-9 hold in unchanged

form, while Theorems A-E remain valid with suitable modifications, see below. Except for
Theorem 4, proved below, these results are direct consequence of the fact that Lemmas
1-4 continue to hold with natural modifications due to the presence of the new function g.
More precisely, the modified lemmas take the following form.
Lemma 1′. Let u = u(x) be an entire C1 distribution solution of the inequality (1′). Then
for every α > 0, β ≥ p ≥ 1, R1 ≥ R0 > 0, and for every compactly supported non-negative
locally Lipschitz continuous test function ϕ we have
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(10.1)

α

∫
BR1∩{u>0}

A(x, u,Du) ·Dug
′
(u) [g(u)]α−1ϕβ + β

∫
BR1

A(x, u,Du) ·Dϕ [g(u+)]αϕβ−1

+
∫
Rn

B(x, u,Du) [g(u+)]αϕβ ≤ C1

∫
Rn\BR1

|x|s[g(u+)]α+p+r−1ϕβ−p |Dϕ|p,

where
C1 = α1−pβpCA

and CA is the constant appearing in (8′).

The proof of Lemma 1′ uses the new test function

ηε = [g(u+ + ε)]αϕβ ,

(instead of [u+ + ε]αϕβ as in Lemma 1). Here

Dηε = α [g(u+ + ε)]α−1g′(u+ + ε)Du+ ϕβ + β g(u+ + ε)]αϕβ−1Dϕ.

Then from (2.1), after letting ε→ 0 we obtain, corresponding to (2.3),∫
B(x,u,Du)g(u+)αϕβ

≤− α

∫
{u>0}

A(x, u,Du) ·Dug′(u) g(u)α−1ϕβ − β

∫
A(x, u,Du) ·Dϕg(u+)αϕβ−1.

We can now proceed exactly as in the proof of Lemma 1: here the presence of the extra
terms ||g(z)||r, g′(z) on the right hand side of (8′) are just what one needs for the final
stage of the proof, that is, to derive the crucial inequality

−βA(x, u,Du) ·Dϕg(u)αϕβ−1 ≤ βC
1/p
A |x|s/p g(u)α+r/p[g′(u)A(x, u,Du) ·Du]1/p′ |Dϕ|ϕβ−1

≤ C1|x|s g(u)α+p+r−1 |Dϕ|pϕβ−p + αA(x, u,Du) ·Dug′(u) g(u)α−1ϕβ ,

c.f. (2.4).

With Lemma 1′ in hand, it is straightforward to obtain the corresponding versions of
Lemmas 2-4, (as well as Lemma 3γ), which we state for the reader’s convenience.

Lemma 2′. Let u = u(x) be an entire C1 distribution solution of the inequality (1′). Then
for every α > 0, β ≥ p ≥ 1, R ≥ R1 ≥ R0 we have
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(10.2)

C−1
B min{α, 1}

∫
BR1∩{u>0}

[A(x, u,Du) ·Dug′(u) + B(x, u,Du) g(u)] [g(u)]α−1

+
∫
Rn\BR1

|x|−t [g(u+)]α+qϕβ ≤ C1C
−1
B

∫
B2R\BR

|x|s[g(u+)]α+p+r−1|Dϕ|p ϕβ−p

where C1 is the constant appearing in Lemma 1′.

Lemma 3′. Let u = u(x) be an entire C1 distribution solution of the inequality (1′). Then
for every α > 0, p ≥ 1 and R ≥ 2R0, we have∫

BR\BR/2

|x|−t [g(u+)]α+q ≤ C2R
s+t−p

∫
B2R\BR

|x|−t [g(u+)]α+p+r−1,

where
C2 =

pp

αp−1

CA
CB

2[s+t]+ .

Lemma 4′. Let u = u(x) be an entire C1 distribution solution of the inequality (1′) and
assume q ≥ p+ r − 1. For α > 0, p ≥ 1 and R ≥ R1 ≥ R0 we have

(10.3)

C−1
B min{α, 1}

∫
BR1∩{u>0}

[A(x, u,Du) ·Dug′(u) + B(x, u,Du)g(u)] [g(u)]α−1

+
∫

BR\BR1

|x|−t [g(u+)]q+α ≤ C3R
(q+α)ν+n−t,

where ν = (s+ t− p)/(q + 1− p− r) and

C3 =
(pµ)pµ

α(p−1)µ

(
CA
CB

)µ

2[µ(s+t)−t]++nωn, µ = (q + α)/(q − p− r + 1),

with ωn the measure of the unit ball in Rn.

For the sake of completeness we give here the proof of Theorem 4, Section 5.

Proof of Theorem 4. In view of Lemma 6 and the hypotheses (5.3)–(5.5) of Theorem
4, the proof can be reduced to the case when r = 0, q = 1 and g = f = f̂ in (8′)–(9′).
Then, if s+ t < 1 and if α is chosen sufficiently large, we find by letting R→∞ in (10.3)
followed by R1 →∞, that

[A(x, u,Du) ·Du g′(u) + B(x, u,Du)g(u)] = 0 a.e. in the set {u > 0}.

By (3), (4) we now conclude in the usual way that u ≤ 0 in Rn.
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For the second case, we have ν+n− t = (s+ t− 1)+n− t < 0. Here we can choose α
suitably near 0 so that (q+α)ν+n− t = (1+α)ν+n− t < 0 in (10.3), and then conclude
as in the first case that u ≤ 0.

The remaining possibility is more involved. Here we have ν = 0 and t = n; hence by
letting R→∞ in (10.3), there results, for every α > 0,∫

Rn\BR1

|x|−t[g(u+)]α+q ≤ C4.

This clearly entails the limit condition

(10.4) lim
R→∞

∫
B2R\BR

|x|−t[g(u+)]α+q = 0.

From Lemma 2′, however,

(10.5)

C−1
B min{α, 1}

∫
BR1∩{u>0}

[A(x, u,Du) ·Dug′(u) + B(x, u,Du) g(u)] [g(u)]α−1

+
∫
Rn\BR1

|x|−t [g(u+)]α+qϕβ ≤ C1C
−1
B

∫
B2R\BR

|x|s[g(u+)]α+r|Dϕ|ϕβ−1

≤ C5

∫
B2R\BR

|x|−t[g(u+)]α+r,

where C5 does not depend on R since |x| |Dϕ| is bounded (recall ϕ ≤ 1 and s+ t = 1).
Take α = 1 + q− r in (10.5). Then letting R→∞ in (10.5) and applying (10.4) with

α = 1, we obtain finally (!)

[A(x, u,Du) ·Du g′(u) + B(x, u,Du)g(u)] g(u) = 0 a.e. in the set {u > 0}

and the required conclusions follow as before.

Finally, Theorems A–E continue to hold in the present case, provided that the growth
conditions on the solution u in their statements are imposed instead on the function
g(u). The proofs remain essentially unchanged (Lemmas 1-4 being replaced by Lemmas
1′-4′), with the single exception that in the proof of Theorem E we use the alternative test
function g((u− γ)+).

We conclude the present section with the remarkable case in which the function g is
bounded. Under this assumption we can extend the conclusions of Theorems 1, 2, 3 and 4
to cover the full range 0 ≤ q <∞ of values for the exponent q, rather than the previously
restricted set q > p+ r − 1. More precisely we have
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Theorem 10. Assume p > 1, q ≥ 0, r ≥ 0, s, t ∈ R and let conditions (8′) − (9′) hold
with a bounded function g. Let u = u(x) be an entire C1 distribution solution of equation
(1) (respectively, (1′)) with either

s+ t ≤ p,

or
s+ t > p, s+ n− p < 0.

Then u ≡ 0 in Rn if u is a solution of (1), or u ≤ 0 if u is a solution of (1′).

Note that Theorem 10 is false when g is unbounded (see Example 5 and 6 in section 11).

Proof of Theorem 10. There are five cases.
1. q > p + r − 1, s + t ≤ p. The conclusion follows from Theorems 1 and 2 for the

case (8′), (9′).

2. q = p + r − 1, s + t < p. Since g(u(x)) has algebraic growth as |x| → ∞, the
conclusion follows from Theorem A for the case (8′), (9′).

3. 0 ≤ q < p + r − 1, s + t < p. Since g(u(x)) = o(|x|ν) as |x| → ∞ and ν > 0, the
conclusion follows from Theorem B for the case (8′), (9′).

4. 0 ≤ q ≤ p+ r − 1, s+ t = p. Since g(u(x)) is bounded the conclusion follows from
Theorem D for the case (8′), (9′); recall here that p > 1.

5. s+ n− p < 0. The right hand integral in (10.2), with the choices α = 1, β = p, is
easily seen to be bounded by Const. Rs+n−p. Thus letting R→∞ in (10.2) gives∫

BR1∩{u>0}

[
A(x, u,Du) ·Dug

′
(u) + B(x, u,Du) g(u)

]
= 0.

We then conclude as usual that u ≤ 0 in Rn when u is a solution of (1′), and that u ≡ 0
when u is a solution of (1).

The case p = 1, g bounded, becomes a corollary of Theorem 4, once it is observed
that (8′), (9′) then reduce to (5.3)–(5.5), with the new constant CA ||g||r∞ in (5.3) and with
the function f(z) = |g(z)|q sign z in (5.4), (5.5). As a result, we then get exactly the three
conclusions of Theorem 4 :

Theorem 11. Assume p = 1, q ≥ 0, r ≥ 0, s, t ∈ R and let conditions (8′) − (9′) hold
with a bounded function g. Let u = u(x) be an entire C1 distribution solution of equation
(1) (respectively, (1′)), with either

s+ t < 1

or
s+ t ≥ 1, s+ n− 1 < 0

or
s+ t = 1, s+ n− 1 = 0.

Then u ≡ 0 in Rn if u is a solution of (1), or u ≤ 0 if u is a solution of (1′).
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11. Counterexamples.

This section is devoted to the sharpness of the various theorems above.

Example 4 - Sharpness of Theorems 1 and 3 (Sections 3 and 5). We shall show first that
when p > 1 the conditions (10′), (10′′) of Theorem 1 are best possible, in the sense that
for all n ≥ 1, p > 1, q ≥ 0, r ≥ 0 with

(11.1) q > p+ r − 1, s+ t > p, ν =
s+ t− p

q − p− r + 1
>
t− n

q
.

there are non-negative functions A = A(x, z) and b = b(x) satisfying the large radii con-
ditions (5′) and such that the corresponding equation (5) admits an explicit non-negative,
unbounded C1(Rn) entire solution.

In fact, the solution which we shall construct will also be of class C∞.

We assert that the positive smooth function

u(x) = (1 + |x|2)ν/2

solves equation (5) in Rn with

A(x, z) = C(x)2−p−s|x|s|z|r,

b(x, z) = b(x) = νp−1
{
n+ (νq + n− t)|x|2

}
(1 + |x|2)−1−t/2,

where we have set C(x) = |x|/
√

1 + |x|2.
When |x| ≥ 1 we have 1/

√
2 ≤ C(x) < 1 so the large radii conditions are satisfied

with R0 = 1, as are also (3) and (4). Moreover the functions

A(x, u(x), Du(x)) = νp−1(1 + |x|2)[s+νr+ν(p−1)−p]/2x = νp−1(1 + |x|2)(νq−t)/2x

and

B(x, u(x), Du(x)) = νp−1
{
n+ (νq + n− t)|x|2

}
(1 + |x|2)−1+ νq−t

2 = b(x)uq,

are smooth in Rn. In turn we find easily that

divA(x, u(x), Du(x)) = νp−1{(νq − t)C(x)2 + n}(1 + |x|2)(νq−t)/2 = B(x, u(x), Du(x))

as required. That u is a distribution solution is obvious, so u is the desired example.

When p = 1 a more delicate counterexample is required, namely

A(x, z, ρ) = C(x)1−ε−s|x|s|z|r |ρ|ε−1 ρ

(1 + |ρ|2)ε/2
,
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for which (8) holds for 1 ≤ p ≤ 1 + ε. Using the ideas of Example 10 below then shows
that there are explicit non-negative entire solutions when

q > r + ε, s+ t > 1 + ε ν =
s+ t− 1− ε

q − r
>
t− n

q
.

Letting ε→ 0 then completes the counterexample.

The borderline relation s+t−p > 0, νq+n−t = 0 in (10′′) is not covered by the above
example. The situation is illustrated in Figure 1, where one observes that the borderline
relation can equally be written in the form

p− n− s

p+ r − 1
=
t− n

q
, t > n,

yielding the dashed line in the figure, with slope = −(p+ r − 1)/q − 1.

Remark. When q − p − r + 1 > 0, s + t > p and νq + n − t > 0 the function
u = c|x|ν is, for an appropriate constant c 6= 0, a classical solution of equation (5) in
Rn\{0}, corresponding to the explicit functions A ≡ |x|s |z|r and b ≡ |x|−t, see (5′), (5′′).
Here also

A(x, u(x), Du(x)) = cp+r−1νp−1x|x|νq−t, B(x, u(x), Du(x)) = cq|x|νq−t.

Since we have A(x, u(x), Du(x)) |x|n−1 = Const. |x|νq+n−t → 0 as |x| → 0, and similarly
B(x, u(x), Du(x)) |x|n → 0 as |x| → 0, it follows from a simple limiting argument that u is
an entire distribution solution of (5).

When ν ≥ 1 then u is of class C1 (locally Lipschitz continuous if ν = 1). On the
other hand, When 0 < ν ≤ 1 the situation is more delicate. A calculation shows that
u ∈W 1,σ

loc (Rn) with σ = n/(1−ν). At the same time A ∈ Ln/(n−1)
loc (Rn) since νq+n−t > 0.

Hence u is a σ-regular entire solution of (1).
In particular, when ν ≥ 1 the non-trivial solution u = c|x|ν shows that the conclusion

of Theorem 7 (just as the conclusion of Theorem 1) is sharp. However when 0 < ν < 1
this function is in no better space than W

1,n/(1−ν)
loc (Rn), and so cannot serve as a coun-

terexample for Theorem 1.
The function c|x|ν was introduced earlier in [7] in a similar context.

Two other solutions of equation (5) will be useful in what follows, namely (with the
condition p > 1)

u = Eα(x) = ek|x|α , u = Eβ(x) = e−k/|x|β ,

where k, α, β are positive constants. In particular, the function Eα(x) satisfies (5) in the
classical sense (except possibly at x = 0), with A(x, z) = |x|s|z|r and

b(x, z) = (αk)p−1{s+ n− p+ α(p− 1) + (p+ r − 1)αk|x|α}
· |x|s+t−p+α(p−1)E−(q−p−r+1)

α |x|−t,
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while the (bounded) function Eβ(x) is a solution with A(x, z) = |x|s|z|r and

b(x, z) = (βk)p−1{s+ n− p− β(p− 1) + (p+ r − 1)βk|x|−β}

· |x|s+t−p−β(p−1)E
−(q−p−r+1)
β |x|−t.

If q − p − r + 1 < 0 and s + n − p + α(p − 1) ≥ 0, then when u = Eα(x) we have
b(x) ≥ 0 for all x and b(x) ≥ Pos. Const.|x|−t for |x| ≥ 1. It is also not hard to see that
the functions A(·, u,Du) and B(·, u,Du) are locally integrable (smooth except possibly at
x = 0), as required for Eα to be a distribution solution.

Similarly, if q−p−r+1 ≤ 0, with s+n−p−β(p−1) ≥ 0 and s+ t−p−βp ≥ 0, then
again when u = Eβ we find b(x) ≥ 0 for all x and b(x) ≥ Pos. Const. |x|−t for |x| ≥ 1.
Similarly, the functions A(·, u,Du) and B(·, u,Du) are smooth.

Example 5 - Theorem A is best possible, in the sense that the algebraic growth condition
cannot be weakened to exponential growth. In fact, there exist exponential solutions Eα(x)
whenever q− p− r+ 1 = 0, s+ t < p; see Figure 3. In particular, when s = t = 0 we have
α = 1, as noted in the introduction.

The figure also shows that in the previously undiscussed case when q− p− r+ 1 = 0,
s+ t ≥ p, there exist bounded solutions Eβ(x) when s+ t > p, s > p− n, and exponential
solutions Eα(x) when s ≤ p− n.

Example 6 - Sharpness of condition (11) in Theorem B. The function u(x) = (1 + |x|2)ν/2

constructed in Example 4 is also a solution of the corresponding equation (5) when

q < p+ r − 1, s+ t < p, νq + n− t > 0,

and
ν =

s+ t− p

q − p− r + 1
.

This clearly implies the sharpness of (11), provided however that νq + n− t > 0.
In the part of the set {s + t < p} where νq + n − t ≤ 0 we can no longer assert that

the condition (11) is best possible. On the other hand, in this set the exponential solution
u = Eα = ek|x|α is valid with

α =
p− n− s

p− 1
, k > 0,

thus at least yielding an upper bound beyond which the conclusion u ≡ 0 cannot hold; see
Figure 4. .

Example 7 - Sharpness of condition (13) in Theorem C. Example 4 shows that there are
solutions for which the limit in (13) is a non-zero constant, and in particular that the
exponent ν cannot be reduced.

We note also without discussion that there are non-trivial solutions for which the limit
in (13) can be zero.
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Example 8 - Sharpness of the growth condition in Theorem E. When

q − p− r + 1 < 0, s+ t > p, s+ n− p > 0

the function u = Eβ(x) = e−k/|x|β satisfies (5), (5′) provided that β > 0 is suitably small.
It is easy to see, therefore, at least when s + n − p > 0, that there are non-trivial non-
negative solutions u of (5), (5′) such that u 6= o(1) as |x| → ∞ and at the same time u ≤ C
for any positive constant C. That is, the growth condition u = o(1) is best possible in
Theorem E when s+ n− p > 0 .

In the part of the set {s + t > p} where s + n − p ≤ 0 we can of course no longer
assert that this condition is best possible. On the other hand, in this set the exponential
solution u = Eα = ek|x|α is valid with

α =
p− n− s

p− 1
, k > 0,

thus again at least yielding an upper bound beyond which the conclusion u ≡ 0 cannot
hold; see Figure 4. .

Example 9 - Necessity of the parameter conditions for Theorem 4 (Section 5). We shall
construct the example for the special case of equation (7) (see Example 2).

Case I. We assert that for all n, s, t with

n ≥ 1, s+ t ≥ 1, s+ n− 1 > 0,

there exist non-negative functions A(x), b(x) satisfying the large radii condition (7′), and
a continuous function f satisfying (5.5), such that the corresponding equation (7) admits
an explicit C2(Rn) positive entire solution.

Indeed, the function u(x) = 1 + |x|2/2 solves (7) in Rn when

A(x) = (1 + |x|2)s/2, b(x) = (1 + |x|2)−t/2,

and
f(z) = (2z − 1)(s+t−3)/2 {n+ 2(s+ n− 1)(z − 1)}, z ≥ 1.

To see this, we have Du = x and so

(11.2) div

{
A(x)

Du√
1 + |Du|2

}
= (1 + |x|2)(s−3)/2{n+ (s+ n− 1)|x|2},

and the assertion follows since |x|2 = 2(u − 1). Here f(z) satisfies (5.5) for z ≥ 1, and
clearly can be extended to an (odd) continuous function satisfying (5.5) for all z. Here we
crucially use the fact that f(1) > 0.

Note that the above function u cannot serve as a counterexample for the case s+n−1 =
0 whenever 1 ≤ s+ t < 3, since in this case liminfz→+∞ f(z) = 0.
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Case II. We shall show that for all n, s, t with

n ≥ 1, s+ t > 1, s+ n− 1 = 0

there exist functions A(x), b(x) satisfying the structural assumptions (3), (4), (5.3), (5.4)
and a continuous function f satisfying (5.5), such that the corresponding equation (7)
admits the explicit C2 non-negative entire solution u = |x|2/2.

We introduce a (new) function A(x) = Â(x) = (1 + |x|2)s/2ψ(x) with

ψ(x) = 1− 1
(1 + |x|2)(s+t−1)/2

.

Then for u = |x|2/2 we have

A(x, u(x), Du(x)) = Â(x)
Du√

1 + |Du|2
= ψ(x)(1 + |x|2)(s−1)/2x.

In turn, recalling (11.2),

divA(x, u(x), Du(x)) = [xψ′(x)](1 + |x|2)(s−1)/2 + nψ(x)(1 + |x|2)(s−3)/2

= θ|x|2(1 + |x|2)−1−t/2 + nψ(x)(1 + |x|2)(s−3)/2

where θ = s+ t− 1. Therefore u = |x|2/2 is a solution of (7) with

b(x) = (1 + |x|2)−t/2 +
n

θ
ψ(x)|x|−2(1 + |x|2)(s−1)/2

and
f(z) = 2θ

z

2z + 1
(obeying (5.5)).

Indeed, then

b(x)f(u) = b(x)f(|x|2/2) = (1 + |x|2)−t/2 θ|x|2

1 + |x|2
+ nψ(x)(1 + |x|2)(s−3)/2,

so divA = b(x)f(u) as required.
Finally, 0 ≤ A(x) ≤ Const.|x|s, b(x) ≥ 0, and b(x) ≥ Pos. Const. |x|−t for |x| ≥ 1,

while also A and B = b(x)f(u) are smooth. This completes the counterexample.

Example 10 - Necessity of the parameter conditions for the corollary of Theorems 5, 6 in
Section 6. Consider the equation

(11.3) div
{
A(x, u,Du)

|Du|ε−1Du

(1 + |Du|2)ε/2

}
= b(x, u,Du) |u|q sign u
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with
A(x, z, ρ) = C(x)1−ε−s|x|s |z|r b(x, z, ρ) = c(x)(1 + |x|2)−t.

For this equation, condition (8) holds for 1 ≤ p ≤ 1 + ε; that is, p1 = 1 and p2 = 1 + ε.
Equation (6.3) is the particular case ε = 1.

Suppose that

q > r + ε, d = s+ n− 1− ε− r + ε

q
(n− t) > 0.

Then one can verify that, for parameters s, t in the set 1 + ε < s + t < 1 + q − r, the
function

u(x) = (1 + |x|2)ν/2, ν =
s+ t− 1− ε

q − r − ε
< 1,

is a solution of (11.3), with a corresponding positive function c(x). Condition (9) moreover
holds, since

lim
|x|→∞

c(x) = c′ =
q

q − r − ε
νεd > 0.

Similarly, if
r < q ≤ r + ε, d = s+ n− 1− r

q
(n− t) > 0,

then, for parameters s, t in the set s+ t ≥ 1 + q − r, the function

u(x) = (1 + |x|2)ν/2, ν =
s+ t− 1
q − r

≥ 1,

is again a solution of (11.3), with a corresponding positive function c(x). Here, if ν > 1,
there holds

lim
|x|→∞

c(x) = c′ =
q

q − r
d > 0,

while if ν = 1 then
lim

|x|→∞
c(x) = c′ =

1
2ε/2

q

q − r
d > 0,

whence condition (9) is satisfied in both cases.
We leave the somewhat lengthy calculations to the reader.

12. Open Questions

1. Does Theorem 1 (page 12) hold in the borderline case νq + n − t = 0, t > n? We
have no proof but also no counterexample.

2. Can Theorem B be improved when νq + n − t ≤ 0? The counterexample 6 above
does not apply for this case.

3. Can Theorems E and F be improved when s ≤ p−n? The counterexample 8 above
does not apply for this case.
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4. (H. Brezis) As a consequence of Brezis’ Theorem (see the next section) there can
be at most one entire solution of the equation

∆u = |u|q−1 u+ g(x) in D′(Rn)

when q > 1, u ∈ Lq
loc(R

n) and g is a given function in L1
loc(R

n).
We include the proof (a slight modification of Brezis’ original argument) for explicit-

ness and for the convenience of the reader.
Proof. Let u1 and u2 be solutions, and set v = u2 − u1. Then

∆ v = |u2|q−1u2 − |u1|q−1u1 ≡ f̂ .

By Lemma A 1 of [2] (see below) we then have

∆ v+ ≥ sign+ (v) f̂ ≥ sign+ (v) ||u2|q−1u2 − |u1|q−1u1|

≥ sign+ (u2 − u1) |u2 − u1|q/2q−1 =
1

2q−1
|v+|q−1 v+.

Then v+ ≤ 0 by Brezis’ Theorem, the factor 1/2q−1 being unimportant by scaling,
and so v ≤ 0. Similarly v ≥ 0, and we are done.

Does the same result hold for C1 entire solutions of the equation

∆p u = |u|q−1 u+ g(x)

when q > p− 1? For other equations of the form (5)?

13. Appendix. Brezis’ theorem

As noted in the introduction, H. Brezis showed that every entire C1 distribution
solution u of the equation ∆u = |u|q−1 u with q > 1 must vanish everywhere. In fact,
Brezis proved a considerably more general result ([1], Lemma 2), namely

Let u ∈ Lq
loc(R

n), q > 1, satisfy

(13.1) ∆u ≥ |u|q−1 u, in D′(Rn).

Then u ≤ 0 a.e. in Rn.

That (13.1) holds in D′(Rn) can be expressed explicitly in the form

(13.2)
∫
u∆ η ≥

∫
|u|q−1 u η

for all non-negative functions η ∈ C∞(Rn) with compact support in Rn. In particular u
need not be of class C1 or even σ-regular in any Sobolev space W 1,σ

loc (Rn) (cfr. section 8).
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Nevertheless, Brezis’ Theorem can still be seen as a corollary of our Theorem 2 (i), Section
3. To this end we follow the proof of Theorem 4.7 in [3].

Indeed, let f(t) = |t|q−1 t, t ∈ R. Then (13.1) takes the form

∆u ≥ f(u(x)) ≡ f̂(x) in D′(Rn)

where
f̂ ∈ L1

loc(R
n)

by hypothesis. These are exactly the conditions of Lemma A.1 of [1], the conclusion of the
lemma then being that

(13.3) ∆u+ ≥ sign+ (u) f̂ in D′(Rn).

But sign+(u) f̂ = f(u+), so

(13.4)
∫
u+ ∆ η ≥

∫
f(u+)η,

where η is a non-negative test function as above.
Take η = η(y) = kh(y−x), where kh is a mollification kernel with mollification radius

h, such that
∫
kh(y) dy = 1. Let vh = vh(x) be the mollification of u+; from (13.4) we

then get

∆vh = ∆x

∫
u+(y) kh(y − x) dy

=
∫

u+(y) ∆y [kh(y − x)] dy ≥
∫

f(u+(y)) kh(y − x) dy
.

Since f(t) is convex for t ≥ 0, it now follows from Jensen’s inequality that

(13.5) ∆vh ≥ f

{∫
u+(y) kh(y − x) dy

}
= f(vh) = |vh|q−1 vh.

But vh ∈ C∞(Rn), so applying Theorem 2 (i) yields vh ≤ 0 in Rn (e.g., inequality (13.5)
corresponds to the parameter values p = 2, q > 1, r = s = t = 0 in (8), (9); thus
q > p+ r − 1 = 1, s+ t ≤ 2 and Theorem 2 is applicable). On the other hand vh ≥ 0 by
construction, so vh ≡ 0. Letting h→ 0 gives u+ = 0 a.e in Rn, that is u ≤ 0 a.e in Rn.

Remark. It is evident that the argument above cannot carry over to the general equation
(1) or even to the special case (5).
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Faculté des sciences
33, rue Saint-Leu
80039 Amiens CEDEX 1, France
email: alberto.farina@u-picardie.fr

James Serrin
Department of Mathematics
University of Minnesota, Minneapolis, USA
e-mail: serrin@math.umn.edu

47


