Calculus of Variations and Geometric Measure Theory

A. Scagliotti - S. Farinelli

Normalizing flows as approximations of optimal transport maps via linear-control neural ODEs

created by farinelli on 03 Nov 2023

[BibTeX]

preprint

Inserted: 3 nov 2023

Year: 2023

ArXiv: 2311.01404 PDF

Abstract:

The term "Normalizing Flows" is related to the task of constructing invertible transport maps between probability measures by means of deep neural networks. In this paper, we consider the problem of recovering the $W_2$-optimal transport map $T$ between absolutely continuous measures $\mu,\nu\in\mathcal{P}(\mathbb{R}^n)$ as the flow of a linear-control neural ODE. We first show that, under suitable assumptions on $\mu,\nu$ and on the controlled vector fields, the optimal transport map is contained in the $C^0_c$-closure of the flows generated by the system. Assuming that discrete approximations $\mu_N,\nu_N$ of the original measures $\mu,\nu$ are available, we use a discrete optimal coupling $\gamma_N$ to define an optimal control problem. With a $\Gamma$-convergence argument, we prove that its solutions correspond to flows that approximate the optimal transport map $T$. Finally, taking advantage of the Pontryagin Maximum Principle, we propose an iterative numerical scheme for the resolution of the optimal control problem, resulting in an algorithm for the practical computation of the approximated optimal transport map.