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 A B S T R A C T

In this paper, we consider the problem of recovering the 𝑊2-optimal transport map T between 
absolutely continuous measures 𝜇, 𝜈 ∈ (R𝑛) as the flow of a linear-control neural ODE, where 
the control depends only on the time variable and takes values in a finite-dimensional space. 
We first show that, under suitable assumptions on 𝜇, 𝜈 and on the controlled vector fields 
governing the neural ODE, the optimal transport map is contained in the 𝐶0

𝑐 -closure of the 
flows generated by the system. Then, we tackle the problem under the assumption that only 
discrete approximations of 𝜇𝑁 , 𝜈𝑁 of the original measures 𝜇, 𝜈 are available: we formulate 
approximated optimal control problems, and we show that their solutions give flows that 
approximate the original optimal transport map 𝑇 . In the framework of generative models, 
the approximating flow constructed here can be seen as a ‘Normalizing Flow’, which usually 
refers to the task of providing invertible transport maps between probability measures by means 
of deep neural networks. We propose an iterative numerical scheme based on the Pontryagin 
Maximum Principle for the resolution of the optimal control problem, resulting in a method 
for the practical computation of the approximated optimal transport map, and we test it on a 
two-dimensional example.

. Introduction

In this paper, we consider the problem of approximating the optimal transport map between compactly-supported probability 
easures in R𝑛 by means of flows induced by linear-control systems. Namely, we consider controlled dynamical systems of the form 

�̇�(𝑡) = 𝐹 (𝑥(𝑡))𝑢(𝑡) =
𝑘
∑

𝑖=1
𝐹𝑖(𝑥(𝑡))𝑢𝑖(𝑡) a.e. 𝑡 ∈ [0, 1], (1.1)

here 𝐹 = (𝐹1,… , 𝐹𝑘) ∶ R𝑛 → R𝑛×𝑘 defines the controlled vector fields, and 𝑢 ∈  ∶= 𝐿2([0, 1],R𝑘) is the control, which takes 
alues in a finite-dimensional space and depends only on the time variable (i.e. it is open loop). The term ‘linear-control’ indicates 
he linear dependence of the system in the controls,  which in turn guarantees that setting the time horizon as [0, 1] is not restrictive. 
n our case, the object of interest is the diffeomorphism 𝛷𝑢 ∶ R𝑛 → R𝑛, obtained as the terminal-time flow associated to (1.1) and 
orresponding to 𝑢 ∈  . In particular, given two probability measures 𝜇, 𝜈 ∈ (R𝑛) with compact support and denoting with 
∶ supp(𝜇) → supp(𝜈) the optimal transport map with respect to the 2-Wasserstein distance 𝑊2. We recall that the optimal transport 
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map 𝑇  exists whenever 𝜇 is absolutely continuous with respect to the Lebesgue measure. Here, we aim at approximating 𝑇  with 
elements in ℱ ∶= {𝛷𝑢 ∣ 𝑢 ∈  }. The starting point of our analysis is represented by the controllability results obtained in [1,2]. 
There, the authors formulated the notion of Lie Algebra strong approximating property, and they showed that, if the vector fields 
𝐹1,… , 𝐹𝑘 satisfy it, then the flows in ℱ  are dense in the 𝐶0

𝑐 -topology in the class of the diffeomorphisms isotopic to the identity. 
In the first part of this work, we use the classical regularity theory of Monge Ampère equation [3,4] to prove that, under suitable 
assumptions on 𝜇, 𝜈 and their densities, the 𝑊2-optimal transport map 𝑇  is a diffeomorphism isotopic to the identity (Proposition 
3.2), paving the way to the approximation of 𝑇  through the flows contained in ℱ  (Corollary  3.3).

From a practical perspective, the most interesting scenario is the reconstruction of the optimal transport map when it is not 
explicitly known. For example, in a data-driven approach, one or both measures 𝜇, 𝜈 may be not directly available, and we may have 
access only to discrete approximations 𝜇𝑁 , 𝜈𝑁 , obtained, e.g., through empirical samplings. In this context, we mention the recent 
advances in statistical optimal transport, and we refer the interested reader to [5–7]. We also report the contribution [8], where the 
authors propose an algorithm to learn at the same time an optimal coupling between 𝜇𝑁 , 𝜈𝑁  and an approximated optimal transport 
map. We mention that when 𝜇 and 𝜈 are known, finding an explicit approximation of the optimal map (or plan) is also interesting, 
since its computation in dimension greater that one can be time consuming. In this paper, our goal consists in approximating the 
optimal transport map 𝑇  starting from a discrete optimal coupling 𝛾𝑁  between 𝜇𝑁  and 𝜈𝑁 . Namely, using the flows induced by 
(1.1), we define the functional 𝑁,𝛽 ∶  → R as 

𝑁,𝛽 (𝑢) ∶= ∫R𝑛×R𝑛
|𝛷𝑢(𝑥) − 𝑦|2 d𝛾𝑁 (𝑥, 𝑦) +

𝛽
2
‖𝑢‖2

𝐿2 , (1.2)

where 𝛽 > 0 is a parameter that tunes the 𝐿2-regularization, which is essential to provide coercivity. In Corollary  4.7, we prove 
that, when 𝜇𝑁 ⇀∗ 𝜇 and 𝜈𝑁 ⇀∗ 𝜈 as 𝑁 → ∞, assuming that 𝜇 ≪ R𝑛 , the sequence of functionals (𝑁,𝛽 )𝑁  is 𝛤 -convergent with 
respect to the 𝐿2-weak topology to the functional 

∞,𝛽 (𝑢) ∶= ∫R𝑛
|𝛷𝑢(𝑥) − 𝑇 (𝑥)|2 d𝜇(𝑥) +

𝛽
2
‖𝑢‖2

𝐿2 , (1.3)

where 𝑇  is the optimal transport map, from 𝜇 to 𝜈. Moreover, under the hypotheses that ensure that 𝑇  is contained in the closure of 
ℱ , it turns out that every minimizer �̂� of ∞,𝛽 generates a flow 𝛷�̂� that can be made arbitrarily close to 𝑇  in the 𝐿2

𝜇-norm, by setting 𝛽
small enough. In this framework, the 𝛤 -convergence result guarantees that, in practical applications where we deal with the discrete 
measures 𝜇𝑁 , 𝜈𝑁 , we can minimize (1.2) in place of (1.3). In fact, it is interesting to mention that the minimizers of 𝑁,𝛽 converge to 
the minimizers of ∞,𝛽 in the 𝐿2-strong topology, and not just in the weak sense. This is due to the fact that, being the system (1.1) 
linear in the controls, the integral term in (1.2)–(1.3) is continuous with respect to the 𝐿2-weak convergence of the controls. This 
property has been recently exploited also in [9,10], in problems related to diffeomorphisms approximation and simultaneous control 
of ensembles of systems, respectively. The present paper can be read as a generalization of the approach proposed in [9], where the 
task consisted in learning an unknown diffeomorphism 𝛹 ∶ R𝑛 → R𝑛 through a linear-control system. In [9], the training data-set was 
represented by the collections of observations {(𝑥𝑗 , 𝑦𝑗 = 𝛹 (𝑥𝑗 ))}𝑗=1,…,𝑁 , with a clear and assigned bijection between the initial points 
{𝑥𝑗}𝑗=1,…,𝑁  and the targets {𝑦𝑗}𝑗=1,…,𝑁 . In the present situation, if we set supp(𝜇𝑁 ) ∶= {𝑥1,… , 𝑥𝑁1

} and supp(𝜈𝑁 ) ∶= {𝑦1,… , 𝑦𝑁2
}, 

we cannot expect a priori a bijection between the elements of the supports. However, a 𝑊2-optimal transport plan 𝛾𝑁  from 𝜇𝑁  to 𝜈𝑁
provides us with a weighted correspondence between the supports, that we employ to formulate (1.2). Finally, it is worth mentioning 
that our approach can be pursued as well even when the coupling 𝛾𝑁  has not been obtained by solving the discrete optimal transport 
problem between 𝜇𝑁  and 𝜈𝑁 . We stated this general result in Theorem  4.6. 

In the last decades optimal transport has been employed in many applied mathematical fields, such as Machine Learning [11,12], 
generative models [13,14], and signal and data analysis [15,16], to mention a few. Our investigation is closely related to a problem 
that, in the context of generative models, is known in the Machine Learning literature as Normalizing Flows. Namely, given 𝜇, 𝜈 ≪ R𝑛

with densities 𝜌𝜇 , 𝜌𝜈 ∶ R𝑛 → R+, the task consists in finding a change of variable, i.e. an invertible and differentiable map 
𝜙𝐮 ∶ R𝑛 → R𝑛 such that 

𝜌𝜈 (𝑦) ≈ 𝜌𝜇(𝜙−1
𝐮 (𝑦)) ||

|

det ∇𝜙𝐮
(

𝜙−1
𝐮 (𝑦)

)

|

|

|

−1
, (1.4)

where 𝐮 = (𝑢1,… , 𝑢𝐿) ∈ R𝑑×𝐿, and 𝜙𝐮 is a deep neural network expressed as the composition of 𝐿 parametric elementary mappings 
(layers) 𝜑𝑢1 ,… , 𝜑𝑢𝐿 ∶ R𝑛 → R𝑛, i.e., 𝜙𝐮 = 𝜑𝑢𝐿◦… ◦𝜑𝑢1 . The tuning of the parameters 𝑢1,… , 𝑢𝐿 (training) is performed by log-
likelihood maximization of (1.4). For further details on this topic, we refer the reader to the review papers [17,18]. In the seminal 
works [19,20] it was established a fundamental connection between Deep Learning and Control Theory, so that deep neural networks 
can be effectively modeled by control systems. This approach has been popularized in [21] under the name neural ODEs, and it is 
crucial for current development and understanding of Machine Learning (see, e.g., [22–25]). In our formulation, the system (1.1) 
plays the role of a linear-control neural ODE. In the framework of neural ODEs, the problem of Normalizing Flows has been recently 
tackled from a controllability perspective in [26], where the authors consider a nonlinear-control system and propose an explicit 
construction for the controls, so that the corresponding final-time flow is an approximate transport map between two assigned 
absolutely continuous measures 𝜇, 𝜈 ∈ (R𝑛). We report that the maps obtained in [26] are not aimed at being optimal. Finally, 
in [27] the computation of a normalizing flow is carried out by learning Entropy-Kantorovich potentials, and in [28] it is proposed a 
post-processing for trained normalizing flows to reduce their transport cost. We remark that the controls 𝑢 ∈ 𝐿2([0, 1],R𝑘) considered 
in this paper take values in finite-dimensional spaces, as it is as well the case in [1,2], where the controllability results we rely on 
were established. On the other hand, in [29,30], the authors had previously investigated the controllability problem in the group 
2 
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of diffeomorphisms when allowing the controls to depend on the state-variable, i.e. to have values in infinite-dimensional spaces. 
The latter viewpoint has been fruitfully adopted in the framework of shape deformations [31], in particular with applications to 
imaging problems (see e.g. [32,33]). 

Finally, we remark that in some applications, the measures 𝜇, 𝜈 ∈ (R𝑛) may not play a symmetric role. Namely, we can think 
𝜈 = 𝜌𝜈R𝑛  as a ‘‘complicated’’ distribution, obtained e.g. as a posterior distribution after a Bayesian statistical experiment. The 
‘‘complexity’’ here lies in 𝑛 being large and in the fact that there could be no efficient built-in algorithm to generate samplings from 
𝜌𝜈 . In contrast, we should imagine that it is rather cheap to sample from 𝜇. For instance, this is particularly the case for uniform or 
Gaussian distributions. Here, this is what breaks the symmetry between the roles of 𝜇 and 𝜈: Let us assume that we are given the 
respective discrete approximations 𝜇𝑁  and 𝜈𝑁 , and that we wish to improve 𝑊2(𝜇, 𝜇𝑁 ) and 𝑊2(𝜈, 𝜈𝑁 ). Although adding new atoms 
to 𝜇𝑁  by gathering new observations from 𝜇 is feasible, doing the same for 𝜈𝑁  can be prohibitively expensive. In this regard, we 
observe that having a good approximation of a (optimal) transport map 𝑇  can solve the task of efficiently sampling from 𝜈: Indeed, 
we can transform with the approximated 𝑇  samples from 𝜇—which are easy to generate—into samples of 𝜈.

This paper is organized as follows.
In Section 2, we establish our notations and we collect some basic results in Optimal Transport and Control Theory, respectively.
In Section 3, we show that, under proper regularity assumptions on the measures 𝜇, 𝜈 and their densities, the 𝑊2-optimal transport 

map is a diffeomorphism isotopic to the identity (Proposition  3.2), and it is approximable with a flow induced by a linear-control 
system (Corollary  3.3).

In Section 4, we establish the 𝛤 -convergence result for the functionals 𝑁,𝛽 defined as in (1.2) (Theorem  4.4), working in a 
slightly more general setting than the remainder of the paper. In Corollary  4.7 we focus our attention to the main problem of the 
paper, i.e., the recovery of the optimal transport map. Moreover, in Remark  7 we provide an asymptotic estimate, for large 𝑁 , of 
𝑊2(𝛷�̂� #𝜇, 𝜈) with �̂� ∈ argmin𝑁,𝛽 , and in Remark  8 we discuss the possibility of approximating the 𝑊2-geodesic connecting 𝜇 to 𝜈.

Finally, in Section 5, we propose a numerical scheme for the approximate minimization of the functionals 𝑁,𝛽 based on the 
Pontryagin Maximum Principle. In fact, this results in an algorithm for reconstructing the optimal transport map between 𝜇, 𝜈 by 
using an optimal coupling 𝛾𝑁  between the empirical measures 𝜇𝑁 , 𝜈𝑁 . We perform an experiment in R2 to validate the theoretical 
results.

2. Preliminaries and notations

2.1. Preliminaries on optimal transport

Here, we collect some basic facts in Optimal Transport which will be useful for our purposes. We refer the reader to [34–36] 
for a complete introduction to the topic. For any 𝑛 ≥ 1 we denote by (R𝑛) the set of Borel probability measures on R𝑛. We recall 
some definitions and basic facts about probability measures. 

Definition 1. Given a Borel probability measure 𝜇 ∈ (R𝑛) and a Borel map 𝑇 ∶ R𝑛 → R𝑛′  then the pushforward measure of 𝜇 through 
the map 𝑇  is defined as the measure 𝑇♯𝜇 ∈ (R𝑛′ ) such that for any 𝐴 Borel set of R𝑛′

𝑇♯𝜇(𝐴) ∶= 𝜇(𝑇 −1(𝐴)),

where 𝑇 −1(𝐴) is the preimage of 𝐴 through the map 𝑇 .

The pushforward measure can be characterized by means of the following identity: 

∫R𝑛′
𝜑(𝑥) d𝑇♯𝜇(𝑥) = ∫R𝑛

𝜑◦𝑇 (𝑥) d𝜇(𝑥) (2.1)

for every 𝜑 ∈ 𝐶0
𝑏 (R

𝑛′ ,R).
We recall the notion of weak convergence of probability measures. 

Definition 2. For every 𝑛 ≥ 1, we say that the sequence (𝜂𝑁 )𝑁≥1 ⊂ (R𝑛) is weakly convergent to 𝜂∞ ∈ (R𝑛) if for every continuous 
bounded function 𝜑 ∈ 𝐶0

𝑏 (R
𝑛,R) the following identity holds:

lim
𝑁→∞∫R𝑛

𝜑(𝑥) d𝜂𝑁 (𝑥) = ∫R𝑑
𝜑(𝑥) d𝜂∞(𝑥),

and we write 𝜂𝑁 ⇀∗ 𝜂∞ as 𝑁 → ∞.

In the next result we recall that the pushforward through continuous maps is stable with respect to the weak convergence. 

Lemma 2.1. Let (𝜇𝑁 )𝑁≥1 be a sequence of probability measures of R𝑛 and 𝜇∞ ∈ (R𝑛) such that 𝜇𝑁 ⇀∗ 𝜇∞ as 𝑁 → +∞. Let 𝑇 ∶ R𝑛 → R𝑛′

be a continuous map. Then 𝑇♯𝜇𝑁 ⇀∗ 𝑇♯𝜇∞ as 𝑁 → +∞.

Proof. It descends immediately from (2.1), Definition  2, and the fact that 𝜑◦𝑇 ∈ 𝐶0(R𝑛′ ,R) if 𝜑 ∈ 𝐶0(R𝑛,R). □
𝑏 𝑏

3 
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We denote by 2(R𝑛) the set of Borel probability measures having finite second moment, namely

2(R𝑛) ∶=
{

𝜇 ∈ (R𝑛)∶ ∫R𝑛
|𝑥|2 d𝜇(𝑥) < +∞

}

.

For any two probability measures 𝜇, 𝜈 ∈ (R𝑛) we define the set of admissible transport plans between 𝜇 and 𝜈 as
Adm(𝜇, 𝜈) ∶= {𝛾 ∈ (R𝑛 × R𝑛)∶ (𝑃1)♯𝛾 = 𝜇, (𝑃2)♯𝛾 = 𝜈},

where 𝑃1, 𝑃2 ∶ R𝑛 × R𝑛 → R𝑛 are the canonical projections on the first and second component, respectively. 

Definition 3. For any two probability measures 𝜇, 𝜈 ∈ 2(R𝑛), the 2-Wasserstein distance between 𝜇 and 𝜈 is defined as follows: 

𝑊2(𝜇, 𝜈) ∶=
(

inf
{

∫R𝑛×R𝑛
|𝑥 − 𝑦|2 d𝛾(𝑥, 𝑦)∶ 𝛾 ∈ Adm(𝜇, 𝜈)

})
1
2

(2.2)

We denote by Opt(𝜇, 𝜈) the set of admissible plans which realize the infimum in (2.2): 

Opt(𝜇, 𝜈) ∶=
{

𝛾 ∈ Adm(𝜇, 𝜈)∶ ∫R𝑛×R𝑛
|𝑥 − 𝑦|2 d𝛾(𝑥, 𝑦) = 𝑊 2

2 (𝜇, 𝜈)
}

. (2.3)

It follows from classical arguments that the set Opt(𝜇, 𝜈) is non empty (see e.g. [34, Theorem 1.5]). We say that a Borel map 
𝑇 ∶ R𝑛 → R𝑛 is an optimal transport map between 𝜇, 𝜈 ∈ 2(R𝑛) if 𝛾𝑇 ∶= (Id, 𝑇 )♯𝜇 ∈ Opt(𝜇, 𝜈). We emphasize that in this paper we 
shall use the term optimal transport map only referring to the cost related to the Euclidean squared distance.

We remark that if (𝜂𝑁 )𝑁≥1 is a sequence of probability measures with supports contained in a compact set 𝐾 ⊆ R𝑑 , then the 
sequence weakly converges to a probability measure 𝜂∞ in the sense of Definition  2 if and only if lim𝑁→+∞ 𝑊2(𝜂𝑁 , 𝜂∞) = 0, i.e. it 
converges in the 2-Wasserstein distance (see e.g. [35, Theorem 5.10]). 

Proposition 2.2. Let (𝜇𝑁 )𝑁≥1, (𝜈𝑁 )𝑁≥1 ⊂ (R𝑛) be two sequences of probability measures, and let 𝜇∞, 𝜈∞ ∈ (R𝑛) be such that 𝜇𝑁 ⇀∗ 𝜇∞
and 𝜈𝑁 ⇀∗ 𝜈∞ as 𝑁 → ∞. Let (𝛾𝑁 )𝑁≥1 ⊂ (R𝑛 × R𝑛) be a sequence of probability measures satisfying (𝛾𝑁 )𝑁≥1 ∈ Opt(𝜇𝑁 , 𝜈𝑁 ) for every 
𝑁 ≥ 1. Then the sequence (𝛾𝑁 )𝑁≥1 is weakly pre-compact, and every limit point belongs to Opt(𝜇∞, 𝜈∞).

Proof. See [34, Proposition 2.5]. □

2.2. Preliminaries on linear-control systems

In this section, we present some classical results for linear-control systems that will be useful in the rest of the paper. We consider 
controlled dynamical systems in R𝑛 of the form 

�̇�(𝑡) = 𝐹 (𝑥(𝑡))𝑢(𝑡) =
𝑘
∑

𝑖=1
𝐹𝑖(𝑥(𝑡))𝑢𝑖(𝑡) a.e. in [0, 1], (2.4)

where 𝐹 = (𝐹1,… , 𝐹𝑘) ∶ R𝑛 → R𝑛×𝑘 is a smooth matrix-valued application that defines the control system, and 𝑢 = (𝑢1,… , 𝑢𝑘) ∈
𝐿2([0, 1],R𝑘) is the control. We assume the controlled vector fields 𝐹1,… , 𝐹𝑘 to be Lipschitz-continuous, i.e., there exists a constant 
𝐿 > 0 such that 

sup
𝑖=1,…,𝑘

sup
𝑥≠𝑦

|𝐹𝑖(𝑥) − 𝐹𝑖(𝑦)|
|𝑥 − 𝑦|

≤ 𝐿. (2.5)

From the previous condition, it follows that the vector fields 𝐹1,… , 𝐹𝑘 have sub-linear growth, i.e., there exists 𝐶 > 0 such that 
|𝐹𝑖(𝑥)| ≤ 𝐶(1 + |𝑥|) (2.6)

for every 𝑥 ∈ R𝑛 and for every 𝑖 = 1,… , 𝑘. We denote by  ∶= 𝐿2([0, 1],R𝑘) the space of admissible controls, and we endow it with 
the usual Hilbert space structure induced by the scalar product defined as 

⟨𝑢, 𝑣⟩𝐿2 ∶= ∫

1

0
⟨𝑢(𝑡), 𝑣(𝑡)⟩R𝑘 d𝑡 (2.7)

for every 𝑢, 𝑣 ∈  . For every 𝑢 ∈   we consider the diffeomorphism 𝛷𝑢 ∶ R𝑛 → R𝑛 defined as 
𝛷𝑢(𝑥) ∶= 𝑥𝑢(1) (2.8)

for every 𝑥 ∈ R𝑛, where the absolutely continuous curve 𝑥𝑢 ∶ [0, 1] → R𝑛 solves the Cauchy problem 
⎧

⎪

⎨

⎪

⎩

�̇�𝑢(𝑡) = 𝐹 (𝑥𝑢(𝑡))𝑢(𝑡) a.e. in [0, 1],
𝑥𝑢(0) = 𝑥.

(2.9)

We recall that the existence and uniqueness of the solution of (2.9) is guaranteed by Carathéodory Theorem (see, e.g., [37, 
Theorem 5.3]). We observe that considering the time span equal to [0, 1] in (2.9) is not restrictive for our purposes. Indeed, using 
4 
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the fact that the dynamics is linear in the controls, given a general evolution horizon [0, 𝑇 ] with 𝑇 > 0, we can always reduce to the 
case [0, 1] by rescaling the controls. We now investigate the Lipschitz continuity of the flows generated by the linear-control system 
(2.4).

Lemma 2.3. For every 𝑢 ∈  , let 𝛷𝑢 ∶ R𝑛 → R𝑛 be the flow defined as in (2.8), associated to the linear-control system (2.4) and 
corresponding to the admissible control 𝑢. For every 𝜌 > 0 there exists a 𝐿′ > 0 such that 

|𝛷𝑢(𝑥1) −𝛷𝑢(𝑥2)| ≤ 𝐿′
|𝑥1 − 𝑥2| (2.10)

for every 𝑥1, 𝑥2 ∈ R𝑛 and for every 𝑢 ∈   with ‖𝑢‖𝐿2 ≤ 𝜌.

Proof. See [9, Lemma 2.3] or Appendix. □

We conclude this section by recalling a convergence result.

Proposition 2.4. Let us consider a sequence (𝑢𝑚)𝑚∈N ⊂   and 𝑢∞ ∈   such that 𝑢𝑚 ⇀𝐿2 𝑢∞ as 𝑚 → ∞. For every 𝑚 ∈ N ∪ {∞}, let 
𝛷𝑢𝑚 ∶ R𝑛 → R𝑛 be the flow generated by the control system (2.4) and corresponding to the admissible control 𝑢𝑚. Then, for every compact 
set 𝐾 ⊂ R𝑛, we have that 

lim
𝑚→∞

sup
𝑥∈𝐾

|𝛷𝑢𝑚 (𝑥) −𝛷𝑢∞ (𝑥)| = 0. (2.11)

Proof. See [9, Proposition 2.4] or Appendix. □

Remark 1. In the previous proposition the fact that the system is linear in the control variables plays a crucial role. Indeed, in the 
case of a nonlinear-control system (or neural ODE)

�̇� = 𝐺(𝑥, 𝑢),

in general it is not true that weakly-convergent controls result in flows converging uniformly over compact subsets. In this situation, 
the local convergence of the flows holds if the controls are strongly convergent. However, equipping the space of admissible controls 
with the 𝐿2-strong topology is not suitable for our 𝛤 -convergence argument.

3. Approximability of the optimal transport map

In this section, we address the problem of approximating the optimal transport map using flows generated by a linear-control 
system (2.4), where the controlled vector fields 𝐹1,… , 𝐹𝑘 satisfy a proper technical condition. We begin by reporting some results 
concerning the approximation capabilities of flows generated by this kind of systems. We refer the interested reader to [1,2] for a 
detailed discussion in full-generality.

We recall the definition of Lie algebra generated by a system of vector fields. Given the vector fields 𝐹1,… , 𝐹𝑘, the linear space 
Lie(𝐹1,… , 𝐹𝑘) is defined as

Lie(𝐹1,… , 𝐹𝑘) ∶= span{[𝐹𝑖𝑠 , [… , [𝐹𝑖2 , 𝐹𝑖1 ],…]] ∶ 𝑠 ≥ 1, 𝑖1,… , 𝑖𝑠 ∈ {1,… , 𝑘}},

where [𝐹 , 𝐹 ′] denotes the Lie bracket between the smooth vector fields 𝐹 , 𝐹 ′ of R𝑛. In view of the main result, we need to consider 
the subset of the Lie algebra generated by 𝐹1,… , 𝐹𝑘 whose vector fields have bounded 𝐶1-norm on compact sets of R𝑛. Given a 
vector field 𝑋 ∶ R𝑛 → R𝑛 and a compact set 𝐾 ⊂ R𝑛, we define

‖𝑋‖1,𝐾 ∶= sup
𝑥∈𝐾

(

|𝑋(𝑥)| +
𝑛
∑

𝑖=1
|𝐷𝑥𝑖𝑋(𝑥)|

)

.

Finally, we introduce

Lie𝛿1,𝐾 (𝐹1,… , 𝐹𝑘) ∶= {𝑋 ∈ Lie(𝐹1,… , 𝐹𝑘) ∶ ‖𝑋‖1,𝐾 ≤ 𝛿}.

We now formulate the assumption required for the approximability result. 

Assumption 1. The system of vector fields 𝐹1,… , 𝐹𝑘 satisfies the Lie algebra strong approximating property, i.e., there exists 𝑚 ≥ 1
such that, for every 𝐶𝑚-regular vector field 𝑌 ∶ R𝑛 → R𝑛 and for every compact set 𝐾 ⊂ R𝑛, there exists 𝛿 > 0 such that 

inf
{

sup
𝑥∈𝐾

|𝑋(𝑥) − 𝑌 (𝑥)| ||
|

𝑋 ∈ Lie𝛿1,𝐾 (𝐹1,… , 𝐹𝑘)
}

= 0. (3.1)

The next result illustrates the powerful approximation capabilities of flows of linear-control systems whose fields fulfill 
Assumption  1.
5 
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Theorem 3.1. Let 𝛹 ∶ R𝑛 → R𝑛 be a diffeomorphism isotopic to the identity. Let 𝐹1,… , 𝐹𝑘 be a system of vector fields satisfying Assumption 
1. Then, for each compact set 𝐾 ⊂ R𝑛 and each 𝜀 > 0 there exists an admissible control 𝑢 ∈   such that 

sup
𝑥∈𝐾

|𝛹 (𝑥) −𝛷𝑢(𝑥)| ≤ 𝜀, (3.2)

where 𝛷𝑢 is the flow corresponding to the control 𝑢 defined in (2.8).

Proof. See [2, Theorem 5.1]. □

Remark 2. We recall that a diffeomorphism 𝛹 ∶ R𝑛 → R𝑛 is isotopic to the identity if it can be expressed as the final-time flow induced 
by a non-autonomous vector field which is smooth in the state-variable. In other words, if there exists a time-varying vector field 
𝑌 ∶ [0, 1] × R𝑛 → R𝑛 such that 𝑌 (𝑡, ⋅) ∈ 𝐶∞(R𝑛,R𝑛) for every 𝑡 ∈ [0, 1], and such that for every 𝑥0 ∈ R𝑛 we have 

𝛹 (𝑥0) = 𝑥(1), where
⎧

⎪

⎨

⎪

⎩

�̇�(𝑡) = 𝑌 (𝑡, 𝑥(𝑡)) 𝑡 ∈ [0, 1],

𝑥(0) = 𝑥0.
(3.3)

We observe that, by definition, any diffeomorphism 𝛷𝑢 with 𝑢 ∈   of the form (2.8) is isotopic to the identity. The remarkable fact 
conveyed by Theorem  3.1 is that, when Assumption  1 holds, the family ℱ ∶= {𝛷𝑢 ∶ 𝑢 ∈  } is dense with respect to the 𝐶0

𝑐 -topology 
in the class of the diffeomorphisms isotopic to the identity. In the jargon of the Machine Learning community, Theorem  3.1 can be 
classified as a universal approximation result.

Remark 3. Given a compact set 𝐾 ⊂ R𝑛, a probability measure 𝜇 ∈ (𝐾) and a diffeomorphism 𝛹 ∶ R𝑛 → R𝑛 isotopic to the identity, 
we can consider the functional 𝜇,𝛽 ∶  → R+ defined as follows: 

𝜇,𝛽 (𝑢) ∶= ∫𝐾
|𝛷𝑢(𝑥) − 𝛹 (𝑥)|2 d𝜇(𝑥) +

𝛽
2
‖𝑢‖2

𝐿2 , (3.4)

where 𝛽 > 0 is a parameter tuning the Tikhonov regularization on the energy of the control. The problem concerning the 
minimization of (3.4) has been studied in detail in [9]. In particular, owing to the controllability result expressed in Theorem 
3.1, it is possible to show that, for every 𝜖 > 0, there exists 𝛽 > 0 such that, for every �̄� ∈ argmin 𝜇,𝛽 , we have

∫𝐾
|𝛷�̄�(𝑥) − 𝛹 (𝑥)|2 d𝜇(𝑥) ≤ 𝜖.

For the details, see [9, Proposition 5.4]. The fact that, when 𝛽 is small enough, the minimizers of 𝜇,𝛽 achieve an arbitrarily small 
mean squared approximation error is of primary importance for practical purposes. Indeed, even though the proof of Theorem  3.1 
in [2] provides an explicit procedure to obtain the approximating flow, it requires the knowledge of a non-autonomous vector field 
𝑌 ∶ [0, 1] × R𝑛 → R𝑛 related to the fact that 𝛹 is isotopic to the identity (see (3.3)). In addition, the control constructed with the 
strategy illustrated in [2] cannot be expected to be optimal in the 𝐿2-norm, among all the other controls that achieve the same quality 
of approximation. For this reason, in [9] the computational approximation of 𝛹 was performed via the numerical minimization of 
(3.4).

Remark 4. We exhibit here a system of vector fields in R𝑛 for which Assumption  1 holds. For every 𝑛 > 1 and 𝜁 > 0, consider the 
vector fields in R𝑛

𝐹𝑖(𝑥) ∶= 𝑒𝑖, 𝐹 ′
𝑖 (𝑥) ∶= 𝑒−

1
2𝜁 |𝑥|

2
𝑒𝑖, 𝑖 = 1,… , 𝑛, (3.5)

where {𝑒𝑖}𝑖=1,…,𝑛 is the canonical basis of R𝑛. Then the system 𝐹1,… , 𝐹𝑛, 𝐹 ′
1 ,… , 𝐹 ′

𝑛 satisfies Assumption  1 (see [2, Proposition 6.1]). 
The key-observation is that, by taking the Lie brackets of (3.5), it is possible to generate the Hermite monomials of every degree. 
Therefore, any linear-control system having at least (3.5) among the controlled fields can generate flows with the approximation 
capabilities described by Theorem  3.1. Moreover, adding extra controlled fields to the family (3.5) is not going to improve Theorem 
3.1, since, as explained above in Remark  2, the density result stated there is the best that one can expect. Even though this argument 
is correct from a theoretical viewpoint, it is interesting to observe that, for practical purposes, enlarging the family of vector fields 
(3.5) can be very beneficial. For further details on this intriguing point, we recommend the discussion in [9, Remark 3.15] and the 
numerical experiments in [9, Section 8].

We conclude this section by showing that, under suitable assumptions on the probability measures 𝜇, 𝜈, the optimal transport 
map between 𝜇 and 𝜈 is a diffeomorphism isotopic to the identity.

Proposition 3.2. Let 𝜇 = 𝜌𝜇R𝑛  and 𝜈 = 𝜌𝜈R𝑛  be two probability measures, with 𝜌𝜇 ∶ �̄�1 → [0,+∞) and 𝜌𝜈 ∶ �̄�2 → [0,+∞), where 
𝛺1 and 𝛺2 are open and bounded subsets of R𝑛. Let us assume that there exists a constant 𝐶 > 1 such that 𝐶 ≥ 𝜌𝜇 ≥ 1∕𝐶 on 𝛺1 and 
𝐶 ≥ 𝜌𝜈 ≥ 1∕𝐶 on 𝛺2, and in addition that

• 𝜌𝜇 ∈ 𝐶∞(�̄�1,R) and 𝜌𝜈 ∈ 𝐶∞(�̄�2,R);
• 𝛺 , 𝛺  are smooth and uniformly convex.
1 2
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Let 𝑇 ∶ �̄�1 → �̄�2 be the optimal transport map between 𝜇 and 𝜈. Then 𝑇  is the restriction of a diffeomorphism isotopic to the identity.

Proof. We proceed in four steps: in the first three we construct a smooth vector field, and in the last one we use this vector field 
to show that the optimal transport map 𝑇 ∶ �̄�1 → �̄�2 is isotopic to the identity. We first make some preliminary observations. By 
Brenier Theorem (see e.g. [34, Theorem 1.26]), it follows that the optimal transport map satisfies 𝑇 = ∇𝜑, where 𝜑 ∶ �̄�1 → R is a 
convex map. In addition, in account of the regularity results for the Monge–Ampère equation (see [38, Theorem 3.3] and also [3,4]), 
we know that 𝑇 = ∇𝜑 is a diffeomorphism of class 𝐶∞(�̄�1, �̄�2). Hence we have that 𝜑 is convex and of class 𝐶∞, and that ∇𝜑 is a 
diffeomorphism onto its image. This implies that there exists 𝑙 > 1 such that for any 𝑥 ∈ �̄�1 the eigenvalues of the Hessian matrix 
of 𝜑 at 𝑥, denoted by ∇2𝜑(𝑥), are in the interval (1∕𝑙, 𝑙).

Step 1. We claim that there exist 𝑂1 and 𝑂2 bounded open sets with �̄�1 ⊂ 𝑂1 and �̄�2 ⊂ 𝑂2 and �̃� ∶ 𝑂1 → 𝑂2 such that �̃�|�̄�1
= 𝑇

and �̃�  is a diffeomorphism. To see that, let �̃� ∶ R𝑑 → R be a 𝐶∞ function satisfying �̃�
|�̄�1

= 𝜑 obtained by using Whitney Extension 
Theorem (see [39, Theorem 1]). Then, provided that 𝑂1 ⊃ �̄�1 is chosen small enough, for every 𝑥 ∈ 𝑂1 the eigenvalues of ∇2�̃�(𝑥)
lie in ( 1𝑙 , 𝑙). This implies that ∇�̃� ∶ 𝑂1 → R𝑑 is a local diffeomorphism. Moreover, it is injective since it is the gradient of a strictly 
(actually strongly) convex function. Therefore, we conclude that ∇�̃� ∶ 𝑂1 → ∇�̃�(𝑂1) =∶ 𝑂2 is a diffeomorphism, and we define 
�̃� ∶= ∇�̃�.

Step 2. For every 𝑡 ∈ [0, 1] let us introduce the map �̃�𝑡 ∶ 𝑂1 → R𝑑 defined as 

�̃�𝑡 ∶= (1 − 𝑡)Id + 𝑡�̃� , (3.6)

where Id ∶ R𝑛 → R𝑛 is the identity function. Then, we have that �̃�𝑡 = ∇�̃�𝑡, where �̃�𝑡 ∶ 𝑂1 → R is the strongly convex function 
satisfying �̃�𝑡(𝑥) ∶= 1−𝑡

2 |𝑥|2 + 𝑡�̃�(𝑥) for every 𝑡 ∈ [0, 1] and for every 𝑥 ∈ 𝑂1. Using the same argument as before, we obtain that 
�̃�𝑡 ∶ 𝑂1 → 𝑇𝑡(𝑂1) is a diffeomorphism onto its image.

Step 3. Let us set the time-varying vector field 𝐹  as

𝐹 (𝑡, 𝑦) ∶= −�̃� −1
𝑡 (𝑦) + �̃� (�̃� −1

𝑡 (𝑦)) for (𝑡, 𝑦) ∈ 𝐷,

where 𝐷 ⊂ [0, 1] × R𝑛 is the bounded set defined as

𝐷 ∶= {(𝑡, 𝑦) ∶ 𝑡 ∈ [0, 1], 𝑦 ∈ �̃�𝑡(𝑂1)}.

Up to restricting 𝑂1 if necessary, we have that 𝐹 ∈ 𝐶∞(�̄�,R𝑛). We finally take 𝐹 ∶ [0, 1] × R𝑛 → R𝑛, 𝐶∞ vector field satisfying 
𝐹
|�̄� = 𝐹  and with compact support.
Step 4. Let us denote with 𝛹 ∶ [0, 1] ×R𝑛 → R𝑛 the flow induced on R𝑛 by the smooth and non-autonomous vector field 𝐹 , i.e., 

⎧

⎪

⎨

⎪

⎩

𝑑
𝑑𝑡𝛹 (𝑡, 𝑥) = 𝐹 (𝑡, 𝛹 (𝑡, 𝑥)) 𝑡 ∈ [0, 1],

𝛹 (0, 𝑥) = 𝑥 𝑥 ∈ R𝑛.
(3.7)

In order to conclude that the optimal transport map 𝑇  is isotopic to the identity, we need to show that, for every 𝑥 ∈ �̄�1, we have 
𝛹 (1, 𝑥) = 𝑇 (𝑥). To see that, we first observe that, from the definition (3.6), it follows that �̃�0(𝑥) = 𝑥 for every 𝑥 ∈ �̄�1. Moreover, by 
differentiating in time (3.6), we deduce that

𝑑
𝑑𝑡

�̃�𝑡(𝑥) = −𝑥 + �̃� (𝑥)

= −�̃� −1
𝑡 (�̃�𝑡(𝑥)) + �̃� (�̃� −1

𝑡 (�̃�𝑡(𝑥)))

= 𝐹 (𝑡, �̃�𝑡(𝑥)).

Therefore, combining the last computations with (3.7), from the uniqueness of the solutions of ODEs we obtain that 𝛹 (𝑡, 𝑥) = �̃�𝑡(𝑥)
for every 𝑡 ∈ [0, 1] and for every 𝑥 ∈ 𝑂1. In particular, recalling that �̃�1(𝑥) = �̃� (𝑥) = 𝑇 (𝑥) for every 𝑥 ∈ �̄�1, we deduce that 𝑇  is 
isotopic to the identity. □

We report that the regularity hypothesis of Proposition  3.2 can be weakened by assuming that the densities are of class 𝐶𝑘

instead of 𝐶∞. In this case, the map 𝑇  is isotopic to the identity via a vector field of class 𝐶𝑘+1.
We state below the result concerning the approximation of the optimal transport map.

Corollary 3.3. Under the same assumptions and notations as in Proposition  3.2, let 𝑇 ∶ �̄�1 → �̄�2 be the optimal transport map between 
𝜇 and 𝜈. Let 𝐹1,… , 𝐹𝑘 be a system of vector fields satisfying Assumption  1. Then, for every 𝜀 > 0, there exists an admissible control 𝑢 ∈ 
such that

sup
𝑥∈𝛺1

|𝑇 (𝑥) −𝛷𝑢(𝑥)| ≤ 𝜀,

where 𝛷𝑢 is the flow corresponding to the control 𝑢 defined in (2.8).

Proof. The proof follows immediately from Theorem  3.1 and Proposition  3.2. □
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Corollary  3.3 ensures that we can approximate the optimal transport map as the flow of a linear-control system. In general, we 
report that the problem of characterizing the functions that can be represented as flows of neural ODEs (linear or non-linear in the 
controls) is an active field of research. For recent developments, we recommend [40].

In the next section we will study a functional whose minimization is related to the construction of the flow approximating the 
optimal transport map. Our approach is suitable for practical implementation, since, with a 𝛤 -convergence argument, we can deal 
with the situation where only discrete approximations of 𝜇, 𝜈 are available.

4. Optimal control problems and 𝜞 -convergence

In this section we introduce a class of optimal control problems whose solutions play a crucial role in the construction of the 
approximating normalizing flows, and we establish a 𝛤 -convergence result. Here we work in a slightly more general framework than 
what is actually needed in the remainder of the paper. For this reason, this part is divided into three subsections. In the first two, we 
present the existence and the 𝛤 -convergence results for a broader class of problems, while in the last subsection we specialize to the 
problem of approximating the optimal transport map. Leveraging on the 𝛤 -convergence of the cost functionals, we can formulate a 
procedure of practical interest for the numerical approximation of the optimal transport map.

Let 𝑎 ∶ R𝑛 × R𝑛 → R+ be a 𝐶1-regular non-negative function, and let 𝛾 ∈ (R𝑛 × R𝑛) be a probability measure with compact 
support. Namely, we assume that there exists a compact set 𝐾 ⊂ R𝑛 such that supp(𝛾) ⊂ 𝐾 × 𝐾. For every 𝛽 > 0 we define the 
functional  𝛾,𝛽 ∶  → R+ as follows: 

 𝛾,𝛽 (𝑢) ∶= ∫R𝑛×R𝑛
𝑎(𝛷𝑢(𝑥), 𝑦) d𝛾(𝑥, 𝑦) +

𝛽
2
‖𝑢‖2

𝐿2 , (4.1)

where, for every 𝑢 ∈  , the diffeomorphism 𝛷𝑢 ∶ R𝑛 → R𝑛 is the flow introduced in (2.8).

4.1. Existence of minimizers

Before proceeding we prove an auxiliary Lemma.

Lemma 4.1. Let 𝑎 ∶ R𝑛 × R𝑛 → R+ be a 𝐶1-regular non-negative function, and let (𝑢𝑚)𝑚∈N ⊂   be a 𝐿2-weakly convergent sequence, 
i.e., 𝑢𝑚 ⇀𝐿2 𝑢∞ as 𝑚 → ∞. Finally, for every 𝑚 ∈ N ∪ {∞}, let 𝛷𝑢𝑚 ∶ R𝑛 → R𝑛 be the diffeomorphism defined in (2.8) and corresponding 
to the admissible control 𝑢𝑚. Then, for every compact set 𝐾 ′ ⊂ R𝑛 × R𝑛, we have that 

lim
𝑚→∞

sup
(𝑥,𝑦)∈𝐾′

|𝑎(𝛷𝑢𝑚 (𝑥), 𝑦) − 𝑎(𝛷𝑢∞ (𝑥), 𝑦)| = 0. (4.2)

Proof. Since 𝐾 ′ ⊂ R𝑛 ×R𝑛 is compact, there exist 𝐾1, 𝐾2 ⊂ R𝑛 compact such that 𝐾 ⊂ 𝐾1 ×𝐾2. Since the sequence (𝑢𝑚)𝑚∈N is weakly 
convergent, there exists 𝜌 > 0 such that ‖𝑢𝑚‖𝐿2 ≤ 𝜌 for every 𝑚 ∈ N ∪ {∞}. Therefore, in account of Lemma  A.2, there exists a 
compact �̃�1 ⊂ R𝑛 such that

𝛷𝑢𝑚 (𝐾1) ⊂ �̃�1

for every 𝑚 ∈ N ∪ {∞}. Since 𝑎 ∶ R𝑛 × R𝑛 → R+ is 𝐶1-regular, we deduce that the restriction 𝑎 ∣�̃�1×𝐾2
 is Lipschitz continuous with 

constant �̃� > 0, which yields
sup

(𝑥,𝑦)∈𝐾1×𝐾2

|𝑎(𝛷𝑢𝑚 (𝑥), 𝑦) − 𝑎(𝛷𝑢∞ (𝑥), 𝑦)| ≤ sup
𝑥∈𝐾1

�̃�|𝛷𝑢𝑚 (𝑥) −𝛷𝑢∞ (𝑥)|

for every 𝑚 ∈ N. Then, owing to Proposition  2.4, from the previous inequality we deduce that
lim
𝑚→∞

sup
(𝑥,𝑦)∈𝐾1×𝐾2

|𝑎(𝛷𝑢𝑚 (𝑥), 𝑦) − 𝑎(𝛷𝑢∞ (𝑥), 𝑦)| = 0.

Recalling that 𝐾 ′ ⊂ 𝐾1 ×𝐾2 by construction, we have that (4.2) holds. □

In the next result we show that the functional  𝛾,𝛽 defined in (4.1) admits a minimizer. Similarly as done in [9,10], the proof is 
based on the direct method of the Calculus of Variations.

Proposition 4.2. Let 𝑎 ∶ R𝑛 ×R𝑛 → R+ be a 𝐶1-regular non-negative function, and let 𝛾 ∈ (R𝑛 ×R𝑛) be a probability measure such that 
supp(𝛾) ⊂ 𝐾 ×𝐾, where 𝐾 ⊂ R𝑛 is a compact set. For every 𝛽 > 0, let  𝛾,𝛽 ∶  → R+ be the functional defined in (4.1). Then, there exists 
�̂�𝛾,𝛽 ∈   such that

 𝛾,𝛽 (�̂�𝛾,𝛽 ) = inf
𝑢∈

 𝛾,𝛽 (𝑢).

Proof. Let us equip   with the weak topology of 𝐿2. In account of the direct method of Calculus of Variations (see, e.g., [41, 
Theorem 1.15]), it is sufficient to prove that the functional  𝛾,𝛽 is sequentially coercive and lower semi-continuous with respect to 
the weak topology of 𝐿2. As regards the coercivity, we observe that for every 𝑢 ∈   we have

𝛽
‖𝑢‖2 ≤  𝛾,𝛽 (𝑢),
2 𝐿2

8 
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where we used the non-negativity of the function 𝑎 ∶ R𝑛 × R𝑛 → R+ associated to the integral cost in (4.1). The last inequality 
implies the inclusion

{𝑢 ∈  ∶  𝛾,𝛽 (𝑢) ≤ 𝐶} ⊂
{

𝑢 ∈  ∶ ‖𝑢‖2
𝐿2 ≤ 2𝐶

𝛽

}

for every 𝐶 ≥ 0. This establishes the weak coercivity. Let us consider a sequence of admissible controls (𝑢𝑚)𝑚∈N such that 𝑢𝑚 ⇀𝐿2 𝑢∞
as 𝑚 → ∞. We have to show that 

 𝛾,𝛽 (𝑢∞) ≤ lim inf
𝑚→∞

 𝛾,𝛽 (𝑢𝑚). (4.3)

For every 𝑚 ∈ N ∪ {∞}, let 𝛷𝑢𝑚 ∶ R𝑛 → R𝑛 be the diffeomorphism defined as in (2.8) and corresponding to the admissible control 
𝑢𝑚. Since the sequence (𝑢𝑚)𝑚∈N is weakly convergent, there exists 𝜌 > 0 such that ‖𝑢𝑚‖𝐿2 ≤ 𝜌 for every 𝑚 ∈ N ∪ {∞}. Therefore, we 
can apply Lemma  4.1 to the compact set 𝐾 ×𝐾 ⊂ R𝑛 × R𝑛 to deduce that 

lim
𝑚→∞∫R𝑛×R𝑛

𝑎(𝛷𝑢𝑚 (𝑥), 𝑦) d𝛾(𝑥, 𝑦) = ∫R𝑛×R𝑛
𝑎(𝛷𝑢∞ (𝑥), 𝑦) d𝛾(𝑥, 𝑦), (4.4)

where we used the hypothesis supp(𝛾) ⊂ 𝐾 ×𝐾. By virtue of (4.4), we compute

lim inf
𝑚→∞

 𝛾,𝛽 (𝑢𝑚) = lim inf
𝑚→∞

(

∫R𝑛×R𝑛
𝑎(𝛷𝑢𝑚 (𝑥), 𝑦) d𝛾(𝑥, 𝑦) +

𝛽
2
‖𝑢𝑚‖

2
𝐿2

)

= ∫R𝑛×R𝑛
𝑎(𝛷𝑢∞ (𝑥), 𝑦) d𝛾(𝑥, 𝑦) +

𝛽
2
lim inf
𝑚→∞

‖𝑢𝑚‖
2
𝐿2 .

Recalling the lower semi-continuity of the 𝐿2-norm with respect to the weak convergence (see, e.g., [42, Proposition 3.5]), the 
previous identity yields (4.3), proving that  𝛾,𝛽 is sequentially weakly lower semi-continuous. This concludes the proof. □

4.2. 𝛤 -convergence result

In Proposition  4.2 we have proved that the functional  𝛾,𝛽 ∶  → R+ attains the minimum. We are now interested to study the 
stability of the problem of minimizing  𝛾,𝛽 when the measure 𝛾 ∈ (R𝑛 × R𝑛) is perturbed.

Let us consider a sequence (𝛾𝑁 )𝑁≥1 ⊂ (R𝑛 ×R𝑛) such that 𝛾𝑁 ⇀∗ 𝛾∞ as 𝑁 → ∞ and such that there exists a compact set 𝐾 ⊂ R𝑛

satisfying supp(𝛾𝑁 ) ⊂ 𝐾 ×𝐾 for every 𝑁 ≥ 1. We observe that from these assumptions it follows that supp(𝛾∞) ⊂ 𝐾 ×𝐾 as well. For 
every 𝑁 ∈ N ∪ {∞} we define the functional 𝑁,𝛽 ∶  → R+ as follows: 

𝑁,𝛽 (𝑢) ∶= ∫R𝑛×R𝑛
𝑎(𝛷𝑢(𝑥), 𝑦) d𝛾𝑁 (𝑥, 𝑦) +

𝛽
2
‖𝑢‖2

𝐿2 , (4.5)

where, for every 𝑢 ∈  , 𝛷𝑢 ∶ R𝑛 → R𝑛 is the flow defined as in (2.8). The question that we are going to study is how the minimizers 
of ∞,𝛽 relate to the minimizers of (𝑁,𝛽 )𝑁≥1. We remark that the parameter 𝛽 > 0 is the same for all the functionals in consideration. 
This fact is crucial to provide the following uniform bound for the 𝐿2-norm of the minimizers.

Lemma 4.3. Let 𝑎 ∶ R𝑛 × R𝑛 → R+ be a 𝐶1-regular non-negative function, and let (𝛾𝑁 )𝑁≥1 ⊂ (R𝑛 × R𝑛) be a sequence of probability 
measures such that 𝛾𝑁 ⇀∗ 𝛾∞ as 𝑁 → ∞. Let us further assume that there exists a compact set 𝐾 ⊂ R𝑛 satisfying supp(𝛾𝑁 ) ⊂ 𝐾 × 𝐾 for 
every 𝑁 ∈ N ∪ {∞}. For every 𝑁 ∈ N ∪ {∞}, let 𝑁,𝛽 ∶  → R+ be the functional defined as in (4.5), and let �̂�𝑁,𝛽 ∈   be any of its 
minimizers. Then, there exists a constant 𝐶 > 0, depending on 𝑎 and 𝐾, such that for any 𝑁 , we have 

‖�̂�𝑁,𝛽
‖

2
𝐿2 ≤ 𝐶

𝛽
. (4.6)

Proof. Let us consider the admissible control �̄� ≡ 0. Then, observing that 𝛷�̄� ≡ IdR𝑛 , we have that 

𝑁,𝛽 (�̄�) = ∫R𝑛×R𝑛
𝑎(𝑥, 𝑦) d𝛾𝑁 (𝑥, 𝑦) ≤ sup

(𝑥,𝑦)∈𝐾×𝐾
𝑎(𝑥, 𝑦) (4.7)

for every 𝑁 ∈ N ∪ {∞}. On the other hand, if �̂�𝑁,𝛽 ∈   is a minimizer of 𝑁,𝛽 , we obtain 

𝑁,𝛽 (�̄�) ≥ 𝑁,𝛽 (�̂�𝑁,𝛽 ) ≥ 𝛽
2
‖�̂�𝑁,𝛽

‖𝐿2 , (4.8)

where we used the non-negativity of the function 𝑎. Finally, combining (4.7) and (4.8), we deduce that (4.6) holds. □

We are now in position to establish a 𝛤 -convergence result for the sequence of functionals (𝑁,𝛽 )𝑁≥1. We recall below the 
definition of 𝛤 -convergence. For a thorough discussion on this topic, we refer the reader to the textbook [41].

Definition 4. Let ( , 𝑑) be a metric space, and for every 𝑁 ≥ 1 let 𝑁 ∶  → R∪{+∞} be a functional defined over  . The sequence 
(𝑁 )𝑁≥1 is said to 𝛤 -converge to a functional ∞ ∶  → R ∪ {+∞} if the following conditions are satisfied:

• liminf condition: for every sequence (𝑢𝑁 )𝑁≥1 ⊂  such that 𝑢𝑁 → 𝑢 as 𝑁 → ∞ the following inequality holds 

∞(𝑢) ≤ lim inf 𝑁 (𝑢 ); (4.9)

𝑁→∞ 𝑁

9 
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• limsup condition: for every 𝑢 ∈  there exists a sequence (𝑢𝑁 )𝑁≥1 ⊂  such that 𝑢𝑁 → 𝑢 as 𝑁 → ∞ and such that the following 
inequality holds: 

∞(𝑢) ≥ lim sup
𝑁→∞

𝑁 (𝑢𝑁 ). (4.10)

If the conditions listed above are satisfied, then we write 𝑁 →𝛤 ∞ as 𝑁 → ∞.

In calculus of variations 𝛤 -convergence results are useful to relate the asymptotic behavior of the minimizers of the converging 
functionals to the minimizers of the 𝛤 -limit. Indeed, if the elements of the 𝛤 -convergent sequence (𝑁 )𝑁≥1 are equi-coercive in the 
( , 𝑑) topology, then if �̂�𝑁 ∈ argmin 𝑁  for every 𝑁 ≥ 1, the sequence (�̂�𝑁 )𝑁≥1 is pre-compact in ( , 𝑑) and any of its limit points 
is a minimizer of ∞ (see, e.g., [41, Corollary 7.20]).

As done in the proof of Proposition  4.2, it is convenient to equip the space of admissible controls   with the weak topology of 𝐿2. 
However, the weak topology is metrizable only on bounded subsets of   (see [42, Remark 3.3 and Theorem 3.29]). Nevertheless, 
Lemma  4.3 guarantees that the minimizers of 𝑁,𝛽 are included in 𝛽 for every 𝑁 ∈ N ∪ {∞}, where we set 

𝛽 ∶=
{

𝑢 ∈  ∶ ‖𝑢‖2
𝐿2 ≤ 𝐶∕𝛽

}

, (4.11)

and 𝐶 is the constant prescribed by (4.6). In other words, for every 𝑁 ∈ N∪{∞} we can consider the restrictions 𝑁,𝛽
|𝛽

∶ 𝛽 → R+
without losing any information on the minimizers. With a slight abuse of notations, we continue to use the symbol 𝑁,𝛽 to denote 
the restricted functionals. We are now in position to prove the main result of the present section.

Theorem 4.4. Let 𝑎 ∶ R𝑛 × R𝑛 → R+ be a 𝐶1-regular non-negative function, and let (𝛾𝑁 )𝑁≥1 ⊂ (R𝑛 × R𝑛) be a sequence of probability 
measures such that 𝛾𝑁 ⇀∗ 𝛾∞ as 𝑁 → ∞. Let us further assume that there exists a compact set 𝐾 ⊂ R𝑛 satisfying supp(𝛾𝑁 ) ⊂ 𝐾 × 𝐾 for 
every 𝑁 ∈ N∪{∞}. For every 𝑁 ∈ N∪{∞}, let 𝑁,𝛽 ∶ 𝛽 → R+ be the functional defined as in (4.5) and restricted to the bounded subset 
𝛽 ⊂   introduced in (4.11). Then, if we equip 𝛽 with the weak topology of 𝐿2, we have that 𝑁,𝛽 →𝛤 ∞,𝛽 as 𝑁 → ∞.

Proof. We start by proving the liminf condition. Let (𝑢𝑁 )𝑁≥1 ⊂ 𝛽 be a sequence such that 𝑢𝑁 ⇀𝐿2 𝑢 as 𝑁 → ∞. We have to prove 
that 

∞,𝛽 (𝑢) ≤ lim inf
𝑁→∞

𝑁,𝛽 (𝑢𝑁 ). (4.12)

Recalling that supp(𝛾𝑁 ) ⊂ 𝐾 ×𝐾 ⊂ R𝑛 × R𝑛 for every 𝑁 ∈ N ∪ {∞}, we observe that

∫𝐾×𝐾
𝑎(𝛷𝑢𝑁 (𝑥), 𝑦) d𝛾𝑁 (𝑥, 𝑦) = ∫𝐾×𝐾

[

𝑎(𝛷𝑢𝑁 (𝑥), 𝑦) − 𝑎(𝛷𝑢(𝑥), 𝑦)
]

d𝛾𝑁 (𝑥, 𝑦)

+ ∫𝐾×𝐾
𝑎(𝛷𝑢(𝑥), 𝑦) d𝛾𝑁 (𝑥, 𝑦).

Owing to Lemma  4.1, from the weak convergence 𝑢𝑁 ⇀𝐿2 𝑢 as 𝑁 → ∞ we deduce that

lim
𝑁→∞∫𝐾×𝐾

[

𝑎(𝛷𝑢𝑁 (𝑥), 𝑦) − 𝑎(𝛷𝑢(𝑥), 𝑦)
]

d𝛾𝑁 (𝑥, 𝑦) = 0.

Moreover, since by hypothesis 𝛾𝑁 ⇀∗ 𝛾∞ as 𝑁 → ∞, we obtain that 

lim
𝑁→∞∫𝐾×𝐾

𝑎(𝛷𝑢𝑁 (𝑥), 𝑦) d𝛾𝑁 (𝑥, 𝑦) = ∫𝐾×𝐾
𝑎(𝛷𝑢(𝑥), 𝑦) d𝛾∞(𝑥, 𝑦). (4.13)

Finally, recalling that 𝑢𝑁 ⇀𝐿2 𝑢 as 𝑁 → ∞ implies
‖𝑢‖𝐿2 ≤ lim inf

𝑁→∞
‖𝑢𝑁‖𝐿2 ,

from (4.13) it follows that (4.12) holds.
We now prove the limsup condition. For every 𝑢 ∈ 𝛽 , let us set 𝑢𝑁 = 𝑢 for every 𝑁 ∈ N. Then, using again the fact that 𝛾𝑁 ⇀∗ 𝛾∞

as 𝑁 → ∞, we have

lim
𝑁→∞

𝑁,𝛽 (𝑢) = lim
𝑁→∞∫𝐾×𝐾

𝑎(𝛷𝑢(𝑥), 𝑦) d𝛾𝑁 (𝑥, 𝑦) +
𝛽
2
‖𝑢‖2

𝐿2 = ∞,𝛽 (𝑢).

This concludes the proof. □

As anticipated above, we can use the previous 𝛤 -convergence result to study the asymptotics of the minimizers of the functionals 
(𝑁,𝛽 )𝑁≥1.

Corollary 4.5. Under the same assumptions as in Theorem  4.4, we have that 
lim

𝑁→∞
min


𝑁,𝛽 = min


∞,𝛽 . (4.14)

Moreover, if �̂�𝑁 ∈ argmin 𝑁,𝛽 for every 𝑁 ≥ 1, then the sequence (�̂�𝑁 )𝑁≥1 is pre-compact with respect to the strong topology of 𝐿2, and 
the limit points are minimizers of the 𝛤 -limit ∞,𝛽 .
10 
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Remark 5. We stress the fact that Corollary  4.5 ensures that the sequence (�̂�𝑁 )𝑁≥1 is pre-compact with respect to the strong 
topology of 𝐿2. Indeed, in general, given a 𝛤 -convergent sequence of equi-coercive functionals, the standard theory guarantees 
that any sequence of minimizers is pre-compact with respect to the same topology used to establish the 𝛤 -convergence (see [41, 
Corollary 7.20]). Thus, in our case, this fact would immediately imply that (�̂�𝑁 )𝑁≥1 is pre-compact with respect to the weak topology 
of 𝐿2. However, in the case of the functionals considered here, we can strengthen this fact and we can deduce the pre-compactness 
also in the strong topology. We report that similar phenomena have been described in [9,10].

Proof of Corollary  4.5.  Owing to Lemma  4.3, we have that 
min


𝑁,𝛽 = min
𝛽

𝑁,𝛽 (4.15)

for every 𝑁 ∈ N∪{∞}. Moreover, since the restricted functionals 𝑁,𝛽 ∶ 𝛽 → R+ are 𝛤 -convergent in virtue of Theorem  4.4, from 
[41, Corollary 7.20] we obtain that 

lim
𝑁→∞

min
𝛽

𝑁,𝛽 = min
𝛽

∞,𝛽 . (4.16)

Combining (4.15) and (4.16), we deduce (4.14). As regards the pre-compactness of the minimizers, let us consider a sequence 
(�̂�𝑁 )𝑁≥1 such that �̂�𝑁 ∈ argmin 𝑁,𝛽 for every 𝑁 ≥ 1. Using again [41, Corollary 7.20], it follows that (�̂�𝑁 )𝑁≥1 is pre-compact 
with respect to the weak topology of 𝐿2, and that its limit points are minimizers of ∞,𝛽 . Let (�̂�𝑁𝑚

)𝑚≥1 be a sub-sequence such that 
�̂�𝑁𝑚

⇀𝐿2 �̂�∞ as 𝑚 → ∞. On one hand, using (4.14) we have that 

lim
𝑚→∞

𝑁𝑚 ,𝛽 (�̂�𝑁𝑚
) = ∞,𝛽 (�̂�∞). (4.17)

On the other hand, the same argument used to establish (4.13) yields 

lim
𝑚→∞∫𝐾×𝐾

𝑎(𝛷�̂�𝑁𝑚
(𝑥), 𝑦) d𝛾𝑁𝑚

(𝑥, 𝑦) = ∫𝐾×𝐾
𝑎(𝛷�̂�∞ (𝑥), 𝑦) d𝛾∞(𝑥, 𝑦). (4.18)

Therefore, combining (4.17)–(4.18) and recalling the expression of 𝑁,𝛽 in (4.5), we deduce that
lim
𝑚→∞

‖�̂�𝑁𝑚
‖𝐿2 = ‖�̂�∞‖𝐿2 .

We recall that the 𝐿2-weak convergence together with the convergence of the norms to the norm of the weak-limit point implies 
the 𝐿2-strong convergence. Hence, the thesis follows. □

4.3. Optimal transport map approximation

In this subsection we will discuss how the 𝛤 -convergence result established in the previous part can be exploited for the 
problem of the optimal transport map approximation. In this setting, the measures (𝛾𝑁 )𝑁≥1 are chosen in a specific way. Indeed, 
given two probability measures 𝜇, 𝜈 ∈ (R𝑛) with supports included in the compact set 𝐾 ⊂ R𝑛, we consider two sequences 
(𝜇𝑁 )𝑁≥1, (𝜈𝑁 )𝑁≥1 ⊂ (𝐾) such that 𝜇𝑁 ⇀∗ 𝜇 and 𝜈𝑁 ⇀∗ 𝜈 as 𝑁 → ∞. Moreover, in this part, for every 𝑁 ≥ 1 we choose 
𝛾𝑁 ∈ Opt(𝜇𝑁 , 𝜈𝑁 ), i.e., an optimal transport plan between 𝜇𝑁  and 𝜈𝑁  with respect to the Euclidean squared distance (see the 
definition in (2.3)). In view of practical applications, 𝜇𝑁  and 𝜈𝑁  can be thought as discrete (or empirical) approximations of the 
measures 𝜇 and 𝜈, respectively. Finally, here we set the cost function 𝑎 ∶ R𝑛×R𝑛 → R+ to be 𝑎(𝑥, 𝑦) ∶= |𝑥 − 𝑦|2, so that the functionals 
𝑁,𝛽 ∶  → R+ have the form 

𝑁,𝛽 (𝑢) = ∫R𝑛×R𝑛
|𝛷𝑢(𝑥) − 𝑦|2 d𝛾𝑁 (𝑥, 𝑦) +

𝛽
2
‖𝑢‖2

𝐿2 , (4.19)

while the set 𝛽 is defined as in Section 4.2 (see (4.11)). We are now in position to state the result that motivated this paper.

Theorem 4.6. Let 𝜇, 𝜈 ∈ (R𝑛) be two probability measures with supports included in the compact set 𝐾 ⊂ R𝑛, and such that 𝜇 ≪ 𝑛. Let 
us consider (𝛾𝑁 )𝑁≥1 ⊂ (R𝑛 × R𝑛), a sequence of probability measures with 𝛾𝑁 ⇀∗ 𝛾 = (Id, 𝑇 ′)#𝜇 as 𝑁 → ∞, where 𝑇 ′ ∶ R𝑛 → R𝑛 is a 
measurable transport map such that 𝑇 ′

#𝜇 = 𝜈. Let us further assume that supp(𝛾𝑁 ) ⊂ 𝐾 ×𝐾 for every 𝑁 ∈ N ∪ {∞}. Let 𝑁,𝛽 ∶ 𝛽 → R+
be the functional defined as in (4.19) and restricted to the bounded subset 𝛽 ⊂   introduced in (4.11). Then, if we equip 𝛽 with the 
weak topology of 𝐿2, we have that 𝑁,𝛽 →𝛤 ∞,𝛽 as 𝑁 → ∞, where

∞,𝛽 (𝑢) = ∫R𝑛
|𝛷𝑢(𝑥) − 𝑇 ′(𝑥)|2 d𝜇(𝑥) +

𝛽
2
‖𝑢‖2

𝐿2 .

Moreover, we have that
lim

𝑁→∞
min


𝑁,𝛽 = min


∞,𝛽 ,

and, if �̂�𝑁 ∈ argmin 𝑁,𝛽 for every 𝑁 ≥ 1, then the sequence (�̂�𝑁 )𝑁≥1 is pre-compact with respect to the strong topology of  𝐿2, and the 
limit points are minimizers of the 𝛤 -limit ∞,𝛽 .

Proof. The thesis are a direct consequence of Theorem  4.4 and of Corollary  4.5. □
11 
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In view of applications, in the case of a generic transport map 𝑇 ′, we lack an approximation result analogous to Corollary 
3.3, unless 𝑇 ′ is not in turn a diffeomorphism isotopic to the identity. Thinking 𝛾𝑁  as an (approximate) optimal coupling looks 
particularly convenient, since we can take advantage of well-established and efficient computational methods (see e.g. [43,44]), 
therefore we state the following Corollary.

Corollary 4.7. Let 𝜇, 𝜈 ∈ (R𝑛) be two probability measures with supports included in the compact set 𝐾 ⊂ R𝑛, and such that 𝜇 ≪ R𝑛 , and 
let us consider (𝜇𝑁 )𝑁≥1, (𝜈𝑁 )𝑁≥1 ⊂ (𝐾) such that 𝜇𝑁 ⇀∗ 𝜇 and 𝜈𝑁 ⇀∗ 𝜈 as 𝑁 → ∞. Let us consider (𝛾𝑁 )𝑁≥1 such that 𝛾𝑁 ∈ Opt(𝜇𝑁 , 𝜈𝑁 )
for every 𝑁 ≥ 1. Let 𝑁,𝛽 ∶ 𝛽 → R+ be the functional defined as in (4.19) and restricted to the bounded subset 𝛽 ⊂   introduced in 
(4.11). Then, if we equip 𝛽 with the weak topology of 𝐿2, we have that 𝑁,𝛽 →𝛤 ∞,𝛽 as 𝑁 → ∞, where 

∞,𝛽 (𝑢) = ∫R𝑛
|𝛷𝑢(𝑥) − 𝑇 (𝑥)|2 d𝜇(𝑥) +

𝛽
2
‖𝑢‖2

𝐿2 , (4.20)

and 𝑇 ∶ supp(𝜇) → supp(𝜈) is the optimal transport map between 𝜇 and 𝜈 with respect to the Euclidean squared distance. Moreover, we have 
that

lim
𝑁→∞

min


𝑁,𝛽 = min


∞,𝛽 ,

and, if �̂�𝑁 ∈ argmin 𝑁,𝛽 for every 𝑁 ≥ 1, then the sequence (�̂�𝑁 )𝑁≥1 is pre-compact with respect to the strong topology of 𝐿2, and the 
limit points are minimizers of the 𝛤 -limit ∞,𝛽 .

Proof. From Proposition  2.2 it follows that the sequence (𝛾𝑁 )𝑁≥1 is pre-compact and that the limit points are included in Opt(𝜇, 𝜈). 
Moreover, we have supp(𝛾𝑁 ) ⊂ 𝐾 × 𝐾. Since 𝜇 ≪ R𝑛 , from Brenier’s Theorem (see, e.g., [34, Theorem 2.26]) we deduce that 
Opt(𝜇, 𝜈) = {(Id, 𝑇 )#𝜇}, where 𝑇 ∶ supp(𝜇) → supp(𝜈) is the optimal transport map between 𝜇 and 𝜈. Therefore, we have that 
𝛾𝑁 ⇀∗ 𝛾∞ as 𝑁 → ∞, where we set 𝛾∞ ∶= (Id, 𝑇 )#𝜇. The conclusion follows from Theorem  4.6. □

Remark 6. We observe that, under the same assumptions as in Corollary  3.3, for every 𝜀 > 0, there exists 𝛽 > 0 such that, for every 
𝛽 ∈ (0, 𝛽], we have 𝜅(𝛽) ≤ 𝜀, where 𝜅 ∶ [0,+∞) → [0,+∞) is defined as 

𝜅(𝛽) ∶= sup
{

∫R𝑛
|𝛷𝑢(𝑥) − 𝑇 (𝑥)|2 d𝜇(𝑥) ∶ 𝑢 ∈ argmin∞,𝛽

}

. (4.21)

Indeed, given 𝜀 > 0, from Corollary  3.3, there exists a control �̃� ∈   such that
sup
𝑥∈𝐾

|𝛷�̃�(𝑥) − 𝑇 (𝑥)|2 ≤ 𝜀
2
.

Moreover, if we choose 𝛽 > 0 such that 𝛽‖�̃�‖2
𝐿2 = 𝜀, then, for every 𝛽 ∈ (0, 𝛽], we obtain ∞,𝛽 (�̃�) ≤ 𝜀. Being �̃� ∈   a competitor for 

the minimization of ∞,𝛽 , we deduce that 𝜅(𝛽) ≤ 𝜀 for every 𝛽 ∈ (0, 𝛽]. We report that this argument has already been used in [9, 
Proposition 5.4]. This observation guarantees that, by tuning the parameter 𝛽 > 0 to be small enough, if �̂�𝛽 ∈ argmin∞,𝛽 , then the 
corresponding flow 𝛷�̂�𝛽  provides an approximation of the optimal transport map 𝑇 ∶ supp(𝜇) → supp(𝜈) which is arbitrarily accurate 
in the 𝐿2

𝜇-strong topology. The interesting aspect is that an approximation of 𝑇  can be carried out by minimizing a functional over 
the Hilbert space   of the admissible controls. Even though handling ∞,𝛽 already requires the knowledge of the optimal transport 
map 𝑇 , the 𝛤 -convergence result ensures that we can construct the approximation by minimizing the functionals 𝑁,𝛽 instead of 
∞,𝛽 . In Remark  7 we discuss in detail the more applicable situation when dealing with discrete approximations 𝜇𝑁 , 𝜈𝑁  of 𝜇, 𝜈, 
respectively. Finally, we stress the fact that, in general, this approach does not provide a reconstruction of the optimal transport 
map that is close also in the 𝐶0-norm.

Remark 7. In view of a possible practical implementation, we recall that we aim at producing a flow 𝛷𝑢 ∶ R𝑛 → R𝑛 with a suitable 
control 𝑢 ∈   such that the distance 𝑊2(𝛷𝑢 #𝜇, 𝜈) is as small as desired, where 𝜇, 𝜈 are probability measures satisfying the same 
assumptions as in Corollary  3.3. Here it is important to stress that 𝜇 and 𝜈 do not play a symmetric role in the applications: indeed, 
it is convenient to understand 𝜇 as a known object (i.e., whose density is known, or which it is inexpensive to sample from), while 
𝜈 denotes a probability measure which we have limited information about, and it is complicated (but not impossible) to gather new 
samplings. In this framework, we imagine that we have at our disposal discrete approximations 𝜇𝑁 , 𝜈𝑁  of 𝜇, 𝜈, respectively. We 
provide below an asymptotic estimate of 𝑊2(𝛷𝑢 #𝜇, 𝜈) for large 𝑁 when 𝑢 is obtained by minimizing the functional 𝑁,𝛽 defined in 
(4.19). Namely, if we take �̂�𝑁,𝛽 ∈ argmin 𝑁,𝛽 , when 𝑁 ≫ 1 we have 

𝑊2(𝛷�̂�𝑁,𝛽 #𝜇, 𝜈) ≤ 𝐿𝛽𝑊2(𝜇, 𝜇𝑁 ) + 2
√

𝜅(𝛽) +𝑊2(𝜈𝑁 , 𝜈), (4.22)

where 𝐿𝛽 → +∞ and 𝜅(𝛽) → 0 as 𝛽 → 0. To see that, using the triangular inequality, we compute for any 𝑢 ∈ 

𝑊2(𝛷𝑢 #𝜇, 𝜈) ≤ 𝐿𝛷𝑢
𝑊2(𝜇, 𝜇𝑁 ) +𝑊2(𝛷𝑢 #𝜇𝑁 , 𝜈𝑁 ) +𝑊2(𝜈𝑁 , 𝜈), (4.23)

where 𝐿𝛷𝑢
 denotes the Lipschitz constant of the flow 𝛷𝑢. In addition, if 𝛾𝑁 ∈ Opt(𝜇𝑁 , 𝜈𝑁 ), we observe that

𝑊 2(𝛷𝑢 #𝜇𝑁 , 𝜈𝑁 ) ≤ |𝛷𝑢(𝑥) − 𝑦|2 d𝛾𝑁 (𝑥, 𝑦),
2 ∫R𝑛×R𝑛
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where we used the fact that (𝛷𝑢, Id)#𝛾𝑁 ∈ Adm(𝛷𝑢 #𝜇𝑁 , 𝜈𝑁 ). For every 𝑁 ≥ 1, let us finally consider �̂�𝑁,𝛽 ∈ argmin 𝑁,𝛽 . Using the 
same computations as in (4.18), it turns out that

lim sup
𝑁→∞ ∫R𝑛×R𝑛

|𝛷�̂�𝑁,𝛽
(𝑥) − 𝑦|2 d𝛾𝑁 (𝑥, 𝑦) ≤ 𝜅(𝛽),

where 𝜅 ∶ [0,+∞) → [0,+∞) is the application defined in (4.21). Combining the last two inequalities, we deduce that 

lim sup
𝑁→∞

𝑊2(𝛷�̂�𝑁,𝛽 #𝜇𝑁 , 𝜈𝑁 ) ≤
√

𝜅(𝛽). (4.24)

Moreover, since Lemma  4.3 guarantees that ‖�̂�𝑁,𝛽‖𝐿2 ≤ 𝐶∕𝛽 for every 𝑁 ≥ 1, it follows from Lemma  2.3 that there exists a constant 
𝐿𝛽 > 0 independent of 𝑁 such that 𝐿𝛷�̂�𝑁,𝛽

≤ 𝐿𝛽 . Using this consideration and (4.24), from (4.23) we obtain the asymptotic estimate 
(4.22). We recall that in (4.22) 𝐿𝛽 → +∞ and 𝜅(𝛽) → 0 as 𝛽 → 0. The constant 𝐿𝛽 may be large for 𝛽 close to 0, however this is 
mitigated by the fact that 𝑊2(𝜇, 𝜇𝑁 ) can be made small at a reasonable cost.

Remark 8. For every 𝑢 ∈  , let 𝛷(0,𝑡)
𝑢 ∶ R𝑛 → R𝑛 be the flow induced by evolving the linear-control system (2.4) in the time interval 

[0, 𝑡], for every 𝑡 ≤ 1. If, for a given 𝑢 ∈  , the final-time flow 𝛷𝑢 = 𝛷(0,1)
𝑢  provides an approximation of the optimal transport 

map 𝑇  between 𝜇 and 𝜈 with respect to the squared Euclidean distance, a natural question is whether the curve 𝑡 ↦ 𝛷(0,𝑡)
𝑢 # 𝜇 is close 

to the Wasserstein 𝑊2-geodesic that connects 𝜇 to 𝜈. In general, the answer is negative. However, it is possible to construct an 
approximation of the Wasserstein geodesic using the final-time flow 𝛷𝑢. Indeed, the 𝑊2-geodesic connecting 𝜇 to 𝜈 has the form 
𝑡 ↦ 𝜂𝑡 ∶= ((1− 𝑡)Id+ 𝑡𝑇 )#𝜇 (see, e.g., [34, Remark 3.13]). Similarly, exploiting the fact that 𝛷𝑢 is close to 𝑇 , we can define the curve 
𝑡 ↦ �̃�𝑡 ∶= ((1 − 𝑡)Id + 𝑡𝛷𝑢)#𝜇, and we can compute, by exploiting the plan 𝛾𝑡 ∶= ((1 − 𝑡)Id + 𝑡𝑇 , (1 − 𝑡)Id + 𝑡𝛷𝑢)#𝜇 ∈ Adm(𝜂𝑡, �̃�𝑡),

𝑊 2
2 (𝜂𝑡, �̃�𝑡) = 𝑊 2

2
(

((1 − 𝑡)Id + 𝑡𝑇 )#𝜇, ((1 − 𝑡)Id + 𝑡𝛷𝑢)#𝜇
)

≤ ∫R𝑛×R𝑛
|𝑥 − 𝑦|2 d𝛾𝑡 = 𝑡2 ∫R𝑛

|𝛷𝑢(𝑥) − 𝑇 (𝑥)|2 d𝜇(𝑥) = 𝑡2‖𝛷𝑢 − 𝑇 ‖2
𝐿2
𝜇
,

i.e., we can estimate instant-by-instant the deviation of �̃� from the geodesic connecting 𝜇 to 𝜈 in terms of the 𝐿2
𝜇 distance between 

𝑇  and 𝛷𝑢. This is relevant, since the latter is precisely the integral term involved in the functional (4.20).

5. Numerical approximation of the optimal transport map

In this section, we propose a numerical approach for the construction of a normalizing flow 𝛷𝑢 ∶ R𝑛 → R𝑛 generated by a 
linear-control system, such that the push-forward 𝛷𝑢 #𝜇 is close to 𝜈 in the 𝑊2-distance, where 𝜇, 𝜈 are two assigned probability 
measures on R𝑛. In order to consider a more realistic framework, we deal with 𝜇𝑁 , 𝜈𝑁 , that represent discrete probability measures 
with small 𝑊2-distance to 𝜇, 𝜈, respectively. On one hand, under the assumption that the measure 𝜇 is known, the construction of 
𝜇𝑁  can be customized by the user. In general, the problem of approximating a probability measure with a convex combination of 
a fixed number of Dirac deltas is currently an active topic of research (see, e.g., [45]). On the other hand, the measure 𝜈𝑁  should 
be thought as assigned. After the preliminary computation of an optimal transport plan between 𝜇𝑁  and 𝜈𝑁  with respect to the 
Euclidean squared norm, we shall write an optimal control problem, and we address its numerical resolution with an iterative 
method originally proposed in [46] and based on the Pontryagin Maximum Principle.

5.1. Preliminary optimal transport problem

The first step for the construction of the functional 𝑁,𝛽 ∶  → R defined as in (4.19) is the computation of an optimal transport 
plan 𝛾𝑁 ∈ Opt(𝜇𝑁 , 𝜈𝑁 ). In this case, for every 𝑢 ∈   the functional 𝑁,𝛽 can be rewritten as follows: 

𝑁,𝛽 (𝑢) =
∑

𝑖=1,…,𝑁1
𝑗=1,…,𝑁2

𝛾 𝑖,𝑗𝑁 |𝛷𝑢(𝑥𝑖) − 𝑦𝑗 |
2 +

𝛽
2
‖𝑢‖2

𝐿2 , (5.1)

where supp(𝜇𝑁 ) = {𝑥1,… , 𝑥𝑁1
}, supp(𝜈𝑁 ) = {𝑦1,… , 𝑦𝑁2

}, and 𝛾𝑁 = (𝛾 𝑖,𝑗𝑁 )𝑗=1,…,𝑁2
𝑖=1,…,𝑁1

 is the optimal transport plan. It is well-known 
(see [44, Proposition 3.4] and [47, Theorem 8.1.2]) that, if #supp(𝜇𝑁 ) = 𝑁1 and #supp(𝜈𝑁 ) = 𝑁2, then, there exists at least an 
optimal transport plan 𝛾𝑁 ∈ Opt(𝜇𝑁 , 𝜈𝑁 ) such that #supp(𝛾𝑁 ) ≤ 𝑁1 + 𝑁2 (see also [48] for further details). In our case, having a
sparse optimal transport plan (i.e. #supp(𝛾𝑁 ) ≪ 𝑁1𝑁2) is useful to alleviate the computations, since this reduces the number of terms 
that appear in the sum in (5.1). In order to achieve that while computing numerically 𝛾𝑁 = (𝛾 𝑖,𝑗𝑁 )𝑗=1,…,𝑁2

𝑖=1,…,𝑁1
, it could be appropriate to 

introduce a quadratic regularization (see, e.g., [49,50]).

5.2. Pontryagin maximum principle

In this subsection we formulate the necessary optimality conditions for the minimization of the functional 𝑁,𝛽 defined in (5.1). 
We observe that this minimization can be naturally formulated as an optimal control problem in (R𝑛)𝑁1 , where 𝑁 ≥ 1 stands for 
1
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the number of atoms {𝑥1,… , 𝑥𝑁1
} that constitute the probability measure 𝜇𝑁 . More precisely, if we denote by 𝑍 = (𝑧1,… , 𝑧𝑁1

) a 
point in (R𝑛)𝑁1 , the control system that we consider has the form 

⎧

⎪

⎨

⎪

⎩

�̇�𝑖(𝑡) = 𝐹 (𝑧𝑖(𝑡))𝑢(𝑡) a.e. in [0, 1],
𝑧𝑖(0) = 𝑥𝑖,

for 𝑖 = 1,… , 𝑁1, (5.2)

where the function 𝐹 ∶ R𝑛 → R𝑛×𝑘 is the same that prescribes the dynamics in (2.4). We use the notation 𝑍𝑢 ∶ [0, 1] → (R𝑛)𝑁1

to indicate the solution of (5.2) corresponding to the admissible control 𝑢 ∈  . We stress that the components 𝑧1,… , 𝑧𝑁1
 are

simultaneously driven by the control 𝑢 ∈  . Finally, the function associated to the terminal cost (i.e., the first term at the right-hand 
side of (5.1)) is

𝑍 = (𝑧1,… , 𝑧𝑁1
) ↦

∑

𝑖=1,…,𝑁1
𝑗=1,…,𝑁2

𝛾 𝑖,𝑗𝑁 |𝑧𝑖 − 𝑦𝑗 |
2.

We state below the Maximum Principle for our particular optimal control problem. For a detailed and general presentation of the 
topic the reader is referred to the textbook [51, Chapter 12].

Theorem 5.1. Let �̂� ∈   be an admissible control that minimizes the functional 𝑁,𝛽 defined in (5.1). Let  ∶ (R𝑛)𝑁1 ×((R𝑛)𝑁1 )∗×R𝑘 → R
be the Hamiltonian function defined as follows: 

(𝑍,𝛬, 𝑢) =
𝑁1
∑

𝑖=1
𝜆𝑖 ⋅ 𝐹 (𝑧𝑖)𝑢 −

𝛽
2
|𝑢|2, (5.3)

where we set 𝑍 = (𝑧1,… , 𝑧𝑁1
) and 𝛬 = (𝜆1,… , 𝜆𝑁1

), with 𝜆𝑖 ∈ (R𝑛)∗. Then there exists an absolutely continuous function 𝛬�̂� ∶ [0, 1] →
(R𝑛)𝑁1  such that the following conditions hold:

• For every 𝑖 = 1,… , 𝑁1 the curve 𝑧�̂�𝑖 ∶ [0, 1] → R𝑛 satisfies 
⎧

⎪

⎨

⎪

⎩

�̇��̂�𝑖 (𝑡) =
𝜕
𝜕𝜆𝑖

(𝑍 �̂�(𝑡), 𝛬�̂�(𝑡), �̂�(𝑡)) a.e. in [0, 1],

𝑧�̂�𝑖 (0) = 𝑥𝑖;
(5.4)

• For every 𝑖 = 1,… , 𝑁1 the curve 𝜆�̂�𝑖 ∶ [0, 1] → (R𝑛)∗ satisfies 
⎧

⎪

⎨

⎪

⎩

�̇��̂�𝑖 (𝑡) = − 𝜕
𝜕𝑧𝑖

(𝑍 �̂�(𝑡), 𝛬�̂�(𝑡), �̂�(𝑡)) a.e. in [0, 1],

𝜆�̂�𝑖 (1) = −
∑

𝑗=1,…,𝑁2
𝛾 𝑖,𝑗𝑁 (𝑧�̂�𝑖 (1) − 𝑦𝑗 );

(5.5)

• For a.e. 𝑡 ∈ [0, 1], the following condition is satisfied: 
�̂�(𝑡) ∈ arg max

𝑢∈R𝑘
(𝑍 �̂�(𝑡), 𝛬�̂�(𝑡), 𝑢). (5.6)

Remark 9.  In Theorem  5.1 we stated the Pontryagin Maximum Principle for normal extremals only. This is due to the fact that 
the optimal control problem concerning the minimization of 𝑁,𝛽 does not admit abnormal extremals.

5.3. Algorithm description

In this subsection we describe the implementable algorithm that we employed to carry out the numerical simulation described 
in the next section. We address the numerical minimization of the functional 𝑁,𝛽 introduced in (5.1) using the iterative method 
proposed in [46], based on the Pontryagin Maximum Principle. This approach has been recently applied in [9,10] for the task of 
recovering a diffeomorphism from observations, and for the simultaneous optimal control of an ensemble of systems, respectively.

Before proceeding, we describe the discretization of the dynamics (5.2) and how we reduce the minimization of (5.1) to a 
finite dimensional problem. Let us consider the evolution time horizon [0, 1], and for 𝑀 ≥ 2 let us take the equispaced nodes 
{0, 1

𝑀 ,… , 𝑀−1
𝑀 , 1}. Recalling that  ∶= 𝐿2([0, 1],R𝑘), we define the subspace 𝑀 ⊂   as follows:

𝑢 ∈ 𝑀 ⟺ 𝑢(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢1 if 0 ≤ 𝑡 < 1
𝑀

⋮

𝑢𝑀 if 𝑀−1
𝑀 ≤ 𝑡 ≤ 1,

where 𝑢1,… , 𝑢𝑀 ∈ R𝑘. For every 𝑙 = 1,… ,𝑀 , we shall write 𝑢𝑙 = (𝑢1,𝑙 ,… , 𝑢𝑘,𝑙) to denote the components of 𝑢𝑙 ∈ R𝑘. Then, any 
element 𝑢 ∈ 𝑀  will be represented by the following array:

𝑢 = (𝑢 )𝑗=1,…,𝑘 .
𝑗,𝑙 𝑙=1,…,𝑀
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For every 𝑖 = 1,… , 𝑁1, let 𝑧𝑢𝑖 ∶ [0, 1] → R𝑛 be the solution of (5.2) corresponding to the 𝑖th athom of the measure 𝜇𝑁  and to the 
control 𝑢. Then, for every 𝑖 = 1,… , 𝑁1 and 𝑙 = 0,… ,𝑀 , we define the array that collects the evaluation of the trajectories at the 
time nodes:

(𝑧𝑙𝑖)
𝑙=0,…,𝑀
𝑖=1,…,𝑁1

, 𝑧𝑙𝑖 ∶= 𝑧𝑢𝑖 (𝑙∕𝑀) ∈ R𝑛,

where we dropped the reference to the control that generates the trajectories. This is done to avoid hard notations, since we hope 
that it will be clear from the context the correspondence between trajectories and control. For the approximate resolution of the
forward dynamics (5.2) we use the explicit Euler scheme, i.e.,

𝑧0𝑖 = 𝑥𝑖, 𝑧𝑙+1𝑖 = 𝑧𝑙𝑖 +
1
𝑀

𝐹 (𝑧𝑙𝑖)𝑢𝑙

for 𝑖 = 1,… , 𝑁1, 𝑙 = 0,… ,𝑀 − 1. Similarly, for every 𝑖 = 1,… , 𝑁1, let 𝜆𝑢𝑖 ∶ [0, 1] → (R𝑛)∗ be the solution of (5.5) corresponding to 
the control 𝑢, and let us introduce the corresponding array of the evaluations:

(𝜆𝑙𝑖)
𝑙=0,…,𝑀
𝑖=1,…,𝑁1

, 𝜆𝑙𝑖 ∶= 𝜆𝑢𝑖 (𝑙∕𝑀) ∈ (R𝑛)∗,

and we approximate the backward dynamics (5.5) with the implicit Euler scheme:

𝜆𝑀𝑖 = −
∑

𝑗=1,…,𝑁2

𝛾 𝑖,𝑗𝑁 (𝑧𝑀𝑖 − 𝑦𝑗 ), 𝜆𝑙−1𝑖 = 𝜆𝑙𝑖 +
1
𝑀

(

𝜆𝑙−1𝑖 ⋅
𝜕
𝜕𝑧

𝐹 (𝑧𝑙−1𝑖 )𝑢𝑙
)

for 𝑖 = 1,… , 𝑁1, 𝑙 = 𝑀,… , 1.
The method is described in Algorithm 1.

Algorithm 1: Iterative Maximum Principle
Data: 

• 𝐹 ∶ R𝑛 → R𝑛×𝑘 controlled fields;
• (𝑥𝑖)𝑖=1,…,𝑁1  atoms of 𝜇𝑁 ;
• (𝑦𝑖)𝑖=1,…,𝑁2  atoms of 𝜈𝑁 ;
• 𝛾𝑁 = (𝛾 𝑖,𝑗𝑁 )𝑗=1,…,𝑁2

𝑖=1,…,𝑁1
∈ Opt(𝜇𝑁 , 𝜈𝑁 ).

Algorithm setting: 𝑀 = n. sub-intervals of [0, 1], ℎ = 1
𝑀 , 0 < 𝜏 < 1, 𝜌 > 0, maxiter ≥ 1

1 Initial guess for 𝑢 ∈ 𝑀 ;
2 for 𝑖 = 1,… , 𝑁1 do // First computation of trajectories
3 Compute (𝑧𝑙𝑖 )𝑙=1,…,𝑀 using (𝑢𝑙 )𝑙=1,…,𝑀 and 𝑥𝑖;
4 end 
5 Cost ←

∑𝑗=1,…,𝑁2
𝑖=1,…,𝑁1

𝛾 𝑖,𝑗𝑁 |𝑧𝑀𝑖 − 𝑦𝑗 |2 +
𝛽
2 ‖𝑢‖

2
𝐿2
;

6 f lag ← 1;
7 for 𝑟 = 1,… ,maxiter do // Iterations of Iterative Maximum Principle
8 if f lag = 1 then // Update covectors only if necessary
9 for 𝑖 = 1,… , 𝑁1 do // Backward computation of covectors 
10 𝜆𝑀𝑖 ← −

∑𝑁2
𝑗=1 𝛾

𝑖,𝑗
𝑁 (𝑧𝑀𝑖 − 𝑦𝑗 );

11 Compute (𝜆𝑙𝑖 )𝑙=0,…,𝑀−1 using (𝑢𝑙 )𝑙=1,…,𝑀 , (𝑧𝑙𝑖 )𝑙=0,…,𝑀 and 𝜆𝑀𝑖 ;
12 end 
13 end 
14 (𝑧0,new𝑖 )𝑖=1,…,𝑁1 ← (𝑧0𝑖 )

𝑖=1,…,𝑁1 ;
15 (𝜆0,corr𝑖 )𝑖=1,…,𝑁1 ← (𝜆0𝑖 )𝑖=1,…,𝑁1 ;
16 for 𝑙 = 1,… ,𝑀 do // Update of controls and trajectories
17 𝑢new𝑙 ← argmax𝑣∈R𝑘

{

∑𝑁1
𝑖=1

(

𝜆𝑙−1,corr𝑖 ⋅ 𝐹 (𝑧𝑙−1,new𝑖 ) ⋅ 𝑣
)

− 𝛽
2 |𝑣|

2 − 1
2𝜌 |𝑣 − 𝑢𝑙 |2

}

;

18 for 𝑖 = 1,… , 𝑁1 do
19 Compute 𝑧𝑙,new𝑖  using 𝑧𝑙−1,new𝑖  and 𝑢new𝑙 ;

20 𝜆𝑙,corr𝑖 ← 𝜆𝑙𝑖 +
∑𝑁2

𝑗=1 𝛾
𝑖,𝑗
𝑁 (𝑧𝑙𝑖 − 𝑦𝑗 ) −

∑𝑁2
𝑗=1 𝛾

𝑖,𝑗
𝑁 (𝑧𝑙,new𝑖 − 𝑦𝑗 );

21 end 
22 end 
23 Costnew ←

∑𝑗=1,…,𝑁2
𝑖=1,…,𝑁1

𝛾 𝑖,𝑗𝑁 |𝑧𝑀,new
𝑖 − 𝑦𝑗 |2 +

𝛽
2 ‖𝑢‖

2
𝐿2
;

24 if Cost > Costnew then // Backtracking for 𝜌
25 𝑢 ← 𝑢new, 𝑧 ← 𝑧new;
26 Cost ← Costnew;
27 f lag ← 1;
28 else
29 𝛾 ← 𝜏𝛾;
30 f lag ← 0;
31 end
32 end 

Remark 10. The correction for the value of the covector at the line 20 of Algorithm 1 is not present in the original scheme proposed 
in [46], where the authors considered optimal control problems without end-point cost.
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Remark 11. The maximization of the augmented Hamiltonian in line 17 of Algorithm 1 is a rather inexpensive step, since we 
have to deal with a quadratic function whose Hessian is diagonal. This is a beneficial consequence of the linear-control dynamics, 
resulting in the fact that the first term of the augmented Hamiltonian is linear in 𝑣 (see again line 17). In the case of a standard neural 
ODE, we would have argmax𝑣∈R𝑘

{

∑𝑁1
𝑖=1

(

𝜆𝑙−1,corr𝑖 ⋅ 𝐺(𝑧𝑙−1,new𝑖 , 𝑣)
)

− 𝛽
2 |𝑣|

2 − 1
2𝜌 |𝑣 − 𝑢𝑙|

2
}

, resulting in a non-quadratic (and potentially 
non-concave) maximization problem, whose resolution may be expensive.

Remark 12. As an alternative, it is possible to address the minimization of the cost functional 𝑁,𝛽 ∶  → R using a gradient flow 
approach. Namely, it is possible to project the gradient field induced by 𝑁,𝛽 onto the finite dimensional subspace 𝑀 . We recall 
that in [52] the gradient flows related to linear-control problems have been studied theoretically, while in [9,10] the gradient-based 
algorithm outlined above has been implemented and tested. In general, it has slightly worse per-iteration performances than the 
PMP-based algorithm, but it is more suitable for parallel computations.

5.4. A numerical experiment

We present here a numerical experiment in R2 that we used to validate our approach. In this case, we considered as reference 
measure 𝜇 the uniform probability measure supported in 𝐵0.5(0), i.e., the disc centered at the origin and with radius 𝑅 = 0.5. Then, 
we constructed 𝜇𝑁  with a uniform triangulation of supp(𝜇) with size 0.04, resulting in 571 equally-weighted atoms (see the picture 
at top-left in Fig.  1). Then, we took the convex function 𝑓 ∶ R2 → R defined as

𝑓 (𝑥) =
√

(𝑥 − 𝑣)⊤𝑄(𝑥 − 𝑣) + 2, 𝑣 =

(

0.5

0.5

)

𝑄 =

(

3 1

1 2

)

,

and we set 𝑇 ∶= ∇𝑥𝑓 . Then, we defined 𝜈 ∶= 𝑇#𝜇, and we obtained the empirical measure 𝜈𝑁  by sampling 1500 i.i.d. data-points 
from 𝜇, and by transforming them using 𝑇 . In this way, we got 1500 independent samplings from 𝜈. At this point, we used the 
Python package [53] to compute the optimal transport plan 𝛾𝑁 = (𝛾 𝑖,𝑗𝑁 )𝑗=1,…,𝑁2

𝑖=1,…,𝑁1
. Since the problem has modest dimensions, we used 

the non-regularized solver, and we observed that every optimal transport plan computed satisfied the sparsity bound investigated 
in [48]. We used the vector fields that had been reported to be the best-performing in [9], namely, 

𝐹1(𝑥) ∶=

(

1

0

)

, 𝐹2(𝑥) ∶=

(

0

1

)

,

𝐹 ′
1(𝑥) ∶= 𝑒−

1
2𝜁 |𝑥|

2
(

1

0

)

, 𝐹 ′
2(𝑥) ∶= 𝑒−

1
2𝜁 |𝑥|

2
(

0

1

)

,

𝐺1
1(𝑥) ∶=

(

𝑥1
0

)

, 𝐺2
1(𝑥) ∶=

(

𝑥2
0

)

,

𝐺1
2(𝑥) ∶=

(

0

𝑥1

)

, 𝐺2
2(𝑥) ∶=

(

0

𝑥2

)

.

𝐺1,1
1 ∶= 𝑒−

1
2𝜁 |𝑥|

2
(

𝑥21
0

)

, 𝐺1,2
1 ∶= 𝑒−

1
2𝜁 |𝑥|

2
(

𝑥1𝑥2
0

)

, 𝐺2,2
1 ∶= 𝑒−

1
2𝜁 |𝑥|

2
(

𝑥22
0

)

,

𝐺1,1
2 ∶= 𝑥21𝑒

− 1
𝜁 |𝑥|

2
(

0

𝑥21

)

, 𝐺1,2
2 ∶= 𝑒−

1
2𝜁 |𝑥|

2
(

0

𝑥1𝑥2

)

, 𝐺2,2
2 ∶= 𝑒−

1
2𝜁 |𝑥|

2
(

0

𝑥22

)

.

 Hence, we dealt with the following linear-control system on the time interval [0, 1]: 

�̇� =

(

𝑢1
𝑢2

)

+ 𝑒−
1
2𝜁 |𝑥|

2
(

𝑢′1
𝑢′2

)

+

(

𝑢11 𝑢21
𝑢12 𝑢22

)(

𝑥1
𝑥2

)

+ 𝑒−
1
2𝜁 |𝑥|

2
(

𝑢1,11 𝑥21 + 𝑢1,21 𝑥1𝑥2 + 𝑢2,21 𝑥22
𝑢1,12 𝑥21 + 𝑢1,22 𝑥1𝑥2 + 𝑢2,22 𝑥22

)

, (5.7)

where we set 𝜁 = 10. In (5.7), we labeled each control variable with the same indexes as the corresponding vector field. For instance, 
𝑢1 denotes the control responsible for 𝐹1, and 𝑢1,11  the one that acts on 𝐺1,1

1 . We divided the time horizon [0, 1] into 32 equally-spaced 
subintervals, corresponding to the discretization step-size ℎ = 2−5 for (5.7). Finally, we set 𝛽 = 5 ⋅ 10−4 in (5.1), and we minimized 
𝑁,𝛽 using Algorithm 1, in order to construct a flow 𝛷𝑢 of (5.7) that could serve as an approximation of 𝑇 . The results are reported 
in Fig.  1.

The transformed measure 𝛷𝑢 #𝜇𝑁 , managed to identify the support shape of the target empirical measure 𝜈𝑁 , as well as the 
fact that the mass is not uniformly spread over the support of the target measure (see the image at top-right). However, we notice 
that the overlap between supp(𝛷𝑢 #𝜇𝑁 ) and supp(𝜈𝑁 ) is not perfect. Then, in the third picture (bottom-left), we compared 𝑇#𝜇𝑁  and 
𝛷𝑢 #𝜇𝑁 , i.e., the transformation of the uniform grid over the reference disc through the correct optimal transport map 𝑇  and the 
computed approximation 𝛷𝑢, which we labeled optimal transport map and transformed samples, respectively. This resulted in a good 
reconstruction. Finally, in the last figure, we used 𝑇  and 𝛷𝑢 for transforming 103 random points obtained as independent samplings 
from the uniform distribution 𝜇.
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Fig. 1. Approximation of the optimal transport map using samplings of 𝜈 = 𝑇#𝜇. In the top-left picture, we reported the discrete supports of the source measure 
𝜇𝑁 (cyan) and of the target 𝜈𝑁 (red). At the top-right, we additionally represented with blue crosses the support of 𝛷𝑢 #𝜇𝑁 . In the bottom-left picture, we 
compared the supports of 𝛷𝑢 #𝜇𝑁 (blue) and of 𝑇#𝜇𝑁 (magenta), where 𝑇  is the correct optimal transport map. Finally, in the last image, we transformed 103
points generated with a uniform distribution on 𝐵0.5(0) using 𝛷𝑢 (blue) and 𝑇  (magenta).

6. Conclusions

In this paper, we investigated the possibility of recovering the 𝑊2-optimal transport map between 𝜇, 𝜈 as flows of linear-
control neural ODEs. We first showed that, under appropriate hypotheses on the measures 𝜇, 𝜈, the optimal transport map 𝑇  is 
a diffeomorphism isotopic to the identity (see Proposition  3.2). Hence, leveraging on the expressivity results for linear-control 
systems established in [1,2], in Corollary  3.3 we proved that it is possible to approximate 𝑇  in the 𝐶0-norm by means of flows 
of linear-control systems. Then, we consider the case where only discrete approximations 𝜇𝑁 , 𝜈𝑁  of 𝜇, 𝜈 are available, and we used 
a discrete 𝑊2-optimal coupling 𝛾𝑁  between 𝜇𝑁 , 𝜈𝑁  to define the functional 𝑁,𝛽 . Then, in Corollary  4.7 we proved that, if 𝜇𝑁 ⇀∗ 𝜇
and 𝜈𝑁 ⇀∗ 𝜈 as 𝑁 → ∞, then the optimal control problems involving 𝑁,𝛽 are 𝛤 -convergent to a limiting functional, that concerns 
the approximation of 𝑇  in the 𝐿2

𝜇-norm. Finally, we proposed an iterative algorithm based on the Pontryagin Maximum Principle 
for minimizing 𝑁,𝛽 , resulting in a scheme for producing a normalizing flow. Finally, we tested the method on an example in R2.
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Appendix. Proofs of Section 2.2

Here we prove the intermediate results needed to establish Proposition  2.4. We first recall a version of the Grönwall-Bellman 
inequality.
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Lemma A.1 (Grönwall-Bellman Inequality). Let 𝑓 ∶ [𝑎, 𝑏] → R+ be a non-negative continuous function and let us assume that there exists 
a constant 𝛼 > 0 and a non-negative function 𝛽 ∈ 𝐿1([𝑎, 𝑏],R+) such that

𝑓 (𝑠) ≤ 𝛼 + ∫

𝑠

𝑎
𝛽(𝜏)𝑓 (𝜏) d𝜏

for every 𝑠 ∈ [𝑎, 𝑏]. Then, for every 𝑠 ∈ [𝑎, 𝑏] the following inequality holds: 

𝑓 (𝑠) ≤ 𝛼𝑒‖𝛽‖𝐿1 . (A.1)

Proof. This statement follows as a particular case of [54, Theorem 5.1]. □

We remind that from the Jensen inequality it follows that 

‖𝑢‖𝐿1 ∶= ∫

1

0

𝑘
∑

𝑖=1
|𝑢𝑖(𝑡)| d𝑡 ≤

√

𝑘‖𝑢‖𝐿2 (A.2)

for every 𝑢 ∈  = 𝐿2([0, 1],R𝑘). In the next result we show that the flows generated by controls that are equi-bounded in 𝐿2 are in 
turn equi-bounded on compact subsets of R𝑛.

Lemma A.2. For every 𝑢 ∈  , let 𝛷𝑢 ∶ R𝑛 → R𝑛 be the flow defined as in (2.8), associated to the linear-control system (2.4) and 
corresponding to the admissible control 𝑢. Then, for every 𝑟 > 0 and for every 𝜌 > 0 there exists 𝑅 > 0 such that 

|𝛷𝑢(𝑥)| ≤ 𝑅 (A.3)

for every 𝑥 ∈ R𝑛 satisfying |𝑥| ≤ 𝑟 and for every 𝑢 ∈   with ‖𝑢‖𝐿2 ≤ 𝜌.

Proof. Let 𝑢 ∈   be an admissible control and let 𝑥 ∈ R𝑛 be the Cauchy datum for the initial-value problem (2.9). If we consider 
the curve 𝑥𝑢 ∶ [0, 1] → R𝑛 that solves the Cauchy problem (2.9), then from the sub-linear growth inequality (2.6) it descends that

|𝑥𝑢(𝑡)| ≤ |𝑥| + ∫

𝑡

0

𝑘
∑

𝑖=1
|𝐹𝑖(𝑥𝑢(𝑠))||𝑢𝑖(𝑠)| d𝑠

≤ |𝑥| + ∫

𝑡

0
𝐶(|𝑥𝑢(𝑠)| + 1)

𝑘
∑

𝑖=1
|𝑢𝑖(𝑠)| d𝑠

≤ |𝑥| +
√

𝑘𝐶‖𝑢‖𝐿2 + 𝐶 ∫

1

0
|𝑥𝑢(𝑠)|

𝑘
∑

𝑖=1
|𝑢𝑖(𝑠)| d𝑠

for every 𝑡 ∈ [0, 1], where we used (A.2) in the last passage. Because of Lemma  A.1, the previous inequality yields

|𝑥𝑢(𝑡)| ≤
(

|𝑥| + 𝐶
√

𝑘‖𝑢‖𝐿2

)

𝑒
√

𝑘‖𝑢‖𝐿2

for every 𝑡 ∈ [0, 1]. In particular, using 𝑡 = 1 in the last inequality and setting 𝑅 ∶= (𝑟 + 𝐶
√

𝑘𝜌)𝑒
√

𝑘𝜌, we deduce (A.3). □

We report below the proof of Lemma  2.3.

Proof of Lemma  2.3.  Let 𝑢 ∈   be an admissible control, and let us consider 𝑥1, 𝑥2 ∈ R𝑛. Let 𝑥1𝑢 , 𝑥2𝑢 ∶ [0, 1] → R𝑛 be the 
solutions of the Cauchy problem (2.9) corresponding to the control 𝑢 and to the initial data 𝑥1, 𝑥2, respectively. Then, using the 
Lipschitz-continuity condition (2.5), we compute

|𝑥1𝑢(𝑡) − 𝑥2𝑢(𝑡)| ≤ |𝑥1 − 𝑥2| + ∫

𝑡

0

𝑘
∑

𝑖=1
|𝐹𝑖(𝑥1𝑢(𝑠)) − 𝐹𝑖(𝑥2𝑢(𝑠))||𝑢𝑖(𝑠)| d𝑠

≤ |𝑥1 − 𝑥2| + 𝐿∫

𝑡

0
|𝑥1𝑢(𝑠) − 𝑥2𝑢(𝑠)|

𝑘
∑

𝑖=1
|𝑢𝑖(𝑠)| d𝑠

for every 𝑡 ∈ [0, 1]. Owing to Lemma  A.1 and (A.2), we deduce that

|𝑥1𝑢(𝑡) − 𝑥2𝑢(𝑡)| ≤ 𝑒𝐿
√

𝑘‖𝑢‖𝐿2
|𝑥1 − 𝑥2|

for every 𝑡 ∈ [0, 1]. In particular, setting 𝑡 = 1 in the last inequality, we obtain that 

|𝛷𝑢(𝑥1) −𝛷𝑢(𝑥2)| ≤ 𝑒𝐿
√

𝑘𝜌
|𝑥1 − 𝑥2| (A.4)

for every 𝑥1, 𝑥2 ∈ R𝑛 and for every 𝑢 ∈   such that ‖𝑢‖ ≤ 𝜌. This proves (2.10). □
𝐿2
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Proof of Proposition  2.4.  Let 𝐾 ⊂ R𝑛 be a compact set. For every 𝑥 ∈ 𝐾 and for every 𝑚 ∈ N ∪ {∞}, let 𝑥𝑢𝑚 ∶ [0, 1] → R𝑛 be the 
solution of the Cauchy problem (2.9) corresponding to the admissible control 𝑢𝑚 and with initial datum 𝑥𝑢𝑚 (0) = 𝑥. Because of [52, 
Lemma 7.1], we have that

lim
𝑚→∞

sup
𝑡∈[0,1]

|𝑥𝑢𝑚 (𝑡) − 𝑥𝑢∞ (𝑡)| = 0,

which in particular implies the point-wise convergence 
lim
𝑚→∞

|𝛷𝑢𝑚 (𝑥) −𝛷𝑢∞ (𝑥)| = 0 (A.5)

for every 𝑥 ∈ 𝐾. From the weak convergence 𝑢𝑚 ⇀𝐿2 𝑢∞ as 𝑚 → ∞, we deduce that there exists 𝜌 > 0 such that 

sup
𝑚∈N∪{∞}

‖𝑢𝑚‖𝐿2 ≤ 𝜌. (A.6)

Combining (A.6) with Lemma  A.2, we obtain that there exists 𝑅 > 0 such that 
sup
𝑥∈𝐾

|𝛷𝑢𝑚 (𝑥)| ≤ 𝑅 (A.7)

for every 𝑚 ∈ N ∪ {∞}. Moreover, from (A.6) and Lemma  2.3 it follows that there exists 𝐿′ > 0 such that 
|𝛷𝑢𝑚 (𝑥

1) −𝛷𝑢𝑚 (𝑥
2)| ≤ 𝐿′

|𝑥1 − 𝑥2| (A.8)

for every 𝑥1, 𝑥2 ∈ 𝐾 and for every 𝑚 ∈ N ∪ {∞}. Therefore, if we consider the restrictions 𝛷𝑢𝑚 |𝐾 ∶ 𝐾 → R𝑛 for every 𝑚 ∈ N ∪ {∞}, 
from (A.7)–(A.8) we deduce that the sequence of the restricted flows (𝛷𝑢𝑚 |𝐾 )𝑚∈N is equi-bounded and equi-Lipschitz. Then, applying 
Arzelà-Ascoli Theorem (see, e.g., [42, Theorem 4.25]), we deduce that (𝛷𝑢𝑚 |𝐾 )𝑚∈N is pre-compact with respect to the uniform 
convergence. On the other hand, the point-wise convergence (A.5) guarantees that the set of cluster elements of the sequence 
(𝛷𝑢𝑚 |𝐾 )𝑚∈N is reduced to {𝛷𝑢∞ |𝐾}. This proves (2.11) and concludes the proof. □

Data availability

Data will be made available on request.
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