Accepted Paper
Inserted: 9 dec 2022
Last Updated: 11 sep 2024
Journal: Communications in Contemporary Mathematics
Year: 2022
Abstract:
In the setting of finite-dimensional $\mathrm{RCD}(K,N)$ spaces, we characterize the $p$-Sobolev spaces for $p\in(1,\infty)$ and the space of functions of bounded variation in terms of the short-time behaviour of the heat flow. Moreover, we prove that Cheeger $p$-energies and total variations can be computed as limits of nonlocal functionals involving the heat kernel.