Published Paper
Inserted: 21 jul 2022
Last Updated: 10 jul 2025
Journal: J. Evol. Equations
Year: 2025
Abstract:
In the framework of Potential Theory we prove existence for the Perron-Weiner-Brelot-Bauer solution to the Dirichlet problem related to a family of totally degenerate, in the sense of Bony, differential operators. We also state and prove a Wiener-type criterium and an exterior cone condition for the regularity of a boundary point. Our results apply to a wide family of strongly degenerate operators that includes the following example $\mathcal{L} = t^2\Delta_x + \langle x, \nabla_y \rangle -\partial_t$, for $(x,y,t) \in \mathbb{R}^N \times \mathbb{R}^{N} \times \mathbb{R}$.
Download: