Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

A. Mielke - R. Rossi

Balanced-Viscosity solutions to infinite-dimensional multi-rate systems

created by rossi on 01 Dec 2021


Submitted Paper

Inserted: 1 dec 2021
Last Updated: 1 dec 2021

Year: 2021


We consider generalized gradient systems with rate-independent and rate-dependent dissipation potentials. We provide a general framework for performing a vanishing-viscosity limit leading to the notion of parametrized and true Balanced-Viscosity solutions that include a precise description of the jump behavior developing in this limit. Distinguishing an elastic variable $u$ having a viscous damping with relaxation time $\varepsilon^\alpha$ and an internal variable $z$ with relaxation time $\varepsilon$ we obtain different limits for the three cases $\alpha \in (0,1)$, $\alpha=1$ and $\alpha>1$. An application to a delamination problem shows that the theory is general enough to treat nontrivial models in continuum mechanics.


Credits | Cookie policy | HTML 5 | CSS 2.1