Published Paper
Inserted: 27 feb 2021
Last Updated: 14 jun 2023
Journal: Journal of Functional Analysis
Year: 2021
Doi: 10.13140/RG.2.2.19953.40807
Abstract:
We present a unified strategy to derive Hardy-Poincaré inequalities on bounded and unbounded domains. The approach allows proving a general Hardy-Poincaré inequality from which the classical Poincaré and Hardy inequalities immediately follow. The idea also applies to the more general context of variable exponent Sobolev spaces. The argument, concise and constructive, does not require a priori knowledge of compactness results and retrieves geometric information on the best constants.
Keywords: Poincare inequality, Hardy inequality, Variable Sobolev Spaces
Download: