*Preprint*

**Inserted:** 19 dec 2020

**Last Updated:** 19 dec 2020

**Year:** 2020

**Abstract:**

We study existence, uniqueness, and regularity properties of the Dirichlet problem related to fractional Dirichlet energy minimizers in a complete doubling metric measure space $(X,d_X,\mu_X)$ satisfying a $2$-Poincar\'e inequality. Given a bounded domain $\Omega\subset X$ with $\mu_X(X\setminus\Omega)>0$, and a function $f$ in the Besov class $B^\theta_{2,2}(X)\cap L^2(X)$, we study the problem of finding a function $u\in B^\theta_{2,2}(X)$ such that $u=f$ in $X\setminus\Omega$ and $\mathcal{E}_\theta(u,u)\le \mathcal{E}_\theta(h,h)$ whenever $h\in B^\theta_{2,2}(X)$ with $h=f$ in $X\setminus\Omega$. We show that such a solution always exists and that this solution is unique. We also show that the solution is locally H\"older continuous on $\Omega$, and satisfies a non-local maximum and strong maximum principle. Part of the results in this paper extend the work of Caffarelli and Silvestre in the Euclidean setting and Franchi and Ferrari in Carnot groups.

**Download:**