Published Paper
Inserted: 15 oct 2009
Last Updated: 2 dec 2013
Journal: J. Math. Anal. Appl.
Volume: 372
Number: (1)
Pages: 140-161
Year: 2010
Abstract:
For minimizers $u \in W^{1,p(x)}(\Omega)$ of quasiconvex integral functionals of the type
$$
{\mathcal F}u := \int\Omega f(x,Du(x))\, dx
$$
with $p(x)$ growth in the class ${\mathcal K} := \{ u \in W^{1,p(x)}(\Omega) : u \ge \psi\}$, where $\psi \in W^{1,p(x)}(\Omega)$ is a given obstacle function, we show estimates of Calderón-Zygmund type, i.e.
\begin{equation}
D\psi
{p(\cdot)} \in L{q} \Longrightarrow
Du
{p(\cdot)} \in Lq,
\end{equation}
for any $q > 1$, provided that the modulus of continuity $\omega$ of the exponent function $p$ satisfies the condition
\begin{equation}
\omega(\rho)\log(1\rho) \to 0 \quad \mbox{ as } \quad \rho \to 0.
\end{equation}
Keywords: Non standard growth, Calderón-Zygmund type estimates, obstacle problems
Download: