Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

D. Mazzoleni - B. Ruffini

A spectral shape optimization problem with a nonlocal competing term

created by ruffini on 07 Sep 2020
modified on 24 Mar 2021

[BibTeX]

Accepted Paper

Inserted: 7 sep 2020
Last Updated: 24 mar 2021

Journal: Calc. Var. PDE
Year: 2020
Notes:

32 pages


Abstract:

We study a spectral optimization problem made as the sum of the first Dirichlet Laplacian eigenvalue, and the relative strength of a Riesz-type interaction functional. We show that when the Riesz repulsion strength is below a critical value, existence of minimizers occurs and they are $C^{1,\alpha}-$regular. This allows to show by means of an expansion analysis that the ball is a rigid minimizer as the Riesz repulsion is small enough. Eventually we show that for certain regimes of the Riesz repulsion, regular minimizers do not exist.


Download:

Credits | Cookie policy | HTML 5 | CSS 2.1