Calculus of Variations and Geometric Measure Theory

A. Figalli - D. Jerison

A sharp Freiman type estimate for semisums in two and three dimensional Euclidean spaces

created by figalli on 19 Jul 2019
modified on 07 Oct 2022


Accepted Paper

Inserted: 19 jul 2019
Last Updated: 7 oct 2022

Journal: Ann. Sci. Éc. Norm. Supér.
Year: 2019


Freiman's Theorem is a classical result in additive combinatorics concerning the approximate structure of sets of integers that contain a high proportion of their internal sums. As a consequence, one can deduce an estimate for sets of real numbers: ''If $A\subset \mathbb R$ and $
$, then $A$ is close to its convex hull.'' In this paper we prove a sharp form of the analogous result in dimensions 2 and 3.