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Abstract. Freiman's Theorem is a classical result in additive combinatorics concerning
the approximate structure of sets of integers that contain a high proportion of their
internal sums. As a consequence, one can deduce an estimate for sets of real numbers:
�If A ⊂ R and

∣∣ 1
2 (A+A)

∣∣− |A| � |A|, then A is close to its convex hull.� In this paper
we prove a sharp form of the analogous result in dimensions 2 and 3.

1. Introduction

Given a set A ⊂ Rn, de�ne the semisum by

1
2
(A+ A) :=

{
x+y
2

: x ∈ A, y ∈ A
}
.

Evidently, 1
2
(A+A) ⊃ A, and for convex sets K, 1

2
(K +K) = K. Also,

∣∣1
2
(A+ A)

∣∣ = |A|
implies that A is equal to its convex hull co(A) minus a set of measure zero (see [4,
Théorème 6]).

The stability of this statement is a natural question that has already been extensively
investigated in the one dimensional case. Indeed, by approximating sets in R with �nite
unions of intervals, one can translate the problem to Z and in the discrete setting the
question becomes a well studied problem in additive combinatorics. More precisely, set

δ(A) :=
∣∣1
2
(A+ A)

∣∣− |A|,
where | · | denotes the outer Lebesgue measure. The following theorem can be obtained as
a corollary of a result of G. Freiman [10] about the structure of additive subsets of Z (see
[6] for more details, and also [3] and the references therein for more recent developments
on this one dimensional problem):

Theorem 1.1. Let A ⊂ R be a measurable set of positive Lebesgue measure, and assume
that δ(A) < |A|/2. Then

|co(A) \ A| ≤ 2 δ(A).
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Note that the assumption δ(A) < |A|/2 is necessary, as can be seen by considering the
set A = [0, 1] ∪ [R,R + 1] with R� 1.

In [6, Theorem 1.2] we extended Theorem 1.1 to every dimension, but with a dimen-
sional dependence in the exponent (see also [7] for a stability result when one considers
the semisum of two di�erent sets). Our result was as follows.

Theorem 1.2. Let n ≥ 2. There exist computable dimensional constants δn, Cn > 0 such
that if A ⊂ Rn is a measurable set of positive Lebesgue measure with δ(A) ≤ δn|A|, then

|co(A) \ A|
|A|

≤ Cn

(
δ(A)

|A|

)αn

, where αn :=
1

8 · 16n−2n!(n− 1)!
.

Note that the dimensional smallness assumption on δ(A) is necessary. Indeed, consider
t = 1/2 and the set

A := B1(0) ∪ {Re1}, R� 1.

Then |co(A) \ A| ≈ R is arbitrarily large, while δ(A) =
∣∣B1/2

(
R
2
e1
)∣∣ = 2−n|A|, hence

δn ≤ 2−n.

The proof in [6] is based on induction on dimension and Fubini-type arguments, and it
leads to a bad estimate for the exponent αn. In fact, we believe that αn = 1, which we
formulate more precisely in the following conjecture.

Conjecture 1.3. Suppose that A is a measurable subset of Rn, of positive Lebesgue mea-
sure. There exist computable constants Cn and dn > 0, depending only on n, such that
the following holds: if δ(A) ≤ dn|A|, then

|co(A) \ A| ≤ Cn δ(A).

In this paper we introduce a completely new strategy that allows us to prove this sharp
stability estimate in dimensions 2 and 3.

Theorem 1.4. Conjecture 1.3 is valid for n ≤ 3.

The exponent αn = 1 may look surprising at �rst sight, as most sharp stability results
for minimizers of geometric inequalities in dimension n ≥ 2 hold with the exponent 1/2.
In particular, the best possible stability exponent for the Brunn-Minkowski inequality on
convex sets is 1/2, see [8, 9]. In contrast, our stability inequality with exponent 1 is a�ne
invariant and additive under partitions of the set by convex tilings, and these properties
are crucial to the proof. Even though we have stopped at n = 3, the proof is by induction
on n and is organized with the hope that parts of it will ultimately apply to the case
of general n. There is at least one other stability inequality in which the exponent 1 is
optimal in all dimensions, namely the one proved in [5]. (Observe that the exponent 1
becomes natural when looking at critical points instead of minimizers, see for instance [2,
Theorem 1.2], but this is a consequence of the di�erent de�nition the �de�cit� δ.)
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2. Proof of Theorem 1.4

As the reader will see, many of the arguments for the proof of Theorem 1.4 are valid
in any dimension. For this reason we shall work with a generic n for most of the proof,
and we shall use some geometric considerations speci�c to n = 2 and n = 3 only towards
the end.

Basic considerations. Since Theorem 1.4 is known for n = 1 (see Theorem 1.1), we can
assume that n ≥ 2 and, by induction on dimension, we can also assume that Theorem 1.4
holds in dimension n− 1.

Denote the convex hull of A by K := co(A). Since the theorem is a�ne invariant, after
dilation we can assume, with no loss of generality, that |A| = 1. Assuming that δ(A)� 1,
it follows by [1] and/or [6, Theorem 1.2] that1

µ := |K \ A| � 1. (2.1)

In particular, 1 ≤ |K| ≤ 2. Therefore, using the lemma of F. John [11], up to an a�ne
transformation with Jacobian bounded from above and below by a dimensional constant,
we can assume that K satis�es

B1/
√
n ⊂ K ⊂ B√n (2.2)

for balls of radius 1/
√
n and

√
n centered at the origin.

By approximation,2 we can assume the set A is compact and that ∂K consists of �nitely
many polygonal faces. In particular, 1

2
(A+A) is compact, hence measurable. Furthermore,

since all vertices of the faces are extreme points, they belong to A. Finally, we may divide

1 Although this estimate can be deduced as a consequence of [1], that result does not provide com-
putable constants, as the proof is based on a contradiction argument relying on compactness.

2 One way to de�ne a suitable approximation is to consider a sequence of �nite sets Vk ⊂ Vk+1 ⊂ A
such that the polyhedra Pk = co(Vk) satisfy |Pk| → |co(A)| as k → ∞ and a sequence of compact
subsets A′

k ⊂ A such that |A′
k| → |A|. Then let Ak := Vk ∪ [A′

k ∩ (1− 1/k)Pk]. Since |Ak| → |A|, it
su�ces to prove the estimate of Theorem 1.4 for Ak and then let k →∞.
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each face into simplices without adding any vertices, so that ∂K can be seen as a �nite
union of simplices, all of whose vertices belong to A.

Reduction to a set A that contains (1−Cµ1/n)K. We get started with the proof by
showing that points of K that are su�ciently far from the boundary of K are in 1

2
(A+A).

Indeed, since ‖f ∗ g‖L∞ ≤ ‖f‖L∞‖g‖L1 for any pair of functions f and g,

|χK/2 ∗ χK/2(x)− χA/2 ∗ χA/2(x)| ≤ |χA/2 ∗ (χK/2 − χA/2)|(x)

+ |χA/2 ∗ (χA/2 − χA/2)|(x)

≤ 2‖χ(K\A)/2‖L1 = 21−n|K \ A|
≤ |K \ A| = µ ∀x ∈ Rn.

(2.3)

Because K satis�es (2.2), there is a dimensional constant ĉ > 0 such that

χK/2 ∗ χK/2(x) ≥ ĉ dist(x, ∂K)n ∀x ∈ K, (2.4)

therefore
{x ∈ K : ĉ dist(x, ∂K)n > µ} ⊂ {χK/2 ∗ χK/2 > µ}. (2.5)

Since

0 < χA/2 ∗ χA/2(x) =

∫
Rn

χA/2(y)χA/2(x− y) dy

⇒ ∃ y ∈ A s.t. y ∈ A/2, x− y ∈ A/2
⇒ x ∈ 1

2
(A+ A),

(2.6)

it follows from (2.3) and (2.5) that

(1− Ĉµ1/n)K ⊂ {ĉ dist(·, ∂K)n > µ} ⊂ {χK/2 ∗ χK/2 > µ} ⊂ 1
2
(A+ A)

for some dimensional constant Ĉ. Consequently,∣∣[(1− Ĉµ1/n)K] \ A
∣∣ ≤ δ(A). (2.7)

Denote
ρ := 2Ĉµ1/n, A′ := [(1− ρ)K] ∪ A.

Then, since A ⊂ K and

max
{

1
2
(1− ρ) + 1

2
, 1− ρ

}
= 1− ρ/2,

we have
1
2
(A′ + A′) =

[
1
2
(A+ A)

]
∪
[
1
2

(
(1− ρ)K + A

)]
∪ (1− ρ)K

⊂
[
1
2
(A+ A)

]
∪
[
1
2

(
(1− ρ)K +K

)]
∪ (1− ρ)K

=
[
1
2
(A+ A)

]
∪ (1− ρ/2)K.

Therefore, since ρ/2 = Ĉµ1/n, thanks to (2.7) we get

δ(A′) ≤ δ(A) +
∣∣[(1− ρ/2)K] \ A

∣∣ ≤ 2δ(A).
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Also, again by (2.7),
|K \ A| ≤ |K \ A′|+ δ(A).

Since co(A′) = K, if we prove the theorem with A′ in place of A, then the result for A
will follow immediately. Thus, after replacing A with A′, we can assume that

A ⊃ (1− ρ)K with ρ := 2Ĉµ1/n. (2.8)

Recall that, by choosing dn small enough, we can ensure that µ (and hence ρ) is arbitrarily
small.

Splitting A into �simpler� sets. Denote by {Σi}Mi=1 the simplices whose union is ∂K,
let Ki be the convex hull of Σi with the origin, and de�ne

Ai := A ∩Ki.

Note that (2.8) implies

(1− ρ)Ki ⊂ Ai, ρ = 2Ĉµ1/n � 1. (2.9)

Also, ∑
i

|Ki \ Ai| = |K \ A|. (2.10)

Moreover, since the sets {Ki}Mi=1 are convex and disjoint, also the sets
{

1
2
(Ai + Ai)

}M
i=1

are disjoint, therefore∑
i

∣∣1
2
(Ai + Ai)

∣∣ =

∣∣∣∣⋃
i

1
2
(Ai + Ai)

∣∣∣∣ ≤ ∣∣12(A+ A)
∣∣.

Since
∑

i |Ai| = |A|, this proves that∑
i

δ(Ai) ≤ δ(A). (2.11)

Main Lemma and conclusion. Our main lemma is the following.

Lemma 2.1. Let Ai, Ki, and ρ be as above. Then, for n ≤ 3, there exist dimensional
constants C̄n ≥ 1 and ρn > 0 such that

|Ki \ Ai| ≤ C̄nδ(Ai). (2.12)

provided ρ ≤ ρn.

Assuming Lemma 2.1 has been proved, Theorem 1.4 follows immediately. Indeed,
choosing dn su�ciently small, it follows by [6, Theorem 1.2] and the de�nitions of ρ and
µ (see (2.8) and (2.1)) that ρ ≤ ρn provided δ(A) ≤ dn. Then, adding the inequalities
(2.12), (2.10), and (2.11), we �nd

|K \ A| =
∑
i

|Ki \ Ai| ≤ C̄n
∑
i

δ(Ai) ≤ C̄n δ(A),
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as desired. Thus, we are left with proving Lemma 2.1.

Proof of Lemma 2.1. We begin by writing the lemma in a di�erent normalized form.
Fix an index i. Since inequality (2.12) is invariant under a�ne transformations, we may
take Σi to be an equilateral simplex of (n− 1)-Hausdor� measure 1, centered on the xn-
axis and contained in the hyperplane {xn = 0}. Moreover, we may move the vertex of Ki

from the origin to the point
(
0, . . . , 0, 1

2ρ

)
, so that (2.8) implies that Ki ∩

{
xn ≥ 1

2

}
⊂ Ai.

It su�ces to prove (2.12) in this normalized situation.

To simplify the notation further, we remove the subscript i, renaming Σi, Ki, Ai, with
the letters Σ, K, A, respectively. With these changes, we can rewrite Lemma 2.1 as
follows. (Note that, in this new normalization, |K| is comparable to 1/ρ and (2.2) is
not satis�ed anymore.) Here and in the sequel, Hs denotes the s-dimensional Hausdor�
measure.

Lemma 2.2. Let Σ be an equilateral (n− 1)-simplex centered on the xn-axis satisfying

Hn−1(Σ) = 1, Σ ⊂ {xn = 0}.

Let K be the n-simplex with one vertex at
(
0, . . . , 0, 1

2ρ

)
and base Σ. Suppose that A is a

compact set satisfying

K ∩
{
xn ≥ 1

2

}
⊂ A ⊂ K,

and that all of the vertices of Σ belong to A. Then, for n ≤ 3, there exist dimensional
constants C̄n ≥ 1 and ρn > 0 such that

|K \ A| ≤ C̄n δ(A)

provided ρ ≤ ρn.

Proof of Lemma 2.2. The rough idea of the proof is to start with the set

K ∩ {1 ≤ xn ≤ 2} ⊂ A

and use the fact that the vertices of Σ belong to A in order to apply the sum operation
repeatedly to generate more points of A up to errors estimated by δ(A). As we shall see, a
more re�ned argument involving several steps will be needed. The �rst �ve steps, proving
(2.15), are valid in all dimensions, but the sixth step is restricted to dimensions 2 and 3.

Step 1: Setting up an iteration. Let ε > 0 be a small dimensional constant to be �xed
later, set γ := 1

2
+ ε, and de�ne

Kj := K ∩ {γj ≤ xn ≤ 2γj} ∀ j ≥ 0. (2.13)

Note that, with this de�nition, consecutive sets Kj are not completely disjoint but rather
overlap in a fraction of order ε of their total volume.
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Let the vertices of Σ be denoted by {x̂k}nk=1. We de�ne the following sets iteratively:

E0 := K0, Ej+1 := Kj+1 ∩
( n⋃
k=1

1
2
(x̂k + Ej) ∪ Ej ∪ (1− ε)K

)
. (2.14)

Here (1− ε)K denotes the dilation of K with respect to the origin, namely the n-simplex
with one vertex at

(
0, . . . , 0, 1−ε

2ρ

)
and base (1− ε)Σ. We note that Ej = Kj when n = 2.

Set E := ∪j≥0Ej. We claim that there exists a dimensional constant C0 such that

|E \ A| ≤ C0 δ(A). (2.15)

The proof of this claim will be carried out in Steps 2�5 below.

Step 2: Setting the notation. De�ne the numbers

νj := |Ej \ A|, δj :=
∣∣∣([12(A+ A)

]
\ A
)
∩Kj

∣∣∣, (2.16)

and

σj :=
∣∣[(1− ε)K ∩Kj ∩Kj+1

]
\ A
∣∣. (2.17)

Note that

|Kj| ≥ |Ej| ≥ |(1− ε)K ∩ {γj ≤ xn ≤ 2γj}| = (1− ε)n−1|Kj|. (2.18)

We claim that there exist dimensional constants M,N ≥ 1, with N integer, such that

νj+1 ≤
8

9
νj + σj +M

N∑
i=0

δj+i ∀ j ≥ 0. (2.19)

The proof of (2.19) will be split over Step 3 and Steps 4(a)-4(e) below.

Step 3: The case νj large. Consider �rst the case

νj ≥
2

3
|Ej|. (2.20)

Note that, for ρ � 1, the sets Kj are almost vertical cylinders of height γj, and more
precisely (recalling that Hn−1(Σ) = Hn−1(K ∩ {xn = 0}) = 1)

γj ≥ |Kj| ≥ (1− Cρ)γj, (2.21)

where C > 0 is a dimensional constant. This implies that |Kj+1| =
(
1 + O(ρ)

)
γ|Kj|, so

it follows by (2.18) that

νj ≥
2

3
|Ej| ≥

2

3
(1− ε)n−1|Kj| =

2(1− ε)n−1

3γ
(
1 +O(ρ)

) |Kj+1| ≥
2(1− ε)n−1

3γ
(
1 +O(ρ)

)νj+1,

which proves (2.19) because 3γ
2(1−ε)n−1

(
1 + O(ρ)

)
≤ 8

9
provided ε and ρ are su�ciently

small.
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Step 4: The case νj not too large. We now consider the case

νj ≤
2

3
|Ej|. (2.22)

Step 4(a): Finding some nontrivial fraction of A near the vertices. Using (2.18), it
follows that

|A ∩Kj| ≥ |A ∩ Ej| = |Ej| − νj ≥
1

3
|Ej| ≥

1

3
(1− ε)n−1|Kj| ≥

1

4
|Kj|. (2.23)

Now, for any k = 1, . . . , n, consider the sets

Akj,` := (1− 2−`)x̂k + 2−`(A ∩Kj) ∀ ` ≥ 0,

and note that, because of (2.23),

|Akj,`| = 2−n`|A ∩Kj| ≥ 2−n`−2|Kj|. (2.24)

Our goal is to show that, provided the numbers δj+i are small enough for su�ciently
many indices i, then Akj,` ∩ A has almost the same measure as Akj,`. To prove this, for
convenience we de�ne the auxiliary numbers

δkj,` :=
∣∣([1

2
(A+ A)

]
\ A
)
∩ Akj,`

∣∣ ∀ ` ≥ 0.

Also, we iteratively de�ne

Bk
j,0 := A ∩Kj, Bk

j,`+1 := 1
2

(
x̂k + (A ∩Bk

j,`)
)
.

Since x̂k ∈ A, one can easily see by induction on ` that the following inclusion holds:

1
2

(
x̂k + (A ∩Bk

j,`)
)
⊂
[
1
2
(A+ A)

]
∩ Akj,`+1 ∀ ` ≥ 0.

Therefore

|A ∩Bk
j,`+1| ≥

∣∣1
2

(
x̂k + A ∩Bk

j,`

)∣∣− δkj,`+1 =
1

2n
|A ∩Bk

j,`| − δkj,`+1 ∀ ` ≥ 0.

Since |A ∩Bk
j,0| = |A ∩Kj| = 2n`|Akj,`| and A ∩Bk

j,` ⊂ Akj,`, we deduce that

|A ∩ Akj,`| ≥ |A ∩Bk
j,`| ≥ |Akj,`| −

∑̀
r=1

δkj,r ∀ ` ≥ 1. (2.25)

We now start to �x some parameters. Choose an integer m such that

ε2 ≤ 2−m ≤ 2ε2, (2.26)

and then choose N large enough so that

2−(m+1) ≤ γN ≤ 2−m. (2.27)
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With these de�nitions, it follows that ∪mr=1A
k
j,r ⊂ ∪Ni=0Kj+i. Therefore, since the sets

{Akj,r}1≤r≤m are disjoint, it follows that

m∑
r=1

δkj,r ≤
N∑
i=1

δj+i.

Hence, by (2.25) applied with ` = m, we get

|A ∩ Akj,m| ≥ |Akj,m| −
N∑
i=1

δj+i. (2.28)

We are now ready to prove (2.19). Consider �rst the case in which

N∑
i=1

δj+i ≥ ε|Akj,m|.

Then, since νj+1 ≤ |Kj+1| ≤ |Kj| for ρ small enough (see (2.21)), recalling (2.24) and that
γ−N ≤ 2−m (see (2.27)), we deduce that

N∑
i=1

δj+i ≥
ε

4
γnN |Kj| ≥

ε

4
γnNνj+1,

so (2.19) follows immediately with M = 4γ−nNε−1.

Next, we must consider the case in which
∑N

i=1 δj+i ≤ ε|Akj,m|. In that case, (2.28) gives

|A ∩ Akj,m| ≥ (1− ε)|Akj,m| ∀ k = 1, . . . , n. (2.29)

In other words, we proved that A covers almost all the sets {Akj,m}nk=1, which are small
rescaled copies of A∩Kj that live in a ε2 neighborhood of the n vertices x̂k (recall (2.26)).

Note that whereas the sets Akj,m for di�erent k are translates of each other, the sets

A∩Akj,m are not. To enforce this additional property, we �rst translate them to the same
point, intersect them, and then move them back. More precisely, we set

Âj,m :=
n⋂
k=1

(
(A ∩ Akj,m)− (1− 2−m)x̂k

)
, Âkj,m := Âj,m + (1− 2−m)x̂k.

Now, thanks to (2.29),

Âkj,m ⊂ A ∩ Akj,m, |Âkj,m| ≥ (1− nε)|Akj,m| ∀ k = 1, . . . , n, (2.30)

and Âkj,m and Âk
′
j,m are the same set for any k, k′ ∈ {1, . . . , n}, up to a translation orthog-

onal to the xn axis. Also, it follows by (2.30), (2.24), and (2.21), that

|Âkj,m| ≤ |Akj,m| = 2−nm|A ∩Kj| ≤ 2−nm|Kj| ≤ 2−nmγj,

|Âkj,m| ≥ (1− nε)|Akj,m| ≥ (1− nε)2−nm−2|Kj| ≥ 2−nm−3γj,
(2.31)
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provided ε and ρ are su�ciently small.

Step 4(b): Finding an almost full slice in A near {xn = 0} using Fubini and induction.
We look at the slab

Sj,m := K ∩ {2−mγj ≤ xn ≤ 2−m+1γj},

and de�ne δj,m :=
∣∣([1

2
(A+ A)

]
\ A
)
∩ Sj,m

∣∣ . Note that Akj,m ⊂ Sj,m for any k = 1, . . . , n.

Recall that dn−1 is the dimensional constant corresponding to Theorem 1.4 in dimension
n− 1. It will su�ce to prove the existence of suitable slice inside Sj,m assuming

δj,m ≤ ε2n+8dn−1|Âkj,m| (2.32)

(note that |Âkj,m| is independent of k). Indeed, if not, since Sj,k ⊂ Kj+N−1∪Kj+N it holds

δj,m ≤ δj+N−1 + δj+N . (2.33)

Hence, if (2.32) fails then (recall (2.31) and (2.27))

δj+N−1 + δj+N ≥ ε2n+8dn−1|Âkj,m| ≥ ε2n+8dn−1(1− nε)2−nm−2|Kj| ≥
ε2n+8dn−1γ

nN

8
νj+1,

which proves (2.19) with M = 8γ−nNε−2n−8d−1n−1.

Now we can proceed under the additional assumption (2.32). De�ne

At := A ∩ {xn = t} ⊃
(
∪nk=1(Â

k
j,m)
)
∩ {xn = t} =: Ât,

and consider δ(At) = Hn−1(1
2
(At + At) \ At

)
. Since Âkj,m ⊂ A, it follows by (2.32) and

(2.31) that

∫ 2−m+1γj

2−mγj
δ(At) dt ≤ δj,m ≤ ε2n+8dn−1|Âkj,m| ≤ ε2n+8dn−12

−nmγj. (2.34)

Also, recalling (2.31), it follows that

1

2−mγj

∫ 2−m+1γj

2−mγj
Hn−1(Ât) dt ≥

1

2−mγj

n∑
k=1

|Âkj,m| ≥ n2−(n+1)m−3.
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Hence, since Hn−1(Ât) ≤ Hn−1(At) ≤ 1, there exists a set J ⊂ [2−mγj, 2−m+1γj] such
that3

H1(J) ≥ n2−(n+2)m−4γj, with Hn−1(Ât) ≥ n2−(n+1)m−4 ∀ t ∈ J.
Combining this estimate with (2.34), we deduce that

1

H1(J)

∫
J

δ(At) ≤
δj,m

n2−(n+2)m−4γj
≤ ε2n+8dn−12

−nmγj

n2−(n+2)m−4γj

≤ ε2n+8dn−12
(n+3)m+8

n2
Hn−1(Ât) ≤

ε2n+8dn−12
(n+3)m+8

n2
Hn−1(At) ∀ t ∈ J.

Recalling (2.26), this proves that

1

H1(J)

∫
J

δ(At) ≤
2n+6

nεn+2γj
δj,m ≤

2n+11

n2
ε2dn−1Hn−1(Ât) ∀ t ∈ J.

In particular, choosing ε su�ciently small, by the Mean Value Theorem we can �nd
t ∈ [2−mγj, 21−mγj] such that

δ(At) ≤
2n+6

nεn+2γj
δj,m ≤ ε3/2dn−1Hn−1(Ât), Hn−1(Ât) > 0.

Hence, since Hn−1(Ât) ≤ Hn−1(At), we can apply Theorem 1.4 to At and we deduce that

Hn−1(co(At) \ At) ≤ Cn−1δ(At) ≤ Cn−1
2n+6

nεn+2γj
δj,m ≤ Cn−1ε

3/2dn−1. (2.35)

Also, because Hn−1(Ât) > 0, it follows that co(At) contains at least one point in Âkj,m ∩
{xn = t} for any k = 1, . . . , n. Recalling that Âkj,m ⊂ (1−2−m)x̂k+2−mKj and that 2−m ≤
2ε2 (see (2.26)), it follows that co(At) contains n points {x̂kt }nk=1 such that |x̂kt − x̂k| ≤ Cε2,
thus

co(At) ⊃
(
(1− ε)K

)
∩ {xn = t}. (2.36)

In the next steps we use the slice At and semisum to control a large fraction of νj+1.
Because the argument in dimension n = 2 is much easier than in higher dimensions, for
convenience of the reader we �rst treat this case.

Step 4(c): Use the slice from Step 4(b) and semisum to control a large fraction of νj+1:
the case n = 2. Thanks to (2.35) and (2.36), there exists a point z = (z1, t) ∈ A ⊂ R2

3 This estimate follows by the following general simple fact: If f : I ⊂ R → [0, 1] satis�es
1

H1(I)

∫
I
f(t) dt ≥ η > 0, then there exists J ⊂ I such that

H1(J) ≥ η

2
H1(I) and f(t) ≥ η

2
∀ t ∈ J.

Indeed, if this was false, we would have that f ≤ η/2 on a set I ′ ⊂ I of measure larger than
(1− η/2)H1(I), therefore (recall that 0 ≤ f ≤ 1)∫

I

f(t) dt ≤
∫
I′
f(t) dt+

∫
I\I′

f(t) dt ≤ H1(I ′)
η

2
+H1(I \ I ′) ≤

(
1− η

2

)η
2
+
η

2
< η,

a contradiction.
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with |z1| ≤ Cε3/4. In particular, recalling that t ∼ ε2γj and that γ = 1
2

+ ε, we have, for
ε su�ciently small,(

1
4
K
)
∩ (Kj+1 \Kj) ⊂

(
1
4
K
)
∩
{
γj+t
2
≤ x2 ≤ 2γj+t

2

}
⊂ 1

2
(z +Kj) ⊂ Kj+1 ∪Kj+2

where 1
4
K denotes the dilation of K by a factor 1

4
with respect to the origin. Finally,

since Kj = Ej for n = 2, the de�nition of νj and δj (see (2.16)) yields∣∣[(1
4
K
)
∩ (Kj+1 \Kj)

]
\ A
∣∣ ≤ ∣∣1

2

(
z + (Kj \ A)

)∣∣+ δj+1 + δj+2

≤ 1

4
νj + δj+1 + δj+2. (2.37)

Step 4(d): Use the slice from Step 4(b) and semisum to control a large fraction of νj+1:
the case n ≥ 3. Given s ≥ 0, de�ne Ks,ε :=

(
(1− ε)K

)
∩ {xn = s} and As,ε := A ∩Ks,ε.

Then
1
2

(
As,ε + At,ε

)
\ A s+t

2
,ε ⊂

[
1
2
(A+ A) \ A

]
∩
(
(1− ε)K

)
∩
{
xn = s+t

2

}
.

Using the above equation for s ∈ [γj, 2γj], and noticing that

Kj+1 \Kj ⊂ K ∩
{
γj+t
2
≤ xn ≤ 2γj+t

2

}
⊂ Kj+1 ∪Kj+2

for ε su�ciently small, we get∣∣[(1− ε)K ∩ (Kj+1 \Kj)
]
\ A
∣∣ ≤ ∣∣∣(1− ε)K ∩ {γj+t2

≤ xn ≤ 2γj+t
2

}
\ A
∣∣∣

≤
∣∣∣(1− ε)K ∩ {γj+t2

≤ xn ≤ 2γj+t
2

}
\ 1

2
(A+ A)

∣∣∣
+
∣∣∣([12(A+ A)

]
\ A
)
∩
{
γj+t
2
≤ xn ≤ 2γj+t

2

}∣∣∣
≤
∫ 2γj+t

2

γj+t
2

Hn−1(Kτ,ε \ 1
2
(A+ A)

)
dτ + δj+1 + δj+2

=
1

2

∫ 2γj

γj
Hn−1(K s+t

2
,ε \ 1

2
(A+ A)

)
ds+ δj+1 + δj+2

≤ 1

2

∫ 2γj

γj
Hn−1(K s+t

2
,ε \ 1

2
(As,ε + At,ε)

)
ds+ δj+1 + δj+2.

De�ne the �vertical� semisum of two sets Fs and Ft contained respectively in two levels
{xn = s} and {xn = t} by

1
2
(Fs +v Ft) :=

{
1
2
(z + w, s+ t) : (z, s) ∈ Fs, (w, t) ∈ Ft, (1− 2ρs)w = (1− 2ρt)z

}
.

Note that if ρ = 0 this is just the semisum in the vertical variable (since in that case
z = w). In our case, since K is not quite a vertical cylinder but instead has a small angle
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2ρ, we are asking that the points (z, s) and (w, t) be collinear with the vertex
(
0, 1

2ρ

)
of

K. One can easily check that

Hn−1(K s+t
2
,ε \ 1

2
(As,ε +v At,ε)

)
≤
(
1 +O(ρ)

)(
Hn−1(Ks,ε \ As,ε) +Hn−1(Kt,ε \ At,ε)

)
.

Indeed, the vertical semisum can be viewed as a semisum of suitable 1 + O(ρ) dilates of
(n− 1)-dimensional sets and the inequality follows from the (n− 1)-dimensional Brunn-
Minkowski inequality. Also, we observe that

1
2
(As,ε + At,ε) ⊃ 1

2
(As,ε +v At,ε).

Combining together all these bounds, and recalling (2.35), (2.36), and (2.33), we get∣∣[(1− ε)K ∩ (Kj+1 \Kj)
]
\ A
∣∣ ≤ 1 +O(ρ)

2

∫ 2γj

γj
Hn−1(Ks,ε \ As,ε)

)
ds

+
1 +O(ρ)

2

∫ 2γj

γj
Hn−1(Kt,ε \ At,ε)

)
ds+ δj+1 + δj+2

≤ 1 +O(ρ)

2

∣∣((1− ε)K) ∩Kj

]
\ A
∣∣

+
1 +O(ρ)

2

∫ 2γj

γj
Cn−1

2n+6

nεn+2γj
δj,m ds+ δj+1 + δj+2

≤ 1 +O(ρ)

2

∣∣((1− ε)K) ∩Kj

]
\ A
∣∣

+ Cn−1
2n+6

nεn+2
(δj+N−1 + δj+N) + δj+1 + δj+2

Recalling the de�nitions of Ej, νj, and σj (see (2.14), (2.16), and (2.17)), this proves that∣∣[(1−ε)K∩Kj+1

]
\A
∣∣ ≤ 1 +O(ρ)

2
νj+σj+Cn−1

2n+6

nεn+2
(δj+N−1+δj+N)+δj+1+δj+2. (2.38)

Step 4(e): Use semisum to control the remaining fraction of νj+1. Since x̂k ∈ A, we see
that ( n⋃

k=1

1
2
(x̂k + Ej)

)
\ 1

2
(A+ A) ⊂

( n⋃
k=1

1
2
(x̂k + (Ej \ A))

)
,

therefore, since ∪nk=1
1
2
(x̂k + Ej) ⊂ Kj+1, recalling the de�nition of νj and δj (see (2.16))

we get ∣∣∣∣( n⋃
k=1

1
2
(x̂k + Ej)

)
\ A
∣∣∣∣ ≤ n

2n
|Ej \ A|+ δj+1 =

n

2n
νj + δj+1. (2.39)
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Noticing that for n = 2 we have

Ej = Kj and

( 2⋃
k=1

1
2
(x̂k +Kj)

)
∪
[(

1
4
K
)
∩Kj+1

]
⊃ Kj+1,

combining (2.39) with (2.37) and (2.38), and noticing that n2−n ≤ 3/8 for n ≥ 3, we
obtain

νj+1 ≤
(

1 +O(ρ)

2
+

3

8

)
νj + σj +M

N∑
i=0

δj+i

for some dimensional constant M , concluding the proof of (2.19).

Step 5: Proof of (2.15). Since ν0 = 0 (because K0 ⊂ A by assumption), by summing
(2.19) with respect to j we obtain∑

j≥0

νj ≤
8

9

(∑
j≥0

νj

)
+
∑
j≥0

σj +M
∑
j≥1

N∑
i=0

δj+i.

Moreover, the last term can be bounded by

MN
∑
j≥0

δj = MN
∑
j≥0

δ2j +MN
∑
j≥0

δ2j+1.

Noticing that the sets {K2j}j≥0 and the sets {K2j+1}j≥0 are disjoint, it follows that∑
j≥0

δ2j ≤ δ(A),
∑
j≥0

δ2j+1 ≤ δ(A).

Hence, combining these estimates together, we proved that

1

9

(∑
j≥0

νj

)
≤
∑
j≥0

σj + 2MN δ(A).

Since
∑

j≥0 νj ≥ |E \ A|, we get
1

9
|E \ A| ≤

∑
j≥0

σj + 2MN δ(A).

Note that this would prove (2.15) if we did not have the additional term
∑

j≥0 σj. The
idea to get rid of this additional term is the following: since the volume of Kj ∩Kj+1 is
only a fraction ε of the volume of Kj and Kj+1, if A were uniformly distributed inside the
sets Kj, then we would have

σj ≤ Cε(νj + νj+1),

from which we would conclude easily. Although A need not be uniformly distributed, we
can prove analogous inequalities starting our iteration at many levels, and then add them
up so that the average overlap of A with Kj ∩Kj+1 is su�ciently uniform.
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Thus, to handle the terms σj, we take τ ∈ [γ, 1] and de�ne the sets

Kτ
j := K ∩ {τγj ≤ xn ≤ 2τγj}

Eτ
0 := Kτ

0 , Eτ
j+1 :=

( n⋃
k=1

1
2
(x̂k + Eτ

j )

)
∪
(
(1− ε)K ∩ {−2τγj ≤ xn ≤ −τγj}

)
,

and Eτ := ∪j≥0Eτ
j , and the numbers

ντj := |Eτ
j \ A|, δτj :=

∣∣∣([12(A+ A)
]
\ A
)
∩Kτ

j

∣∣∣,
and

στj :=
∣∣[(1− ε)K ∩Kτ

j ∩Kτ
j+1

]
\ A
∣∣.

Now, if we repeat the very same proof as above with these new sets, we obtain

1

9
|Eτ \ A| ≤

∑
j≥0

στj + 2MN δ(A)

(note that we still have Kτ
0 ⊂ A, therefore ντj = 0). Noticing that E = E1 ⊂ Eτ for all

τ ∈ (γ, 1) (in other words, the sets Eτ are monotonically decreasing in τ), this proves
that

1

9
|E \ A| ≤

∑
j≥0

στj + 2MN δ(A). (2.40)

We now observe that, since γ = 1
2

+ ε,

Kτ
j ∩Kτ

j+1 = K ∩ {τγj+1 ≤ xn ≤ 2τγj} = K ∩ {τγj ≤ xn ≤ (1 + 2ε)τγj},
hence the sets {

Kτm
j ∩K

τm
j+1 : j ≥ 0, τm = 1− 2mε, m = 0, . . . , b γ

4ε
c
}

are disjoint. This implies that

b γ
4ε
c∑

m=0

∑
j≥0

στmj ≤ |E \ A|,

that combined with (2.40) gives

b γ
4ε
c |E \ A| ≤ 9

b γ
4ε
c∑

m=0

∑
j≥0

στmj + 18 ·MNb γ
4ε
c δ(A) ≤ 9|E \ A|+ 18 ·MNb γ

4ε
c δ(A).

Choosing ε su�ciently small that b γ
4ε
c ≥ 10 proves the desired result (2.15).

Step 6: Getting control on A on all of K. Note that (2.15) provides control on the
measure of A inside E. In particular, since Ej = Kj when n = 2, this already proves
Lemma 2.1 (and therefore Theorem 1.4) in the case n = 2. Thus for the remainder of the
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proof we may assume n = 3. In this case, we will enlarge the set E on which we control
the measure of A to all of K.

For 0 ≤ t < 1/2ρ, set
Σ(t) = K ∩ {x3 = t}.

By hypothesis, Σ(t) ∩ A = Σ(t) for t ≥ 1/2. Our approach to estimating Σ(t) \ A for
0 ≤ t < 1/2 will be to intersect Σ(t)\E with segments parallel to sides of the triangle Σ(t)
near the boundary and show that these missing parts are su�ciently small and atomized
that we can apply the following one-dimensional lemma.

Lemma 2.3. Let J ⊂ R be an interval. Suppose that A ⊂ J and E ⊂ J , and

χE/2 ∗ χE/2(x) ≥ 1

10
dist(x, ∂J) for all x ∈ J. (2.41)

Then
|J \ A| ≤ |1

2
(A+ A) \ A|+ 20|E \ A|.

Proof. The proof of (2.3) applies with K replaced by E and shows that

|χE/2 ∗ χE/2(x)− χA/2 ∗ χA/2(x)| ≤ |E \ A|.
Therefore, if x ∈ J and dist(x, ∂J) > 10 |E \ A|, we can use (2.41) to obtain

χA/2 ∗ χA/2(x) ≥ χE/2 ∗ χE/2(x)− |E \ A| > |E \ A| − |E \ A| = 0,

thus x ∈ 1
2
(A+ A). Since

|{x ∈ J : dist(x, ∂J) > 10 |E \ A|}| ≤ 20 |E \ A|,
it follows that |J \ 1

2
(A+ A)| ≤ 20 |E \ A|, and consequently

|J \ A| ≤ |1
2
(A+ A) \ A|+ |J \ 1

2
(A+ A)| ≤ |1

2
(A+ A) \ A|+ 20 |E \ A|.

�

To describe the complement of E in Σ(t), we introduce several more notations. Recall
that the vertices of Σ = Σ(0) are x̂i, i = 1, 2, 3, so that the vertices of Σ(t) are given by
x̂i(t) = (1−2ρt)x̂i+(0, 0, 1

2ρ
). Denote the sides of Σ(t) by Σi(t), with the convention that

the endpoints of Σ1(t) are x̂2(t) and x̂3(t), and likewise for permutations of the indices.
Since Σ has sidelength

s0 := 2 · 3−1/4,
the length of the sides of Σi(t) is given by

s(t) := H1(Σi(t)), s(t) = (1− 2ρt)s0.

Let m ≥ 1 be such that 2−m ≤ t < 2−m+1. We will de�ne, iteratively, the set of open
subintervals Ij,k(t) of Σ1(t), with j = 1, . . . m and k = 1, . . . , 2j−1, whose union is the
complement of E in Σ1(t). To begin, set

I1,1(t) := Σ1(t) \
(
1
2
(x̂2 + Σ1(2t)) ∪ 1

2
(x̂3 + Σ1(2t))

)
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Then I1,1(t) is the open interval centered at the midpoint of Σ1(t) of length s(t)− s(2t) =
2ρts0. The set Σ1(t) \ I1,1(t) consists of two closed segments. De�ne I2,1(t) and I2,2(t) to
be the open intervals with the same length as I1,1(t) centered at the midpoints of these
two closed intervals. Continue iteratively, given 2` − 1 open subintervals of Σ1(t)

Ij,k(t), j = 1, . . . , `, k = 1, . . . , 2j−1,

of equal length 2ρts0 and equal spacing. The intervals {I`+1,k(t)}1≤k≤2` are of length 2ρts0
and centered at the midpoints of the closed intervals complementary to the intervals we
have already de�ned.

Set
V` := {i2−`x̂2 + (2` − i− 1)2−`x̂3 : i = 0, . . . , 2` − 1}

Then, by construction,

E ∩ Σ1(t) =
⋃
v∈Vm

(
v + 2−mΣ1(2

mt)
)

= Σ1(t) \
m⋃
j=1

2j−1⋃
k=1

Ij,k(t) (2.42)

There is, of course, a similar description of E ∩ Σ2(t) and E ∩ Σ3(t).

To describe the rest of E ∩ Σ(t), we introduce more notation. For any 1-dimensional
segment I in R3, given h > 0 and α ≥ 1, de�ne a ��ared neighborhood" of I by

Fh,α(I) := {x ∈ R3 : dist(x, I∗) ≤ h, dist(x, I) ≤ α dist(x, I∗)}
where I∗ denotes the line containing I. Note that Fh,α(I) is symmetric with respect to
I∗, and consists of the union of two trapezoids with I as shorter base.

For 2−m ≤ t < 2−m+1, set

Sα1 (t) :=
m⋃
j=1

2j−1⋃
k=1

Fs02−j+1ε,α(Ij,k(t)).

(See Figures 1 and 2.)

Figure 1. Sα1 (t) ∪ Sα2 (t) ∪ Sα3 (t) ⊂ Σ(t) for α = π/3 and t ∈ [1/2, 1).

De�ne Sαi (t) as the image of Sα1 (t) under any rigid motion of R3 that maps Σ1(t) to
Σi(t). With these notations we can now estimate the complement of E.
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Lemma 2.4. For ρ and ε su�ciently small and for all t, 0 < t < 1/2,

Σ(t) \ E ⊂
3⋃
i=1

S2
i (t) .

Before proving this lemma we will use it to �nish the proof of Lemma 2.1 and hence
Theorem 1.4.

Note that S2
1 (t) ∩ Σ(t) is a union of �upward� trapezoids whose shorter bases are the

2m− 1 intervals Ij,k(t) of length 2ρts0 (2
−m ≤ t < 2−m+1, 1 ≤ j ≤ m, 1 ≤ k ≤ 2j−1). The

complements in Σ1(t) of these bases are 2m intervals of equal length `(t) given by

`(t) := H1(2−mΣ1(2
mt)) = 2−m(1− 2ρ2mt)s0 > (1− 4ρ)2−ms0 .

For i = 1, 2, 3, let Ti(t) be the isosceles triangle in Σ(t) with base Σi(t) whose equal sides
are of slope 4ε relative to the base (and hence of height less than 2εs0). We claim that

S2
i (t) ∩ Σ(t) ⊂ Ti(t), i = 1, 2, 3,

see Figure 2.

Figure 2. Some illustrative part of the fractal set appearing in the proof of
Lemma 2.4. Note that the basis of the trapezoids have all the same length,
given by 2ρts0. By widening the trapezoids from α = 2/

√
3 to α = 2, we

ensure that even when later on in the iteration we may add some additional
trapezoids to the sides of a previous one, these will still be included in the
wider trapezoid. The dotted lines represent the triangles Ti(t), i = 1, 2, 3.

To see this, suppose, without loss of generality, that i = 1 and call the direction of Σ1(t)
horizontal. The left side of the smallest isosceles triangle with base Σ1(t) that encloses
S2
1 (t) ∩ Σ(t) starts at the left endpoint of Σ1(t) and passes through the upper left corner

of the short trapezoid in S2
1 (t) ∩ Σ(t) nearest that corner. That trapezoid has height
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hm = 2−m+1εs0, and horizontal distance from the endpoint of Σ1(t) given by `(t)−
√

3hm.
Thus the slope is

hm
`(t)− hm

≤ 2−m+1εs0

(1− 4ρ)2−ms0 −
√

3 2−m+1εs0
=

2ε

1− 4ρ− 2
√

3 ε
≤ 4ε,

for ρ and ε less than 1/100.

Next, for 0 ≤ h ≤ εs0, we consider segments parallel to the side Σ1(t), excluding very
short segments at the ends corresponding to the thin triangles T2(t) and T3(t), and then
remove, in addition, S2

1 (t):

Jh1 (t) := {x ∈ Σ(t) : dist(x,Σ1(t)) = h} \ (T2(t) ∪ T3(t)); Eh
1 (t) = Jh1 (t) \ S2

1 (t),

(See Figure 3.) We de�ne Eh
i (t) ⊂ Jhi (t) analogously for i = 2, 3. Lemma 2.4 implies that

Figure 3. The bold line represents the set Eh
1 (t). This is obtained by

taking an horizontal segment at height h connecting the triangles T2(t) and
T3(t), and removing the part covered by S2

1 (t)

Eh
i (t) ⊂ E, and hence∫ 1

0

∫ εs0

0

H1(Eh
i (t) \ A) dh dt ≤ |E \ A|, i = 1, 2, 3. (2.43)

To con�rm that the one-dimensional Lemma 2.3 applies to Eh
1 (t) as a subset of the interval

Jh1 (t), observe that the set Jh1 (t)∩S2
1 (t) that we excluded to form Eh

1 (t) consists of equally
spaced intervals of equal length

H1(Ij,k) + 2
√

3h = 2ρts0 + 2
√

3h, s02
−j+1ε ≥ h, 1 ≤ k ≤ 2j−1.
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The value of j ranges from 1 to j∗ with the maximum value determined by the constraints
j∗ ≤ m and 2j

∗ ≤ 2s0ε/h. The total number of intervals is

1 + 2 + · · ·+ 2j
∗−1 = 2j

∗ − 1 < 2j
∗ ≤ min

(
2m,

2s0ε

h

)
.

The total length of these complementary intervals is less than

(2ρts0 + 2
√

3h) min

(
2m,

2s0ε

h

)
≤ 2m+1ρts0 + 4

√
3εs0 ≤ 10(ρ+ ε)s0.

Note that Jh1 (t) is (1−O(ε+ ρ))s0, and that Jh1 (t)∩S2
1 (t) is at most an O(ρ+ ε) fraction

of Jh1 (t). It follows that, for all x ∈ Jh1 (t),

χEh
1 (t)/2

∗ χEh
1 (t)/2

(x) ≥ (1−O(ε+ ρ))dist(x, ∂Jh1 (t)),

in which we abuse notation by identifying Jh1 (t) with its isometric image in a real line and
likewise the subset Eh

1 (t). (Note that although the 2m− 2 internal intervals of Eh
1 (t) have

equal length, the two on the ends are slightly longer. This only improves the convolution
inequality at the very ends. We excluded the triangles T2(t) and T3(t) from Jh1 (t) in order
to arrange this favorable situation at the ends: we do not want the interval on which we
apply Lemma 2.3 to intersect S2

2 (t) and S2
3 (t).)

Having con�rmed the hypothesis of Lemma 2.3, and likewise for the analogous sets
Eh
i (t) ⊂ Jhi (t), we apply the lemma to conclude that

H1(Jhi (t) \ A) ≤ H1(Jhi (t) ∩ 1
2
(A+ A) \ A) + 20H1(Eh

i (t) ∩ A), i = 1, 2 3.

Finally, these three inequalities, along with (2.43) and Fubini's theorem imply

|K \ A| ≤ |E \ A|+
3∑
i=1

∫ 1

0

∫ εs0

0

H1(Jhi (t) \ A) dhdt

≤ |E \ A|+ 3|1
2
(A+ A) \ A|+ 60|E \ A| ≤ 64C0 δ(A)

with the dimensional constant C0 of (2.15). This ends the proof of Lemma 2.1 and
Theorem 1.4, except for the proof of Lemma 2.4 that we now provide.

Proof of Lemma 2.4. The complementary set Σ(t) \ E is a fractal built iteratively
out of (occasionally truncated) trapezoids arising as the complements of sets of scaled
equilateral triangles. Figure 1 shows the fractal in its simplest, starting layer 1/2 ≤ t < 1.
We will organize the description of a superset of the fractal. Figure 2 shows the widened
trapezoids of the superset that we will use to enclose successive generations of smaller and
smaller trapezoids in the fractal. Within T1(t), the triangle with base Σ1(t), de�ned in
the end of the proof of main Lemma 2.1 just above, we will refer to the ��rst generation"
of the complementary set as the set involving semisums with the endpoints x̂2 and x̂3
and trapezoids that touch Σ1(t) only. This �rst generation is a subset of Sα1 (t) with
α = α0 = 2/

√
3, corresponding to the angle π/3. The second generation of points in
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T1(t) \ E arise from �rst generation points in T2(2t) and T3(2t). Consider, for example,
the semisum of x̂3 with points of the �rst generation in T3(2t). For any α < 2,

Sα3 (t) ∩ Σ(2t) ⊂ S2
3 (2t) ∩ Σ(2t) ⊂ T3(2t).

Therefore,
1
2

(x̂3 + Σ(2t) ∩ Sα3 (2t)) \ (1− ε)K ⊂ 1
2

(x̂3 + T3(2t)) \ (1− ε)K
is contained in a triangle of base size O(ε) and height O(ε2). More precisely, the base
is a non-parallel side of the trapezoid Σ(t) ∩ Fs0ε,α0(I1,1(t)), and the other vertex is on
the line parallel to I1,1(t) at distance s0ε. Note the very important shrinkage that comes
from subtracting (1 − ε)K. The set we are translating is contained in a triangle of size
O(1) by O(ε) but the part of the translation that is outside of (1 − ε)K has diameter
O(ε) and width O(ε2). The second generation exceptional set is covered by opening the
neighborhood of I1,1(t) by changing the �are parameter from α0 to α1 = α0 + 10ε. The
same widening eventually occurs, appropriately scaled, at all of the intervals Ij,k(t) at least
for su�ciently small t, but no other additions occur if we only use one step with a convex
combination involving a vertex and an opposite side. In all, at the second generation, in
which at most one such step is used, the exceptional set is contained in the set

3⋃
i=1

Sα1
i (t), α1 = α0 + 10ε .

Repeating this argument, we �nd that the exceptional set generated using at most k steps
involving a vertex and an opposite side is contained in

3⋃
i=1

Sαk
i (t), αk = α0 + (10ε) + (10ε)2 + · · ·+ (10ε)k .

Evidently, for su�ciently small ε, αk < 2 for all k. This covers the entire complement of
E in Σ(t) and concludes the proof of Lemma 2.4. �

Remark 2.5. In closing, we note that in our inductive argument for n = 3, we proved
that the complement of E contains only relatively short one-dimensional segments at all
appropriate scales near the boundary of K. When n = 4 the set E has nearly full H4

measure on many suitably scaled subsets, but its complement has too many segments of
large diameter near ∂K. Therefore, further arguments are required to enlarge E enough
to �nish the case n = 4 and higher.
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