Published Paper
Inserted: 9 jul 2019
Last Updated: 30 apr 2021
Journal: Journal of Functional Analysis
Volume: 279
Number: 3
Year: 2020
Doi: https://doi.org/10.1016/j.jfa.2020.108556
Abstract:
The paper is about a representation formula introduced by Fusco, Moscariello, and Sbordone in ESAIM: COCV, 24(2):835--847, 2018. The formula permits to characterize the gradient norm of a Sobolev function, defined on the whole space $\mathbb{R}^n$, as the limit of non-local energies (BMO-type seminorms) defined on tessellations of $\mathbb{R}^n$ generated by cubic cells. We extend the main result in ESAIM: COCV, 24(2):835--847, 2018 in two different regards: we analyze the case of a generic open subset $\Omega\subseteq \mathbb{R}^n$ and consider tessellations of $\Omega$ inspired by the creative mind of the graphic artist M.C.~Escher.
Keywords: Sobolev spaces, BMO-type spaces, tilings, M.C. Escher
Download: