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Abstract. The paper is about a representation formula introduced by Fusco, Moscariello,
and Sbordone in [12]. The formula permits to characterize the gradient norm of a Sobolev
function, defined on the whole space Rn, as the limit of non-local energies (BMO-type
seminorms) defined on tessellations of Rn generated by cubic cells. We extend the main result
in [12] in two different regards: we analyze the case of a generic open subset Ω ⊆ R

n and
consider tessellations of Ω inspired by the creative mind of the graphic artist M.C. Escher.
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1. Introduction

In a lecture given at the Université Paris VI in 2001, entitled Sobolev spaces revisited, Pro-
fessor Haïm Brezis communicated that while working on the limiting behavior of the norms of
fractional Sobolev spaces [2], a new characterization of the classical Sobolev spaces W 1,p(Ω)
came out: if f ∈ Lp(Ω), 1 < p <∞, and Ω is a smooth bounded domain in Rn, then, with the
understanding that ‖∇f‖pLp(Ω) = +∞ if f /∈W 1,p(Ω),

lim
m→∞

ˆ
Ω

ˆ
Ω

|f(x)− f(y)|p

|x− y|p
ρm(x− y) dx dy = Kp,n‖∇f‖pLp(Ω) . (1)

Here, Kp,n is a positive constant depending only on p and n, and (ρm)m∈N denotes a sequence
of radial mollifiers whose masses tend to concentrate around the origin.

Over the years, the results in [2] induced several researchers to look for variants of (1) that
could lead to analogous characterizations of other Sobolev-type spaces. Here, we mention
[5,15–17] as general references, [19] for magnetic Sobolev spaces, and [7,10] for the validity of (1)
in the variable Sobolev space setting where the second author obtained a weak (rougher) form
of (1). The interest in this kind of representation formulas is twofold: on the one hand, they
explain p-Dirichlet energies as short-range limits of non-local energies; on the other hand [4,
Remark 6], since they do not involve the concept of weak derivative, they suggest a definition
of Sobolev spaces in the more general setting of metric measure spaces (see, e.g., [13] and the
bibliography therein).

Several years later, in [3] the authors introduced the function space B0(Ω), defined through
a generalization of the classical BMO seminorm. When p > 1, the space B0(Ω) includes
VMO(Ω)+BMO(Ω)+W 1/p,p(Ω) and provides a common ground for certain regularity results
that can now be unified under the statement: any integer-valued function belonging toB0(Ω) is
necessarily a constant function. Some of the ideas contained in [3] have been later on extended
in [1] to give a new characterization of sets of finite perimeter.
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Recently, in [12], in line with the ideas in [3], the authors introduced a new BMO-type
seminorm. Given a function f ∈ Lploc(Ω) and any ε > 0, they define

κεp[f ] := sup
Gε∈Sε(Rn)

∑
Qε∈Gε

εn−p
 
Qε

∣∣∣∣∣ f(x)−
 
Qε

f(y) dy
∣∣∣∣∣
p

dx , (2)

whereSε(Rn) denotes the set of all families of disjoint open cubesQε ⊆ Rn of side-length ε and
arbitrary orientation, and show that, as in [2], it is possible to give a representation formula
for the gradient norm of a Sobolev function that makes no use of distributional derivatives.
Precisely, if 1 < p <∞ and lim infε→0 κ

ε
p[f ] <∞, then |∇f | ∈ Lp(Rn) and

lim
ε→0

κεp[f ] = Cp,n‖∇f‖Lp(Rn) , (3)

whereCp,n is a positive constant depending only on p and n. Finally, in [8], a similar derivative-
free representation formula is obtained for the total variation of SBV functions.

1.1. Contributions of present work. In this paper, moving beyond [12], we give at the
same time a new proof and an extension of the representation formula (3). In particular, we
extend the main result in [12] to the case of a generic open set Ω ⊆ R

n. We show that if
lim infε→0 κ

ε
p[f,Ω] < ∞ then f ∈ W 1,p

loc (Ω) and we provide an estimate which controls, for
every open set U strictly contained in Ω, the blow-up of the norm ‖∇f‖pLp(U) in terms of the
distance of U from ∂Ω. For Ω = R

n, we recover the main result in [12].
In extending the results, we provide a concise proof which emphasizes the role played by

each assumption. In particular, our proof highlights how tessellations by open cubes play
no special role in the analysis. Indeed, our result applies to a broader class of tessellations:
from pentagonal and hexagonal tilings to space-filling polyhedrons and creative tessellations
inspired by the artistic genius of M.C. Escher (Figure 1).

1.2. Outline. The paper is organized as follows. In Section 2 we fix the notation, state the
main result (Theorem 1), and prove some preliminary lemmas; the proof of the main result is
then given in Sections 3 and 5. In Section 4, we present again the proof given in Section 3 but
in a very compact form that highlights the main idea behind our argument; its correctness, a
fortiori, is justified by the results of Section 3.

2. Statement of the main result

The intuitive idea of a tessellation of Rn is that of a collection of objects, called tiles or cells,
that cover the whole space without gaps or overlaps. To formalize the idea, we need to set up
the notation and terminology.

2.1. The concept of tessellation. We denote by E(n) the Euclidean group of Rn, i.e., the
group of all distance-preserving maps of Rn onto Rn, and by O(n) := {R ∈ Rn×n : RR> = I}
the orthogonal group of Rn, i.e., the subgroup of E(n) that leaves the origin 0∈ Rn fixed.
We recall that for every h ∈ E(n) there exists a unique (zh, Rh) ∈ R

n × O(n) such that
h(x) = zh +Rhx for every x ∈ Rn. Given a set Ω, we denote by ℘(Ω) the family of all subsets
of Ω. For Lebesgue measurable sets A ⊆ Rn, we denote by |A| the Lebesgue measure of A and
by 〈f〉A the average of f on A. We give the following definition.

Definition 1. Let ε > 0. An ε-tessellation of Rn is a set Tε(Rn) ⊆ ℘(Rn), whose elements are
called cells, satisfying the following properties (cf. Figure 1):
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Figure 1. Pentagonal and hexagonal tessellations of the plane. On the right,
a tessellation inspired by the lithograph Reptiles of M.C. Escher. Note that, in
general, the choice of a reference cell is not unique. The leftmost tessellation
is not rigid. Instead, the rightmost one is rigid because one can take the union
three reptiles as a reference cell.

i. (non-overlapping condition) The set Tε (Rn) is a countable family of disjoint open sub-
sets of Rn.

ii. (no-gaps condition) The family Tε (Rn) covers the space in a measure-theoretic sense:
|Rn \ ∪{Tε : Tε ∈ Tε (Rn)}| = 0.

iii. (homothetic condition) There exists an open reference cell Q̂ ⊆ R
n, i.e., an open set

such that ˆ
Q̂
y dy = 0, diam(Q̂) = 1, (4)

so that for every Tε ∈ Tε (Rn), Tε = h(εQ̂) for some h ∈ E(n).
We say that the ε-tessellation Tε(Rn) is rigid whenever all the cells in Tε(Rn) have the same
orientation, i.e., for every Tε ∈ Tε (Rn), Tε = z ± εQ̂ for some z ∈ Rn.

Clearly, diam(Tε) = ε for every Tε ∈ Tε (Rn) and, therefore, we will refer to ε as the resolu-
tion of the tessellation.

Remark 2.1. The condition (4) imposed on the reference cell means that the origin of Rn is
the geometric center (centroid) of Q̂. Such a condition is not essential, but it is convenient:
indeed, in this way, if one denotes by Tε(z) the generic cell of the form z+R(Q̂ε) withR ∈ O(n)
and Q̂ε := εQ̂, then z is the geometric center of Tε(z) andˆ

Tε(z)
(y − z) dy = 0 . (5)

The definition of ε-tessellation, as given in Definition 1, is intuitive and sounds familiar.
Indeed, it is based on the natural way one thinks about space tessellations whose reference
cell is a cube, or, in the plane, tessellations whose reference cell is, for example, an equilateral
triangle. The notion is common in recreational mathematics where it is well-known that the
multitude of possible plane tessellations is limited only by one’s own imagination (see, e.g., [6,
p. 40]). The concept of tessellation is also well known in art, and in particular in the production
of M.C. Escher, whose artworks have been the primary source of inspiration for our refined
notion of tessellation as introduced below (see, e.g., [18, p. 14 III.19, p. 17 III.24a, p. 21 III.35,
p. 26 III.48, p.30 III.52]).
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However, the definition of ε-tessellation is unsuited to tile a generic open subset Ω ⊆ Rn.
Indeed, when ∂Ω 6= ∅, the presence of the boundary may create obstructions to the fulfillment
of the no-gaps condition by cells with the same diameter. The question can be overcome in
two different ways: either one allows for countable unions of cells with different diameters (as
in the Smaller and smaller artwork by M.C. Escher) or, as we shall do, one considers families
of non-overlapping cells, sharing the same shape and whose resolution shrinks to zero. This
leads to the following generalization.

Definition 2. Let Ω ⊂ Rn be an open set. A family (Qε(Ω))ε∈I , I = (0, 1), with Qε(Ω) ⊆ ℘(Ω)
for any ε ∈ I, is called a regular tessellation family for Ω, if the following properties are satisfied:

i. (non-overlapping condition) For any ε ∈ I the set Qε (Ω), is a countable family of
pairwise disjoint open subsets of Ω, called cells.

ii. (no-gaps condition)
lim inf
ε→0

χQ∪ε (Ω) = χΩ. (6)

Here, for A ⊆ Ω, χA denotes the characteristic function of A, Q∪ε (Ω) ⊆ Ω denotes the
union of all the disjoint open sets of the familyQε(Ω), and the lim inf has to be intended
a.e. in Ω.

iii. (uniform homothetic condition) There exists a reference open cell Q̂ ⊆ Ω, i.e., an open
set such that ˆ

Q̂
y dy = 0, diam(Q̂) = 1,

so that for every ε ∈ I, Qε ∈ Qε(Ω), one has Qε = h(εQ̂) for some h ∈ E(n).
We say that the regular tessellation family (Qε(Ω))ε∈I is rigid whenever all the cells have the
same orientation, i.e., for every ε ∈ I, Qε ∈ Qε(Ω), one has Qε = z ± (εQ̂) for some z ∈ Rn.

Clearly, diam(Qε) = ε for every Qε ∈ Qε (Ω) and, therefore, we will refer to Qε (Ω) as
the element of the family at resolution ε, and to Q̂ as an open reference cell for the regular
tessellation family.

Remark 2.2. In giving our definition of regular tessellation family, we implicitly assumed Ω
sufficiently large so that h(Q̂) ⊂ Ω for some h ∈ E(n). This assumption has been made only
for the sake of clarity; indeed, one can always replace I with a smaller interval.

Notation 2.1. For any ε > 0 we set Q̂ε := εQ̂. We denote by Qε(z) a generic open cell
of the form z + R(Q̂ε), for some R ∈ O(n). In particular, denote by Qε a cell of the type
Qε(0) = R(Q̂ε) with R ∈ O(n). Finally, we say that two cells Qε(z′), Qε(z′′) have the same
orientation if Qε(z′′) = (z′′ − z′) +Qε(z′) or Qε(z′′) = (z′′ − z′)−Qε(z′).

Remark 2.3. Note that, due to the non-overlapping condition, the no-gaps condition (6) can
be equivalently stated as

lim inf
ε→0

( ∑
Qε(z)∈Qε(Ω)

χQε(z)

)
= χΩ .

Regular tessellation families do exist: indeed, any open set Ω ⊆ Rn admits a regular tessel-
lation family having the open unit cube as a reference cell [12, (2.13)]. We note that the key
property of the cube which allows for the existence of regular tessellation families for any open
subset of Rn, is that it is a reference cell for some ε-tessellation of Rn. This can be formalized
as follows:

https://www.mcescher.com/gallery/recognition-success/smaller-and-smaller/
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Proposition 1. Let ε0 > 0. Any ε0-tessellation Tε0(Rn) of Rn induces a regular tessellation
family (Qε(Ω))ε∈I for every open subset Ω ⊆ Rn. If Tε0(Rn) is rigid, so is (Qε(Ω))ε∈I .

Proof. Let ε0 > 0, and let Q̂ be a reference cell for an ε0-tessellation Tε0(Rn) of Rn. Note that,
for any ε > 0, the set Q̂ is also a reference cell for a ε-tessellation of Rn. In fact, the family

Tε(Rn) := {W (Qε0)}Qε0∈Tε0 (Rn) ,

withW : x ∈ Rn 7→ (ε/ε0)x ∈ Rn, is a ε-tessellation of Rn. Next, we set

Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε}.

Clearly, we have limε→0 χΩε = χΩ in Ω. Also, the family (Qε (Ω))ε∈I with Qε (Ω) given by the
elements of Tε (Rn) having nonempty intersection with Ωε, satisfies the relation

χΩε 6 χQ∪ε (Ω) 6 χΩ in Ω .

Hence, (Qε(Ω))ε∈I is a regular tessellation family for Ω. Finally, by construction, it is clear
that if Tε0(Rn) is rigid, so is (Qε(Ω))ε∈I . �

Remark 2.4. Proposition 1 shows that the rigidity of a tessellation is a hereditary property:
if a tessellation has cells with the same orientation, also the induced regular tessellation family
will consist of cells sharing the same orientation. As an example, in the Pessimist-Optimist
(No. 63) artwork by M.C. Escher, the union of one optimist and one pessimist (not necessarily
adjacent, but thought scaled so that its diameter is 1) can be considered as a reference cell for
a tessellation of Rn. Note that there are both optimists looking at the right, and optimists
looking at the left: they correspond to cells that, although reflected, have (by definition) the
same orientation. A similar conclusion holds, for instance, for the 1946 India ink, colored
pencil, watercolor Horseman (No.67).

The following simple observation motivates our notion of a regular tessellation family.

Lemma 1. If (Qε (Ω))ε∈I is a regular tessellation family for Ω, then, for any measurable func-
tion f : Ω→ R,

lim
ε→0

ˆ
Q∪ε (Ω)

|f(x)|dx =
ˆ

Ω
|f(x)|dx.

In particular, f ∈ L1 (Ω) if and only if

lim inf
ε→0

ˆ
Q∪ε (Ω)

|f(x)|dx <∞.

Proof. Assume that the no-gaps condition (6) holds. By Fatou’s lemma

lim inf
ε→0

ˆ
Q∪ε (Ω)

|f(x)|dx >
ˆ

Ω
lim inf
ε→0

χQ∪ε (Ω)(x)|f(x)|dx =
ˆ

Ω
|f(x)|dx.

On the other hand, since Q∪ε (Ω) ⊆ Ω, we haveˆ
Ω
|f(x)|dx > lim inf

ε→0

ˆ
Q∪ε (Ω)

|f(x)|dx.

This completes the proof. �

https://www.mcescher.com/gallery/back-in-holland/no-63-pessimist-optimist/
https://www.mcescher.com/gallery/back-in-holland/no-67-horseman/
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2.2. Statement of the main result. Let Ω ⊆ Rn be an open set, and let Q̂ ⊂ Rn be an open
reference cell for a rigid tessellation ofRn. For any ε > 0 we denote bySε (Ω) = SQ̂

ε (Ω) = {Gε}
the set of all families Gε consisting of (necessarily countable) pairwise disjoint open cells of the
type h(Q̂ε) for some h ∈ E(n). Given a function f ∈ Lploc (Ω), p > 1, we are interested in the
limiting behavior, as ε→ 0, of the following family of seminorms:

κεp [f,Ω] := sup
Gε∈Sε(Ω)

∑
Qε(z)∈Gε

εn−p
 
Qε(z)

∣∣∣∣∣ f(x)−
 
Qε(z)

f(y) dy
∣∣∣∣∣
p

dx. (7)

We stress that even if in literature the expression κεp[f,Ω] is often referred to as a seminorm,
in fact it is not, because it is not homogeneous of degree 1. It would turn into a seminorm if
the outer integral would be raised to the power 1/p. However, the study of such expression is
not of interest for this paper.

Remark 2.5. Let Ω1,Ω2 ⊆ Rn be nonempty open sets. If Ω1 ⊆ Ω2 then SQ̂
ε (Ω1) ⊆ SQ̂

ε (Ω2).
Therefore, as an immediate consequence of the definition of κεp [f, ·], we get that

κεp[f,Ω1] 6 κεp[f,Ω2]. (8)

Moreover, it is clear that if (Qε(Ω1))ε∈I is a regular tessellation family (see Definition 2) for
Ω1 having Q̂ as a reference cell, then Qε(Ω1) ∈ SQ̂

ε (Ω2) for every ε ∈ I.

Our main result is stated in the next Theorem 1. Note that, in particular, when Ω := R
n

and Q̂ is the open unit cube, we recover [12, Theorem 2.2] in the case p > 1 (see next Remark
2.6 for details).

Theorem 1. For f ∈ Lploc (Ω), the following assertions hold:
i. If ∇f ∈ Lp (Ω) then

lim
ε→0

κεp [f,Ω] = γ

ˆ
Ω
|∇f(x)|p dx (9)

with γ := max
σ∈Sn−1

ˆ
Q̂
|σ · x|pdx.

ii. (limit inferior condition) If
lim inf
ε→0

κεp [f,Ω] <∞,

then f ∈ W 1,p
loc (Ω). Moreover, for every open set U compactly contained in Ω (i.e.,

∅ 6= Ū ⊆ Ω) and for every τ > 0, the following estimate holds

lim
ε→0

κεp[f, U ] = γ ‖∇f‖pLp(U) 6 τ1 lim inf
ε→0

κεp [f,Ω] + τ2
cpΩ

d (U, ∂Ω)p ‖f‖
p
Lp(U), (10)

where τ1 := (1 + τ)p−1 and τ2 := τ1/τ
p−1.

Remark 2.6. Let p > 1. When Ω = R
n one has ∂Ω = ∅ and d (U, ∂Ω)−p = 0 for any open set

U compactly contained in Rn. Therefore, if f ∈ Lploc (Rn) and lim infε→0 κεp [f,Rn] <∞, from
(10) one gets that |∇f | ∈ Lp(Rn). In particular, if lim infε→0 κεp[f,Rn] <∞ and f ∈W 1,p

loc (Rn)
then, by i., we get that |∇f | ∈ Lp(Rn) and

lim
ε→0

κεp[f,Rn] = γ

ˆ
Rn

|∇f(x)|p dx . (11)
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On the other hand, if lim infε→0 κεp [f,Rn] =∞, then |∇f | /∈ Lp(Rn): in fact, on the contrary,
by i. we would get a contradiction. As a conclusion, (11) holds in any case.

Remark 2.7. Note that γ depends only on n, p, and the shape of Q̂: it does not depend on
the orientation of Q̂, i.e.,

γ ≡ max
σ∈Sn−1

ˆ
R(Q̂)

|σ · x|pdx ∀R ∈ O(n). (12)

Indeed, for R ∈ O(n) let σR(Q̂) ∈ argmaxσ∈Sn−1
´
R(Q̂) |σ · x|

p dx. We have

γ =
ˆ
Q̂
|σQ̂ · x|

pdx =
ˆ
R(Q̂)

|σQ̂ ·R
>x|p dx =

ˆ
R(Q̂)

|R(σQ̂) · x|p dx

6 max
σ∈Sn−1

ˆ
R(Q̂)

|σ · x|p dx =
ˆ
R(Q̂)

|σR(Q̂) · x|
p dx =

ˆ
Q̂
|R>σR(Q̂) · x|

p dx 6 γ.

The proof of Theorem 1 is the object of the next section. One of the main ingredients is the
following simple observation:

Lemma 2. Let a, b ∈ R. For every τ > 0 and every p > 1 the following inequalities hold:

− 1
τp−1 |b|

p + 1
(1 + τ)p−1 |a|

p 6 |a+ b|p 6 (1 + τ)p−1|a|p +
(1 + τ

τ

)p−1
|b|p. (13)

Setting τ1 := (1 + τ)p−1, τ3 := τp−1, and τ2 := τ1/τ3, (13) can be written

− 1
τ3
|b|p + 1

τ1
|a|p 6 |a+ b|p 6 τ1|a|p + τ2|b|p (14)

with τ1, τ2, τ3 depending on p and τ . Note that τ1 → 1 for τ → 0+.

Proof. The assertion follows from the convexity of the function t ∈ R → |t|p. Indeed, we can
write

|a+ b|p =
∣∣∣∣ 1
1 + τ

((1 + τ)a) + τ

1 + τ

(1 + τ

τ
b

)∣∣∣∣p
6 (1 + τ)p−1|a|p +

(1 + τ

τ

)p−1
|b|p

After that, we have |a|p = |(a+ b)− b|p 6 (1 + τ)p−1|a+ b|p + ((1 + τ)/τ)p−1|b|p from which
also the left-hand side of (13) follows. �

We close this section with the following instrumental

Lemma 3. LetM be a compact Lipschitz hypersurface of Rn, G ⊆ Rn a set with finite mea-
sure, and g : G ⊆ R

n → M a measurable map. For any η > 0 there exists a finite family
(Γ1, . . . ,Γk(η)) of pairwise disjoint open subsets inM, with k(η) depending on η, such that

diam(Γj) < η ∀j ∈ Nk(η) := {1, . . . , k(η)} ⊆ N
and

|{x ∈ G : g(x) ∈M0}| = 0, M0 :=M\∪j∈Nk(η) Γj .

Remark 2.8. The Lemma can be generalized to the setting of measurable functions defined
on a measure space. The reader may compare its proof with the argument in the proof of
Proposition 3.6 in [11].



BMO-TYPE SEMINORMS 8

Figure 2. A schematic representation of the geometric idea behind the proof
of Lemma 3.

Proof. We prove the result for compact Lipschitz hypersurface of R2, but the argument readily
generalizes to higher dimensions.

We consider an orthogonal basis (e1, e2) of R2 with |ei| = η/
√

2. We denote by E1 the subset
of R2 consisting of the union of all lines perpendicular to e1 and passing through the points of
the formme1 for somem ∈ Z. The family {(te1 +E1)∩M}t∈[0,1) forms a partition ofM. We
then consider, for any t ∈ [0, 1) the set

C1(t) := {x ∈ G : g(x) ∈ (te1 + E1) ∩M} .

We note that the set of t ∈ [0, 1) such that |C1(t)| > 0 can be at most countable because
|G| < +∞. Therefore, there exists t1 ∈ [0, 1) such that |C1(t1)| = 0. Repeating the argument
for the subset E2 of R2 consisting of the union of all lines perpendicular to e2 and passing
through points of the form me2 for some m ∈ Z, we get, for the set

C2(t) := {x ∈ G : g(x) ∈ (te2 + E2) ∩M} ,

the existence of a t2 ∈ [0, 1) such that |C2(t2)| = 0.
Therefore, the grid (t1e1 + E1) ∪ (t2e2 + E2) determines a tessellation Tη = {Tη} in R2

consisting of open cells of diameter less than η. The finite family {Tη∩M : Tη ∈ Tη, Tη∩M 6=
∅} induces the desired decomposition ofM. �

3. Proof of Theorem 1.i

We split the proof of Theorem 1 in four steps. In what follows, to shorten notation, we
denote by 〈f〉Qε(z) the average of f on the cell Qε(z).

Step 1 (density argument). We show that it is sufficient to prove (9) for every f ∈ C2
c (Rn).

Indeed, assume that (9) holds for any function in C2
c (Rn), and consider f ∈ Lploc (Ω) such that

∇f ∈ Lp (Ω). We denote by (Ωm)m∈N an exhaustion of Ω by compact and smooth domains
(see, e.g., [20, Lemma 1]). By our assumption on f , we have f ∈ W 1,p (Ωm). Therefore, for
each m ∈ N there exists a sequence of functions f (m)

k ∈ C2
c (Rn) such that

lim
k→∞

f
(m)
k = f inW 1,p(Ωm), ‖∇g(m)

k ‖
p
Lp(Ωm) <

1
k

∀m ∈ N, (15)
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with g(m)
k := f

(m)
k − f . For any fixed m ∈ N, by Lemma 2 and Poincaré inequality, we have

κεp [f,Ω] > κεp[f
(m)
k − g(m)

k ,Ωm]

>
1
τ1

sup
Gε∈Sε(Ωm)

1
εp

∑
Qε(z)∈Gε

ˆ
Qε(z)

|f (m)
k (x)− 〈f (m)

k 〉Qε(z)|
p dx

− 1
τ3

sup
Gε∈Sε(Ωm)

1
εp

∑
Qε(z)∈Gε

ˆ
Qε(z)

|g(m)
k (x)− 〈g(m)

k 〉Qε(z)|
p dx

>
1
τ1

sup
Gε∈Sε(Ωm)

1
εp

∑
Qε(z)∈Gε

ˆ
Qε(z)

|f (m)
k (x)− 〈f (m)

k 〉Qε(z)|
pdx

−cP
τ3

ˆ
Ω
|∇g(m)

k (x)|p dx,

where τ1, τ3 are the constants of Lemma 2 and cP the Poincaré constant related to Q̂. Because
of (9), taking the limit inferior of both sides as ε→ 0, we get,

lim inf
ε→0

κεp [f,Ω] > γ

τ1

ˆ
Ωm
|∇f (m)

k (x)|pdx− cP
τ3
‖∇g(m)

k ‖
p
Lp(Ωm).

Next, by first taking the limit for k →∞ and then the limit for τ → 0+, we infer that

lim inf
ε→0

κεp [f,Ω] > γ
ˆ

Ωm
|∇f(x)|p dx .

Eventually, taking the limit for m→∞ we conclude that:

lim inf
ε→0

κεp [f,Ω] > γ
ˆ

Ω
|∇f(x)|p dx. (16)

It remains to prove that

lim sup
ε→0

κεp [f,Ω] 6 γ
ˆ

Ω
|∇f(x)|p dx. (17)

Now, let 0 < ε < 1. For every Gε ∈ Sε (Ω) and every m ∈ N, we set

G(m)
ε := {Qε(z) ∈ Gε : Qε(z) ⊆ Ωm} .

Obviously G(m)
ε ∈ Sε (Ωm). Also, with no loss of generality, we can assume that Ωm = Ωm ∩

{|x| 6 m} for every m ∈ N. In this way, since 0 < ε < 1, we have

κεp [f,Ω] = sup
Gε∈Sε(Ω)

 ∑
Qε(z)∈G(m)

ε

εn−p
 
Qε(z)

∣∣∣∣∣f(x)−
 
Qε(z)

f(y)dy
∣∣∣∣∣
p

dx

+
∑

Qε(z)∈Gε\G(m)
ε

εn−p
 
Qε(z)

∣∣∣∣∣f(x)−
 
Qε(z)

f(y)dy
∣∣∣∣∣
p

dx


6 κεp [f,Ωm] + cP

ˆ
Ω\Ωm−1

|∇f(x)|pdx ,

where for the last estimate we used Poincaré’s inequality. Summarizing, we obtained that

κεp [f,Ω] 6 κεp [f,Ωm] + cP

ˆ
Ω\Ωm−1

|∇f(x)|pdx . (18)
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Again, using Lemma 2, Poincaré’s inequality, and arguing as before we obtain

κεp [f,Ωm] = κεp[f
(m)
k − g(m)

k ,Ωm]

6 τ1 sup
Gε∈Sε(Ωm)

1
εp

∑
Qε(z)∈Gε

ˆ
Qε(z)

|f (m)
k (x)− 〈f (m)

k 〉Qε(z)|
pdx

+cP τ2

ˆ
Ωm
|∇g(m)

k (x)|pdx,

(15)
6 τ1 sup

Gε∈Sε(Ωm)

1
εp

∑
Qε(z)∈Gε

ˆ
Qε(z)

|f (m)
k (x)− 〈f (m)

k 〉Qε(z)|
pdx+ cP τ2

k
.

By (9), taking the limit superior of both sides of (18) as ε→ 0, we get

lim sup
ε→0

κεp [f,Ω] 6 τ1γ

ˆ
Ωm
|∇f (m)

k (x)|pdx+ cP τ2
k

+ cP

ˆ
Ω\Ωm−1

|∇f(x)|pdx

and again, by first taking the limit for k →∞ and then the limit for τ → 0+, we infer that

lim sup
ε→0

κεp [f,Ω] 6 γ
ˆ

Ωm
|∇f(x)|p dx+ cP

ˆ
Ω\Ωm−1

|∇f(x)|pdx .

Finally, the inequality (17) follows by taking the limit form→∞ and using that∇f ∈ Lp (Ω).
This concludes the proof of Step 1.

Step 2 (sharp upper and lower bounds). In what follows, to shorten notation, it will be
convenient to define

M ε
p [f,Qε(z)] := εn−p

 
Qε(z)

|F (x,Qε(z))|pdx, (19)

with F (x,Qε(z)) := f(x)− 〈f〉Qε(z). Note that, our BMO-type seminorm (7) reads as

κεp [f,Ω] := sup
Gε∈Sε(Ω)

∑
Qε(z)∈Gε

M ε
p [f,Qε(z)]. (20)

We shall need the following key observation, where the constants τ1, τ2, and τ3, are the ones of
Lemma 2.

Lemma 4. Let f ∈ C2
c (Rn). For any Qε(z) the following estimates hold:

M ε
p [f,Qε(z)] 6 τ2

1 γf (z,Q)
(ˆ

Qε(z)
|∇f(x)|p dx

)
+τ2(1 + τ1γf (z,Q))|O(εn+p)|, (21)

M ε
p [f,Qε(z)] > τ−2

1 γf (z,Q)
(ˆ

Qε(z)
|∇f(x)|p dx

)
−τ−1

3 (1 + τ−1
1 γf (z,Q))|O(εn+p)|, (22)

with Q := Q1(0) = ε−1(−z +Qε(z)) and

γf (z,Q) :=


ˆ
Q

∣∣∣ ∇f(z)
|∇f(z)| · x

∣∣∣p dx if ∇f(z) 6= 0,

0 otherwise.
(23)
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Proof. Since f ∈ C2
c (Rn), the Hessian of f is bounded on Rn. We denote by cH(f) the max-

imum modulus of the Hessian of f on Rn. We then have, by classical Taylor expansion, that
for every x, z ∈ Rn

f(x)− f(z) = ∇f(z) · (x− z) +O(|x− z|2), (24)

and
|∇f(x)−∇f(z)| 6 O(|x− z|) (25)

where, to be precise, O(|x− z|) 6 cH(f)|x− z|.
Next, let Qε(z) be an open cell centered at z ∈ Ω, and note that by (5)ˆ

Qε(z)
∇f(z) · (y − z)dy = 0.

Therefore, for every x ∈ Qε(z),

F (x,Qε(z)) = [f(x)− f(z)]−
 
Qε(z)

[f(y)− f(z)]dy

(24)= ∇f(z) · (x− z) +O(|x− z|2) +
 
Qε(z)

O(|y − z|2)dy

= ∇f(z) · (x− z) +O(ε2).

Here, to be precise, the O(ε2) notation means that

sup
x∈Qε(z)

|F (x,Qε(z))−∇f(z) · (x− z)| 6 c2
H(f)ε

2.

Applying Lemma 2, we get

|F (x,Qε(z))|p 6 τ1 |∇f(z) · (x− z)|p + τ2|O(ε2p)|, (26)

|F (x,Qε(z))|p > τ−1
1 |∇f(z) · (x− z)|p − τ−1

3 |O(ε2p)|. (27)

Now, define the open set A(f) := {x ∈ Rn : |∇f(x)| 6= 0} ⊆ suppRn f and observe that if
z /∈ A(f) then (26) and (27) imply −τ−1

3 |O(εn+p)| 6 M ε
p [f,Qε(z)] 6 τ2|O(εn+p)| and, a

fortiori, (21) and (22). Therefore, we can focus on the case z ∈ A(f). We have

εn−p
 
Qε(z)

|∇f(z) · (x− z)|p dx = εn
ˆ
Q
|∇f(z) · x|p dx = εnγf (z,Q) |∇f(z)|p , (28)

with Q := ε−1(−z + Qε(z)) and γf (z,Q) given by (23). Again by Lemma 2 and Taylor
expansion (25), we infer that for any z ∈ A(f)

|∇f(z)|p 6
 
Qε(z)

τ1 |∇f(x)|p + τ2 |∇f(x)−∇f(z)|p dx

6 τ1

 
Qε(z)

|∇f(x)|p dx+ τ2|O(εp)|, (29)

and, similarly,

|∇f(z)|p > 1
τ1

 
Qε(z)

|∇f(x)|p dx− 1
τ3
|O(εp)|. (30)



BMO-TYPE SEMINORMS 12

Overall, combining the estimates (26), (28), and (29), we conclude that for any z ∈ A(f)

M ε
p [f,Qε(z)]

(26)
6 τ1ε

n−p
 
Qε(z)

|∇f(z) · (x− z)|p dx+ τ2|O(εn+p)|

(28)= εnτ1γf (z,Q) |∇f(z)|p + τ2|O(εn+p)|
(29)
6 εnτ1γf (z,Q)

(
τ1

 
Qε(z)

|∇f(x)|p dx+ τ2|O(εp)|
)

+ τ2|O(εn+p)|

= τ1γf (z,Q)
(
τ1

ˆ
Qε(z)

|∇f(x)|p dx+ τ2|O(εn+p)|
)

+ τ2|O(εn+p)|

= τ2
1 γf (z,Q)

(ˆ
Qε(z)

|∇f(x)|p dx
)

+ τ2(1 + τ1γf (z,Q))|O(εn+p)|.

This proves (21). Likewise, from (27) and (30), we get the lower bound (22). �

Step 3 (upper bound). By Step 1, we may consider f compactly supported and, taking
into account that cells outside the support of f do not contribute to the supremum in κεp [f,Ω],
without loss of generality, we may restrict ourselves to the case of f with compact support in an
open set Ω of finite measure. By definition, we have γf (z,Q) 6 γ for every z ∈ Rn. Moreover,
for every Gε ∈ Sε (Ω) we have

|Ω| >
∑

Qε(z)∈Gε

|Qε(z)| = ###Gε|Q̂|εn , (31)

and therefore∑
Qε(z)∈Gε

M ε
p [f,Qε(z)]

(21)
6 τ2

1 γ
∑

Qε(z)∈Gε

ˆ
Qε(z)

|∇f(x)|p dx

+
∑

Qε(z)∈Gε

τ2(1 + τ1γ)|O(εn+p)|

6 τ2
1 γ

ˆ
Ω
|∇f(x)|p dx+ τ2(1 + τ1γ)###Gε|O(εn+p)|

6 τ2
1 γ

ˆ
Ω
|∇f(x)|p dx+ τ2(1 + τ1γ) |Ω| |Q̂|−1|O(εp)|.

Hence, for every ε > 0 sufficiently small, we have

κεp [f,Ω] 6 τ2
1 γ

ˆ
Ω
|∇f(x)|p dx+ τ2(1 + τ1γ) |Ω| |Q̂|−1|O(εp)|.

By taking first the lim supε→0 of both sides and then the limit for τ → 0, we end up with the
relation

lim sup
ε→0

κεp [f,Ω] 6 γ
ˆ

Ω
|∇f(x)|p dx.

Step 4 (lower bound). It remains to show that

lim inf
ε→0

κεp [f,Ω] > γ
ˆ

Ω
|∇f(x)|p dx.

To this end, we consider, as before, the open set A(f) := {x ∈ Rn : |∇f(x)| 6= 0} ⊆ suppRn f ,
and we fix η > 0. We make use of Lemma 3, according to which there exists a finite family
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(Γ1, . . . ,Γk(η)) of pairwise disjoint open subsets of Sn−1, with k(η) depending on η, such that
diam(Γj) < η for every j ∈ Nk(η) and

|{x ∈ A(f) : ∇f(x)/|∇f(x)| ∈ M0}| = 0, M0 := Sn−1\ ∪j∈Nk(η) Γj .

For the sets
Ωj := {x ∈ A(f) ∩ Ω : ∇f(x)/|∇f(x)| ∈ Γj} j ∈ Nk(η) ,

we claim that

Lemma 5. For every j ∈ Nk(η) there exist Rj ∈ O(n) such that

γ > γf (z,Q(j)) > γ − |O(η)| =: γη ∀z ∈ Ωj , (32)

where Q(j) = Q
(j)
1 (0) := Rj(Q̂) and |O(η)|/η is uniformly bounded with respect to j ∈ Nk(η)

and z ∈ Ωj.

Proof. Let Rj ∈ O(n) be arbitrary. By Remark 2.7 we have, setting g(z) := ∇f(z)/ |∇f(z)|,

γ − γf (z,Q(j)) =
ˆ
Rj(Q̂)

|σRj(Q̂) · x|
p − |g(z) · x|p dx

=
ˆ
Q̂
|R>j σRj(Q̂) · x|

p − |R>j g(z) · x|p dx.

Note that, by definition, γ − γf (z,Q(j)) > 0. Also, again by Remark 2.7,

R>σR(Q̂) ∈ argmax
σ∈Sn−1

ˆ
Q̂
|σ · x|p dx,

hence (see, e.g., [14, (2.15.1)])
0 6 γ − γf (z,Q(j)) 6 p · |RjσQ̂ − g(z)| · ‖x‖p

Lp(Q̂) . (33)

Note that, g(z) ∈ Γj because of z ∈ Ωj . Therefore, if we choose Rj ∈ O(n) such that RjσQ̂ ∈
Γj , we get

γ − γf (z,Q(j)) 6 cQ̂(p) diam(Γj) < cQ̂(p)η, cQ̂(p) := p‖x‖p
Lp(Q̂) ,

and therefore the lemma follows. �

Now for each j ∈ Nk(η) fix a regular tessellation family (Q(j)
ε (Ωj))ε∈I , where each Q(j)

ε (Ωj)
consists of cells whose orientation coincides with the one of Rj(Q̂), i.e.,

Q(j)
ε (z) ∈ Q(j)

ε (Ωj) ⇒ Q(j)
ε (z) = z + εRj(Q̂) or Q(j)

ε (z) = z − εRj(Q̂) ,
where Rj ∈ O(n) is given by Lemma 5. Note that, the existence of such regular tessellation
families is guaranteed by Proposition 1 (see also Remark 2.4). Since⋃

j∈Nk(η)

Q(j)
ε (Ωj) ∈ Sε (Ω) , (34)

denoting by Q(j)∪
ε (Ωj) ⊆ Ω the union of all the disjoint open sets of the family Q(j)

ε (Ωj), and
setting Q(j) := Q

(j)
1 (0) = ε−1(−z +Q

(j)
ε (z)), we have

κεp [f,Ω] = sup
Gε∈Sε(Ω)

∑
Qε(z)∈Gε

M ε
p [f,Qε(z)]

(34)
>

k(η)∑
j=1

∑
Q

(j)
ε (z)∈Q(j)

ε (Ωj)

M ε
p [f,Q(j)

ε (z)]. (35)
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Therefore, by Lemma 4 and 5 we infer that

κεp [f,Ω]
(22)
>

k(η)∑
j=1

∑
Q

(j)
ε (z)∈Q(j)

ε (Ωj)

[
τ−2

1 γf (z,Q(j))
(ˆ

Q
(j)
ε (z)

|∇f(x)|p dx
)

− τ−1
3 (1 + τ−1

1 γf (z,Q(j)))|O(εn+p)|
]

=
k(η)∑
j=1

−τ−1
3 (1 + τ−1

1 γf (z,Q(j)))|O(εn+p)|###Q(j)
ε (Ωj)

+
∑

Q
(j)
ε (z)∈Q(j)

ε (Ωj)

τ−2
1 γf (z,Q(j))

(ˆ
Q

(j)
ε (z)

|∇f(x)|p dx
)

(31)
>

k(η)∑
j=1

−τ−1
3 (1 + τ−1

1 γf (z,Q(j)))|O(εp)| |Ωj |

+τ−2
1 γf (z,Q(j))

 ∑
Q

(j)
ε (z)∈Q(j)

ε (Ωj)

ˆ
Q

(j)
ε (z)

|∇f(x)|p dx




(32)
> −τ−1

3 (1 + τ−1
1 γ)|O(εp)| |Ω|+ τ−2

1 γη

k(η)∑
j=1

ˆ
Q(j)∪
ε (Ωj)

|∇f(x)|p dx

 (36)

On the other hand, by Lemma 1, and the hypotheses on the regular tessellation families, we
get that

lim inf
ε→0

ˆ
Q(j)∪
ε (Ωj)

|∇f(x)|p dx >
ˆ

Ωj
|∇f(x)|p dx,

from which there holds

lim inf
ε→0

k(η)∑
j=1

ˆ
Q(j)∪
ε (Ωj)

|∇f(x)|p dx >
k(η)∑
j=1

ˆ
Ωj
|∇f(x)|p dx

=
ˆ
A(f)∩Ω

|∇f(x)|p dx =
ˆ

Ω
|∇f(x)|p dx. (37)

Hence, taking first the lim infε→0 of both sides of (36), and then the limit for τ → 0, we end
up with the relation

lim inf
ε→0

κεp [f,Ω] > γη
ˆ

Ω
|∇f(x)|p dx (32)= (γ − |O(η)|)

ˆ
Ω
|∇f(x)|p dx .

Finally, taking the limit for η → 0, we conclude the proof.

4. A short proof of Theorem 1.i?

Keeping in mind the notation introduced, as a byproduct of the argument of the previous
section, we can assert that the following equalities hold. Intuitively, the equalities hold because
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the functions of which limits are computed coincide or because in any step one gets rid of
infinitesimal terms, which do not contribute to the final result.

lim inf
ε→0

κεp [f,Ω] = lim inf
ε→0

sup
Gε∈Sε(Ω)

∑
Qε(z)∈Gε

εn−p
 
Qε(z)

|f(x)− 〈f〉Qε(z)|
pdx

= lim inf
ε→0

sup
Gε∈Sε(Ω)

∑
Qε(z)∈Gε

εn−p
 
Qε(z)

|∇f(z) · (x− z)|pdx

= lim inf
ε→0

sup
Gε∈Sε(Ω)

∑
Qε(z)∈Gε

εnγf (z, ε−1(−z +Qε(z))) |∇f(z)|p

= lim inf
ε→0

sup
Gε∈Sε(Ω)

∑
Qε(z)∈Gε

γf (z, ε−1Qε(0))
ˆ
Qε(z)

|∇f(x)|p dx

= lim inf
η→0

lim inf
ε→0

k(η)∑
j=1

∑
Q

(j)
ε (z)∈Q(j)

ε (Ωj)

γf (z,Q(j))
ˆ
Q

(j)
ε (z)

|∇f(x)|p dx

= lim inf
η→0

γf (z,Q(j)) · lim inf
ε→0

k(η)∑
j=1

∑
Q

(j)
ε (z)∈Q(j)

ε (Ωj)

ˆ
Q

(j)
ε (z)

|∇f(x)|p dx


= γ · lim inf

η→0

k(η)∑
j=1

lim inf
ε→0

ˆ
Q(j)∪
ε (Ωj)

|∇f(x)|p dx

= γ lim inf
η→0

k(η)∑
j=1

ˆ
Ωj
|∇f(x)|p dx

= γ

ˆ
Ω
|∇f(x)|p dx .

In principle, the previous relations represent a short proof of Theorem 1.i that highlights the
main steps behind our argument. Its correctness, a fortiori, is justified by the results of Section
3.

5. Proof of Theorem 1.ii

We subdivide the proof in two steps. In what follows we write U b Ω to denote an open
subset U strictly contained in Ω, that is, such that Ū is compact and contained in Ω.

Step 1. First, let us suppose that f ∈ Lpc (Ω), i.e., suppΩ f is a compact subset of Ω. We denote
by U an open subset of Ω such that suppΩ f ⊆ U b Ω. For any σ > 0 we consider fσ := f ∗ ρσ
with ρσ(y) := σ−nρ(y/σ), ρ standard mollifier supported on the unit ball B1 ⊆ Rn. We choose
σ < dist (suppΩ f, ∂U) so that suppΩ fσ ⊆ U .
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By Jensen’s inequality and Fubini’s theorem, we have

|fσ(x)− 〈fσ〉Qε(z)|
p =

∣∣∣∣∣
ˆ
B1

ρ(w)
[
f(x− σw)−

 
Qε(z)

f(y − σw)dy
]

dw
∣∣∣∣∣
p

6
ˆ
B1

ρ(w)
∣∣∣∣∣f(x− σw)−

 
Qε(z)

f(y − σw)dy
∣∣∣∣∣
p

dw

=
ˆ
B1

ρ(w)|f(x− σw)− 〈f〉Qε(z−σw)|pdw

and therefore

IQε(z)(fσ) 6
ˆ
B1

ρ(w)
 
Qε(z−σw)

|f(x)− 〈f〉Qε(z−σw)|pdxdw,

where we set

IQε(z)(fσ) :=
 
Qε(z)

|fσ(x)− 〈fσ〉Qε(z)|
pdx .

Now, for any w ∈ B1 and any Gε ∈ Sε(U), we have that the family of disjoint cells

Qσ,ωε (Ω) := {Qσ,wε := Qε(z − σw)}Qε(z)∈Gε

belongs to Sε (Ω) whenever σ < d (U, ∂Ω). Therefore, taking

σ < min {d (suppΩ f, ∂U) , d (U, ∂Ω)}

we get suppΩ fσ ⊆ U and Qσ,ωε (Ω) ∈ Sε (Ω) if Gε ∈ Sε(U). Thus, for any w ∈ B1 we have∑
Qε(z)∈Gε

IQε(z)(fσ) 6
ˆ
B1

ρ(w)
∑

Qε(z)∈Gε

 
Qε(z−σw)

|f(x)− 〈f〉Qε(z−σw)|pdxdw

=
ˆ
B1

ρ(w)
∑

Qσ,wε ∈Qσ,ωε (Ω)

 
Qσ,wε

|f(x)− 〈f〉Qσ,wε |
pdxdw

6 sup
Gε∈Sε(Ω)

∑
Qε(z)∈Gε

IQε(z)(f) (38)

Overall, from (38) we get

κεp[fσ, U ] = sup
Gε∈Sε(U)

∑
Qε(z)∈Gε

εn−pIQε(z)(fσ)

(38)
6 εn−p sup

Gε∈Sε(Ω)

∑
Qε(z)∈Gε

IQε(z)(f)

= κεp [f,Ω] . (39)

Step 2. Next, we consider a cutoff function ηδ ∈ C∞c (Ω), 0 6 ηδ 6 1 in Ω, such that ηδ ≡ 1
in Ωδ := {x ∈ Ω : dist (x, ∂Ω) > δ} and supx∈Ω |∇ηδ(x)| 6 cΩδ

−1. We denote by Uδ an open
subset of Ω such that suppΩ ηδ ⊆ Uδ b Ω. Overall we have

Ωδ ⊆ suppΩ ηδ ⊆ Uδ b Ω.
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Assume f ∈ Lploc (Ω). We have

‖fηδ − 〈fηδ〉Qε(z)‖
p
Lp(Qε(z)) =

ˆ
Qε(z)

∣∣∣∣∣f(x)ηδ(x)−
 
Qε(z)

f(y)ηδ(y)dy
∣∣∣∣∣
p

dx

=
ˆ
Qε(z)

∣∣∣∣∣
 
Qε(z)

f(x)ηδ(x)− f(y)ηδ(y)dy
∣∣∣∣∣
p

dx . (40)

Therefore, adding and subtracting ηδ(y) and then using triangular inequality we get

‖fηδ − 〈fηδ〉Qε(z)‖
p
Lp(Qε(z)) 6 τ1

ˆ
Qε(z)

ηpδ (x)
∣∣∣∣∣
 
Qε(z)

[f(x)− f(y)]dy
∣∣∣∣∣
p

dx

+ τ2

|Q̂|εn

ˆ
Q2
ε(z)
|f(y)|p|ηδ(x)− ηδ(y)|pdydx

6 τ1‖f − 〈f〉Qε(z)‖
p
Lp(Qε(z))

+ τ2

|Q̂|εn

ˆ
Q2
ε(z)
|f(y)|pχpδ(x, y)dydx (41)

with χδ(x, y) := |ηδ(x)−ηδ(y)|. We choose ε� εδ := min {dist (suppΩ ηδ, ∂Uδ) ,dist (Uδ, ∂Ω)}.
In this way, since suppΩ ηδ ⊆ Uδ, we have

χδ(x, y) = 0 if x, y ∈ Qε(z) and Qε(z) ∩ Ω\Uδ 6= ∅, (42)

and
χδ(x, y) 6 cΩδ

−1|x− y| 6 cΩδ
−1ε if x, y ∈ Qε(z) and Qε(z) ⊆ Uδ . (43)

We now focus on the right-hand side of (41). From the previous considerations, it follows that

sup
Gε∈Sε(Ω)

∑
Qε(z)∈Gε

ˆ
Q2
ε(z)
|f(y)|pχpδ(x, y) (42)= sup

Gε∈Sε(Uδ)

∑
Qε(z)∈Gε

ˆ
Q2
ε(z)
|f(y)|pχpδ(x, y)

(43)
6 cpΩ

|Q̂|εn+p

δp
sup

Gε∈Sε(Uδ)

∑
Qε(z)∈Gε

ˆ
Qε(z)

|f(y)|pdy

6 cpΩ
|Q̂|εn+p

δp
‖f‖pLp(Uδ). (44)

Combining the previous estimates, we get

κεp[(fηδ)σ, Uδ]
(39)
6 κεp [fηδ,Ω]

= sup
Gε∈Sε(Ω)

∑
Qε(z)∈Gε

1
εp
‖fηδ − 〈fηδ〉Qε(z)‖

p
Lp(Qε(z))

(41)
6 τ1 sup

Gε∈Sε(Ω)

∑
Qε(z)∈Gε

1
εp
‖f − 〈f〉Qε(z)‖

p
Lp(Qε(z))

+τ2 sup
Gε∈Sε(Ω)

∑
Qε(z)∈Gε

1
|Q̂|εn+p

ˆ
Q2
ε(z)
|f(y)|pχpδ(x, y)dydx

(44)
6 τ1κ

ε
p [f,Ω] + τ2

cpΩ
δp
‖f‖pLp(Uδ). (45)
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Summarizing, if f ∈ Lploc (Ω) then κεp[(fηδ)σ, Uδ] 6 τ1κ
ε
p [f,Ω] + τ2

cpΩ
δp ‖f‖

p
Lp(Uδ). Hence, by

Theorem 1.i, we get

γ ‖∇[(fη)σ]‖pLp(Uδ) 6 τ1 lim inf
ε→0

κεp [f,Ω] + τ2
cpΩ
δp
‖f‖pLp(Uδ).

If lim infε→0 κ
ε
p [f,Ω] <∞, then by the convergence (fη)σ ⇀ fη weakly inW 1,p (Ω) we get

γ ‖∇f‖pLp(Ωδ) 6 γ ‖∇(fη)‖pLp(Uδ) 6 τ1 lim inf
ε→0

κεp [f,Ω] + τ2
cpΩ
δp
‖f‖pLp(Uδ)

This proves that if lim infε→0 κ
ε
p [f,Ω] <∞ then f ∈W 1,p

loc (Ω) and for every U b Ω we have

lim
ε→0

κεp[f, U ] = γ ‖∇f‖pLp(U) 6 τ1 lim inf
ε→0

κεp [f,Ω] + τ2
cpΩ

dist (U, ∂Ω)p ‖f‖
p
Lp(U).

This concludes the proof.
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