Calculus of Variations and Geometric Measure Theory

L. Capogna - E. Le Donne

Conformal equivalence of visual metrics in pseudoconvex domains

created by ledonne on 21 Dec 2018

[BibTeX]

preprint

Inserted: 21 dec 2018

Year: 2017

ArXiv: 1703.00238 PDF

Abstract:

We refine estimates introduced by Balogh and Bonk, to show that the boundary extensions of isometries between smooth strongly pseudoconvex domains in $\C^n$ are conformal with respect to the sub-Riemannian metric induced by the Levi form. As a corollary we obtain an alternative proof of a result of Fefferman on smooth extensions of biholomorphic mappings between pseudoconvex domains. The proofs are inspired by Mostow's proof of his rigidity theorem and are based on the asymptotic hyperbolic character of the Kobayashi or Bergman metrics and on the Bonk-Schramm hyperbolic fillings.