*Accepted Paper*

**Inserted:** 11 feb 2016

**Last Updated:** 16 sep 2016

**Journal:** Differential and Integral Equations

**Year:** 2016

**Abstract:**

Aim of the paper is to use a selection process and a careful study of the interaction of bubbling solutions to show a classification result for the blow-up values of the elliptic sinh-Gordon equation $\Delta u+h_1e^u-h_2e^{-u}=0 \mathrm{in} B_1\subset\mathbb{R}^2.$ In particular we get that the blow-up values are multiple of $8\pi.$ It generalizes the result of Jost, Wang, Ye and Zhou where the extra assumption $h_1 = h_2$ is crucially used.

**Download:**