Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

T. Rajala

Failure of the local-to-global property for $CD(K,N)$ spaces

created by rajala1 on 29 May 2013



Inserted: 29 may 2013
Last Updated: 29 may 2013

Year: 2013


Given any $K \in \mathbb{R}$ and $N \in [1,\infty]$ we show that there exists a compact geodesic metric measure space satisfying locally the $CD(0,4)$ condition but failing $CD(K,N)$ globally. The space with this property is a suitable non convex subset of $\mathbb{R}^2$ equipped with the $l^\infty$-norm and the Lebesgue measure. Combining many such spaces gives a (non compact) complete geodesic metric measure space satisfying $CD(0,4)$ locally but failing $CD(K,N)$ globally for every $K$ and $N$.

Keywords: entropy, Ricci curvature, metric measure spaces, branching geodesics


Credits | Cookie policy | HTML 5 | CSS 2.1