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Abstract

Given any K ∈ R and N ∈ [1,∞] we show that there exists a compact geodesic metric
measure space satisfying locally the CD(0, 4) condition but failing CD(K,N) globally. The
space with this property is a suitable non convex subset of R2 equipped with the l∞-norm
and the Lebesgue measure. Combining many such spaces gives a (non compact) complete
geodesic metric measure space satisfying CD(0, 4) locally but failing CD(K,N) globally
for every K and N .
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1 Introduction

In [16, 22, 23] Lott, Sturm and Villani proposed a definition of Ricci curvature lower bounds
in metric measure spaces. The definitions were in terms of convexity properties of functionals
in the space of probability measures. The most relevant definition in the context of this
paper is the CD(0, N) condition, with 0 taking the place of a lower bound on the curvature,
which is usually denoted by K ∈ R in the more general definition (K = 0 here means non
negative Ricci curvature), and N < ∞ being the upper bound on the dimension of the space.
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Figure 1: On the left we see how a measure can be easily transported around a corner when
our distance is given by the l∞-norm. On the right we have the extremal case when we go
around a corner. In this case we have to squeeze the measure a bit.

The CD(0, N) condition on a metric measure space (X, d,m) requires that between any two
probability measures on the space there exists at least one geodesic along which the entropy

EntN (ρm) = −
∫

X
ρ1−

1

N′ dm

is convex for all N ′ ≥ N . (See Section 2 for more details.)
Soon after the definition of CD(0, N) had been introduced it was noticed that Rn equipped

with any norm and with the Lebesgue measure satisfies CD(0, n). See the end of Villani’s book
[24] for an outline of the proof of this fact. In particular we have:

Theorem 1.1 (Cordero-Erausquin, Sturm and Villani) The space (R2, ||·||∞,L2) sat-
isfies CD(0, 2).

A problematic feature of spaces like (R2, || · ||∞,L2) is that between most of the points
there exist a huge number of geodesics joining them. In particular, there are a lot of branching
geodesics. Initially many results for CD(K,N) spaces were proven under the assumption that
there are no branching geodesics. Later some of these results have been proven without such
assumption (for instance local Poincaré inequalities [18, 19]). In some results the general
case with branching geodesics remains open. Branching geodesics are also known to exist, for
example, in some positively curved CD(K,N) spaces, see the recent paper by Ohta [17].

Until now one of the basic open questions for general CD(K,N) spaces was the local-to-
global property of the CD(K,N) condition. It is known that under the non branching assump-
tion assuming CD(0, N) (or CD(K,∞) or CD∗(K,N)) to hold locally (i.e. in a neighbourhood
of any point) is the same as assuming it to hold globally. For CD(K,∞) this was proven by
Sturm [22], for CD(0, N) by Villani [24], and for CD∗(K,N) by Bacher and Sturm [7]. Such
property is natural to expect from an abstract notion of Ricci curvature lower bounds - after
all, the classical definition is local. The notion CD

∗(K,N) refers to the reduced curvature-
dimension condition. It is not (at least a priori) as restrictive as the CD(K,N) condition, but
it is more natural in the local-to-global questions.

In this paper we show that not even CD(0, N) does, in general, have the local-to-global
property. The idea of our example showing that local CD(0, N) does not imply global CD(0, N)
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Figure 2: An illustration of the space X of Example 1.2 as a compact subset of R2 with the
l∞-norm. The space satisfies CD(0, 4) locally, but not globally.

is surprisingly simple. One starts with the observation, which we already mentioned, that
(R2, || · ||∞) has lots of geodesics. There are even so many geodesics that one can go around
some Euclidean corners with them. Therefore we at least have domains in R

2 that are not
convex in the Euclidean sense but still (weakly) geodesically convex with the l∞-norm. Next
we observe that we can locally move two identical objects around a corner, see the left picture
in Figure 1. This roughly means that moving measures that are approximately the same
should not be a problem in view of the local CD(0, 2) condition.

For more general sets the 45 degree angle gives the extremal case when going around a
corner. See the right picture in Figure 1 for the extremal case. There we have to shrink the
measure in the vertical direction when we move it around the corner. This suggests that we
have to give up our hope on CD(0, 2). Still the particular transport seems to satisfy CD(0, 4),
for instance. However, when we take thinner and thinner strips closer and closer to the corner
we notice that the estimates do not scale property. An obvious idea to correct this is to
smoothen the corner, and in fact replacing the corner with a piece of a circle will do:

Example 1.2 Let K ∈ R and N ∈ [1,∞]. There exists a compact geodesic metric measure
space (X, d,m) satisfying CD(0, 4) locally, but failing to satisfy CD

∗(K,N) (and CD(K,N))
globally. Take X to be the closed subset of R2 shown in Figure 2. (We shall specify it more
carefully in Section 3.) As the distance take d(x, y) = ||x− y||∞ and as the reference measure
the restriction of the Lebesgue measure m = L2|X .

We note that if in Example 1.2 we were to drop either the requirement that (X, d) is
complete or the requirement that it is geodesic the example would be close to trivial. However,
with both of these assumptions in place, if we want to get the example as a subset of R2,
we are forced to consider optimal transport at and near the boundary of a non convex set.
Verifying the CD(0, 4) condition at the boundary turned out to require some calculations.

Indeed, proving that (X, d,m) locally satisfies CD(0, 4) takes most of this paper whereas
the failure of global CD∗(K,N) follows immediately by considering optimal transport between
measures with large supports on the opposite sides of the ’neck’. Gluing together infinitely
many spaces of the type shown in Example 1.2 gives a (non compact) complete geodesic metric
measure space satisfying CD(0, 4) locally but failing the global CD(K,N) for any K ∈ R and
N ∈ [1,∞].

Although CD(K,N) (and CD
∗(K,N)) fails to have the local-to-global property, the more

recent definition of Riemannian Ricci curvature bounds by Ambrosio, Gigli and Savaré [4]
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(see also [2] for some generalization and simplifications and [12, 6] for the finite dimensional
definitions), RCD

∗(K,N) for short, could still have the local-to-global property. The fact
that RCD

∗(K,N) spaces are essentially non branching and there exist optimal maps from
absolutely continuous measures [21, 14, 15] strongly supports this conjecture.

Acknowledgements. The author is grateful for the many enlightening discussions with Luigi
Ambrosio and Nicola Gigli on this subject. The author also acknowledges the financial support
of the Academy of Finland project no. 137528.

2 Preliminaries

In this paper the norm we mostly use is the l∞-norm and hence we sometimes abbreviate
||(x0, y0) − (x1, y1)|| := ||(x0, y0) − (x1, y1)||∞ := max{|x0 − x1|, |y0 − y1|}. We denote the
Euclidean norm in R by | · |.

2.1 Optimal mass transportation

We will give here only a few facts about optimal mass transportation. For a more detailed
introduction we refer to the books by Villani [24] and by Ambrosio and Gigli [1]. We denote
by P(X) the space of Borel probability measures on the complete and separable metric space
(X, d) and by P2(X) ⊂ P(X) the subspace consisting of all the probability measures with
finite second moment. Our example X is compact and thus for it we have P2(X) = P(X).
However, in general the measures with finite second moment are considered in order to have
finite W2-distance between the measures (see below for the definition of the distance W2).

Given two probability measures µ0, µ1 ∈ P(X) and a Borel cost function c : X × X →
[0,∞] the optimal mass transportation problem is to minimize

∫

X
c(x, y) dγ(x, y) (2.1)

among all γ ∈ P(X ×X) with µ0 and µ1 as the first and the second marginal.
In the definition of the Ricci curvature lower bounds we will use the quadratic trans-

portation distance W2(µ0, µ1), which is given by the cost function c(x, y) = d(x, y)2. In other
words, for µ0, µ1 ∈ P2(X) it is defined by

W 2
2 (µ0, µ1) = inf

γ

∫

X
d
2(x, y) dγ(x, y), (2.2)

where again the infimum is taken over all γ ∈ P(X × X) with µ0 and µ1 as the first and
the second marginal. Assuming the space (X, d) to be geodesic, also the space (P2(X),W2)
is geodesic. We denote by Geo(X) the space of (constant speed minimizing) geodesics on
(X, d). The notation et : Geo(X) → X, t ∈ [0, 1] is used for the evaluation maps defined by
et(γ) := γt. A useful fact is that any geodesic (µt) ∈ Geo(P2(X)) can be lifted to a measure
π ∈ P(Geo(X)), so that (et)#π = µt for all t ∈ [0, 1]. Given µ0, µ1 ∈ P2(X), we denote by
OptGeo(µ0, µ1) the space of all π ∈ P(Geo(X)) for which (e0, e1)#π realizes the minimum
in (2.2).

A property of optimal transport plans that we will frequently use is cyclical monotonicity.
It holds in a great generality, and in particular in the minimization problems we are consid-
ering in this paper. A set Γ ⊂ X × X is called c-cyclically monotone if for any k ∈ N and
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(x1, y1), . . . , (xk, yk) ∈ Γ we have

k
∑

i=1

c(xi, yi) ≤
k
∑

i=1

c(xi, yi+1)

with the identification yk+1 = y1. Now, given µ0, µ1 ∈ P2(X) and an optimal transport plan
γ minimizing (2.1) there exists a c-cyclically monotone subset Γ with full γ-measure.

2.2 Ricci curvature lower bounds in metric measure spaces

We will define here the CD
∗(K,N) condition, coming from the paper by Bacher and Sturm

[7], and not the CD(K,N) condition. The reason for this is that in the non branching case the
CD

∗(K,N) condition has the local-to-global property. Moreover, for K ≥ 0 and N ∈ [1,∞)
we have

CD(K,N) ⇒ CD
∗(K,N) ⇒ CD(

N − 1

N
K,N).

For the proof of this and for a more detailed discussion of the relation with CD
∗(K,N) and

CD(K,N) we refer to [7] (see also the papers by Cavalletti and Sturm [10] and by Cavalletti
[9]). Since we show that our example fails CD(K,∞), it will also fail CD(K,N) and CD

∗(K,N)
for all N .

Given K ∈ R and N ∈ [1,∞), we define the distortion coefficient [0, 1] × R
+ ∋ (t, θ) 7→

σ
(t)
K,N(θ) as

σ
(t)
K,N(θ) :=



























+∞, if Kθ2 ≥ Nπ2,
sin(tθ

√
K/N)

sin(θ
√

K/N)
if 0 < Kθ2 < Nπ2,

t if Kθ2 = 0,
sinh(tθ

√
K/N)

sinh(θ
√

K/N)
if Kθ2 < 0.

Let K ∈ R and N ∈ [1,∞). We say that a complete geodesic metric measure space
(X, d,m) satisfies the CD

∗(K,N) condition if for any two measures µ0, µ1 ∈ P(X) with
support bounded and contained in supp(m) there exists a measure π ∈ OptGeo(µ0, µ1) such
that for every t ∈ [0, 1] and N ′ ≥ N we have

−
∫

ρ
1− 1

N′

t dm ≤ −
∫

σ
(1−t)
K,N ′ (d(γ0, γ1))ρ

− 1

N′

0 + σ
(t)
K,N ′(d(γ0, γ1))ρ

− 1

N′

1 dπ(γ), (2.3)

where for any t ∈ [0, 1] we have written (et)♯π = ρtm+ µs
t with µs

t ⊥ m.
What is different in the CD(K,N) definition is the choice of the weights σ. In the particular

case K = 0 the CD
∗(0, N) condition is the same as the CD(0, N) one.

We will in fact only need to show that our example fails the CD(K,∞) condition. For
defining the CD(K,∞) condition we will need the entropy

Ent∞(µ) =

∫

X
ρ log ρdm,

if µ = ρm is absolutely continuous with respect to m and Ent∞(µ) = ∞ otherwise. We
say that a metric measure space (X, d,m) satisfies the CD(K,∞) condition if for any two
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measures µ0, µ1 ∈ P(X) with support bounded and contained in supp(m) there exists a
measure π ∈ OptGeo(µ0, µ1) such that for every t ∈ [0, 1] we have

Ent∞(µt) ≤ (1− t)Ent∞(µ0) + tEnt∞(µ1)−
K

2
t(1− t)W 2

2 (µ0, µ1),

where we have written µt = (et)♯π.
A complete geodesic metric measure space (X, d,m) is said to satisfy CD

∗(K,N) locally
if for any x ∈ X there exists a radius r > 0 so that for any µ0, µ1 ∈ P(X) with supports in
B(x, r) there is a measure π ∈ OptGeo(µ0, µ1) such that for every t ∈ [0, 1] and N ′ ≥ N we
have (2.3).

2.3 Approximate differentiability and the Jacobian equation

Given two absolutely continuous measures µ0, µ1 ∈ P2(R
2) and an optimal map T : R2 → R

2

pushing µ0 to µ1, our aim is to express the density ρ1 of µ1 using the density ρ0 of µ0 and
the mapping T . Assuming T to be one-to-one and smooth, this expression is the standard
Jacobian equation

ρ1(T (x, y))JT (x, y) = ρ0((x, y)) for µ0-almost every (x, y), (2.4)

where JT (x, y) is the absolute value of the Jacobian determinant of T . A way to relax the
assumptions on T to be one-to-one and smooth is to require it to be one-to-one almost
everywhere and approximately differentiable, see for instance the book by Ambrosio, Gigli
and Savaré [3, Lemma 5.5.3] for a precise statement.

Recall that a mapping f : U → R
m, U ⊂ R

n open, is called approximately differentiable
at x ∈ U if there exists a measurable function f̃ : U → R

m which is differentiable at x and
for which

lim
r→0

Ln({z ∈ B(x, r) : f(z) = f̃(z)})
Ln(B(x, r))

= 1.

The approximate differential of f at x is defined to be that of f̃ at x. Correspondingly we
define the approximate partial derivatives (of the components), denoted simply by ∂fi

∂zi
.

Approximate differentiability for T would follow from the almost everywhere existence of
approximate partial derivatives, see Federer’s book [13, Theorem 3.1.4]. However, our mapping
will not in general have approximate partial derivatives in all the directions. Due to the special
structure of our optimal maps the following easy version will suffice. In the proposition below,
and later on, we write the components of a map f : R2 → R

2 as f1 and f2. In other words
f(x, y) = (f1(x, y), f2(x, y)).

Proposition 2.1 Let µ0, µ1 ∈ P2(R
2) be absolutely continuous with respect to L2 with den-

sities ρ0 and ρ1, respectively, and let f : R2 → R
2 be a map such that µ1 = f♯µ0 and f is

one-to-one outside a set of measure zero. Suppose that f1(x, y) = f1(x), i.e. f1 does not de-
pend on y. Suppose also that f1 is increasing in x and that f2(x, y) is increasing in y for
almost every x ∈ R. Then (2.4) holds with Jf (x, y) =

∂f1
∂x

∂f2
∂y .

proof Because f1(x) is increasing in x and f2(x, y) is increasing in y for almost every x, f1 is
almost everywhere approximately differentiable and f2 has an approximate partial derivative
in the y-direction at almost every point.
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Take a measurable A ⊂ R
2 and write Ax = {y ∈ R : (x, y) ∈ A}. Since µ0 and µ1 are

absolutely continuous with respect to L2 and f is one-to-one outside a set of measure zero,
we have

∫

A
ρ0((x̄, ȳ)) dL2(x̄, ȳ) = µ0(A) = µ1(f(A)) =

∫

f(A)
ρ1(x̃, ỹ) dỹ dx̃

=

∫ ∞

−∞

∫

Ax̄

ρ1(f(x̄, ȳ))
∂f2
∂y

(x̄, ȳ) dȳ
∂f1
∂x

(x̄) dx̄

=

∫

A
ρ1(f(x̄, ȳ))

∂f2
∂y

(x̄, ȳ)
∂f1
∂x

(x̄, ȳ) dL2(x̄, ȳ).

The claim follows from this. �

3 Details of the example

Most of this section is devoted to verifying the local CD(0, 4) condition in Example 1.2.
The plan is to use the Jacobian equation to estimate the density along a chosen geodesic in
P2(R

2). Before arriving at this we will first show that we have an optimal map T between
two absolutely continuous measures µ0 and µ1, that this map is essentially one-to-one and
that it can be used in a Jacobian equation. Using the optimal map T we will then select a
midpoint measure whose support is still inside our domain. Here we also have to make sure
that the map sending an initial point to the midpoint is essentially one-to-one. Finally we
will verify that this midpoint measure satisfies CD(0, 4). At the very end we will also indicate
why the global CD(K,∞) condition fails.

3.1 Definition of the local domain

Since Theorem 1.1 is proven by approximating the norm ||·||∞ with strictly convex norms, the
CD(0, 4) condition (in fact the CD(0, 2) condition) holds inside any domain that is convex in
the Euclidean sense. What needs to be done is to verify the CD(0, 4) condition inside domains
of the type shown in Figure 3.

Referring to Figure 3 for the notation, the width b− a and the height d+ b−a
2 − c of the

domain E are assumed to be less than 1
64 . The bottom of the domain is a piece of a sphere

with radius one and whose center (xc, yc) satisfies

|x− xc| <
1

2
(y − yc) for all (x, y) ∈ E. (3.1)

Let for every (x, y) ∈ [a, b] × R the point (x, S(x)) be the vertical projection to the lower
(circular) boundary of E, see Figure 3. Notice that S(x) only depends on x. Our assumption
(3.1) guarantees

S

(

x1 + x2
2

)

− S(x1) + S(x2)

2
≤ |x1 − x0|2

2
for all x1, x2 ∈ [a, b]. (3.2)

3.2 Preliminary reductions and definitions

Let us now mention two simplifications that we can always make when checking the CD∗(K,N)
condition. We will return to both of them in more detail at the end of the paper when we
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d (x, y)

(x, S(x))

d+ b−a
2

a b

c

Figure 3: The local domain E where we verify the CD(0, 4) condition.

finally prove the CD(0, 4) condition. The first standard reduction in checking the CD
∗(K,N)

condition is to assume the measures to be absolutely continuous with respect to the reference
measure. This reduction is possible because we can approximate any probability measure in
the W2-distance by an absolutely continuous measure without increasing the entropy.

The second standard simplification we make is that we only define the midpoint between
any two given measures. This has been used for example by Bacher and Sturm [7] and the
author [20]. We can then iterate the procedure of taking midpoints and use the lower semi-
continuity of the entropy to have the correct entropy bound along the whole geodesic.

Let us then turn to the notation and definitions that are less standard than the ones we
recalled in Section 2. Given a metric space (X, d), for z0, z1 ∈ X we denote the set of all the
midpoints between z0 and z1 by

Mid(z0, z1) :=

{

z ∈ X : d(z0, z) = d(z1, z) =
1

2
d(z0, z1)

}

.

We will not make the distance d visible in the notation because Mid will only be used for
(R2, || · ||∞) and (P2(R

2),W2), and for those no confusion should arise.
In the following we will often consider separately the part of the transport that moves

more in the horizontal (or vertical) direction. To set some notation define the set of horizontal
transportation

H :=
{

((x0, y0), (x1, y1)) ∈ R
2 × R

2 : |x0 − x1| > |y0 − y1|
}

,

the set of vertical transportation

V :=
{

((x0, y0), (x1, y1)) ∈ R
2 × R

2 : |x0 − x1| < |y0 − y1|
}

and the set of diagonal transportation

D :=
{

((x0, y0), (x1, y1)) ∈ R
2 × R

2 : |x0 − x1| = |y0 − y1|
}

.
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Given any γ ∈ P(R2 ×R
2), the restricted measure γ|H moves every infinitesimal mass more

in the horizontal direction than the vertical, γ|V the other way around, and γ|D moves mass
in the diagonal directions.

3.3 Selecting an optimal map

One possible way of trying to obtain the needed optimal maps could be to analyse the proof
of Theorem 1.1, or the CD(0, 2) condition in (R2, || · ||∞,L2). However, we chose a more
direct approach of first selecting a suitable optimal transport plan via three consecutive
minimizations and then showing that this plan has all the desired properties. The idea behind
the three minimizations is that the l∞-norm allows locally a lot of freedom for the coordinate
in which the mass is transported less. By doing extra minimization on the two directions
separately after the main minimization, we will increase the monotonicity properties of the
optimal transport.

The idea of using consecutive minimizations to choose a better optimal transport plan
goes back to [5, 11] where the existence of optimal maps from absolutely continuous measures
in R

n for cost functions of the form c(x, y) = ||x− y|| was proven - first with any crystalline
norm || · || by Ambrosio, Kirchheim and Pratelli in [5] and then with any norm || · || by
Champion and De Pascale in [11]. Let us also note that the existence of an optimal map in
our case with c(x, y) = ||x−y||2∞ has been proven by Carlier, De Pascale and Santambrogio in
[8]. We will prove here the existence of a specific optimal transport map using the consecutive
minimizations in order to keep the paper reasonably self-contained and, more importantly,
in order to guarantee that the chosen optimal plan has all the needed cyclical monotonicity
properties.

Let us give the three minimizations. Suppose that µ0, µ1 ∈ P2(R
2) are given. Let

Opt1(µ0, µ1) ⊂ P(R2 × R
2) be the set of those γ that minimize

∫

R2×R2

||z1 − z2||2dγ(z1, z2) (3.3)

and satisfy (π1)♯γ = µ0 and (π2)♯γ = µ1. The set Opt1(µ0, µ1) is a nonempty closed and
convex subset of P(R2×R

2). Next let Opt2(µ0, µ1) ⊂ Opt1(µ0, µ1) be the set of those γ that
minimize

∫

R2×R2

|x1 − x2|2dγ((x1, y1), (x2, y2)). (3.4)

Again Opt2(µ0, µ1) is a nonempty closed and convex subset of P(R2 × R
2). Finally let

Opt3(µ0, µ1) ⊂ Opt2(µ0, µ1) be the set of those γ that minimize

∫

R2×R2

|y1 − y2|2dγ((x1, y1), (x2, y2)). (3.5)

Clearly also Opt3(µ0, µ1) is nonempty. We will see in Proposition 3.2 that in the case µ0 ≪ L2

the set Opt3(µ0, µ1) consists of only one optimal plan which is given by a map. Before this, let
us list the cyclical monotonicity properties we immediately get from the three minimizations.

Lemma 3.1 Let µ0, µ1 ∈ P2(R)
2 and γ ∈ Opt3(µ0, µ1). Then there exists a set Γ ⊂ R

2×R
2

of full γ-measure such that for all (z1, w1), (z2, w2) ∈ Γ we have

||z1 − w1||2 + ||z2 −w2||2 ≤ ||z1 −w2||2 + ||z2 − w1||2 (3.6)
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and for all ((x1, y1), (x
′
1, y

′
1)), ((x2, y2), (x

′
2, y

′
2)) ∈ Γ we have

|y1 − y′1|2 + |y2 − y′2|2 ≤ |y1 − y′2|2 + |y2 − y′1|2,
if |x1 − x′1|2 + |x2 − x′2|2 = |x2 − x′1|2 + |x1 − x′2|2

(3.7)

and

|x1 − x′1|2 + |x2 − x′2|2 ≤ |x1 − x′2|2 + |x2 − x′1|2,
if |y1 − y′1|2 + |y2 − y′2|2 = |y2 − y′1|2 + |y1 − y′2|2.

(3.8)

Let us then prove that in the case µ0 ≪ L2 the optimal plan in Opt3(µ0, µ1) is given by
a map. This is a fairly standard consequence of Lemma 3.1, so we present only parts of the
proof to give the idea.

Proposition 3.2 Suppose µ0 ≪ L2. Then Opt3(µ0, µ1) is a singleton and its only element
is induced by an optimal map T .

proof The fact that Opt3(µ0, µ1) is a singleton follows once we know that any element in
Opt3(µ0, µ1) is induced by an optimal map. Indeed, if there were two different measures
γ1,γ2 ∈ Opt3(µ0, µ1), then by convexity also γ3 = 1

2(γ1 + γ2) ∈ Opt3(µ0, µ1). However, the
measure γ3 would not be induced by a map.

Suppose now that there exists γ ∈ Opt3(µ0, µ1) that is not induced by a map. Then the
disintegration γz of γ with respect to π1 is not a Dirac mass for a µ-positive set of points
z ∈ R

2. Now there are several cases to check. We use different cyclical monotonicities to arrive
at a contradiction in each of the cases. The different cases are:

(i) γz(H) > 0 and γz(V ) > 0 for a µ0-positive set of z.

(ii) γz|H , γz|V or γz|D is not a Dirac mass for a µ0-positive set of z.

(iii) γz(D) > 0 and γz(H) > 0 (or γz(V ) > 0) for a µ0-positive set of z.

The contradiction follows from all of the cases in a similar way. We will only give details in
the first case. Thus assume that γz(H) > 0 and γz(V ) > 0 for a µ0-positive set of z. Let
Γ ⊂ R

2 × R
2 be the set from Lemma 3.1 having all the cyclical monotonicity properties.

Suppose that the set

{z ∈ R
2 : γz(H ∩ Γ) > 0 and γz(V ∩ Γ) > 0}

has positive µ0-measure. Now there exist ǫ, δ > 0 and (xh, yh), (xv , yv) ∈ R
2 so that

||(xh, yh)− (xv, yv)|| ≥ 4δ

and the set

A =
{

z ∈R2 : γz

(

{((x1, y1), (x2, y2)) : |y1 − y2| < |x1 − x2| − ǫ} ∩ Γ ∩ R
2 ×B((xh, yh), δ)

)

> 0

and γz

(

{((x1, y1), (x2, y2)) : |x1 − x2| < |y1 − y2| − ǫ} ∩ Γ ∩ R
2 ×B((xv, yv), δ)

)

> 0
}

has positive µ0-measure. Let (x̄, ȳ) be a density point of A. By symmetry, assume ||(x̄, ȳ) −
(xv, yv)|| ≥ 2δ. Because (x̄, ȳ) is a density point, for some x ∈ [x̄− ǫ

2 , x̄+
ǫ
2 ] there exist y1, y2 ∈
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[ȳ− ǫ
2 , ȳ+

ǫ
2 ], y1 6= y2, such that (x, y1), (x, y2) ∈ A. We may assume that |yv− y2| < |yv− y1|.

Let (xh,2, yh,2) ∈ B((xh, yh), δ) and (xv,1, yv,1) ∈ B((xv, yv), δ) be such that

((x, y1), (xv,1, yv,1)), ((x, y2), (xh,2, yh,2)) ∈ Γ,

|y2 − yh,2| < |x− xh,2| − ǫ and |x− xv,1| < |y1 − yv,1| − ǫ.

But now

||(x, y2)− (xv,1, yv,1)||2 + ||(x, y1)− (xh,2, yh,2)||2

= |y2 − yv,1|2 + |x− xh2
|2 < |y1 − yv,1|2 + |x− xh2

|2

= ||(x, y1)− (xv,1, yv,1)||2 + ||(x, y2)− (xh,2, yh,2)||2

contradicting the cyclical monotonicity (3.6) of Γ. This proves the claim in the case (i).
In the case (ii) we argue similarly and use the cyclical monotonicities (3.6) and (3.7) if

γz|H is not Dirac, (3.6) and (3.8) if γz|V is not, and (3.6) if γz|D is not. In the case (iii) we

use (3.7) if γz(D) > 0 and γz(H) > 0, and (3.8) if γz(D) > 0 and γz(V ) > 0. �

Next we list some properties of the map T in the case µ0, µ1 ≪ L2.

Lemma 3.3 Let µ0 ≪ L2, T the map from Proposition 3.2 and Γ the set from Lemma 3.1.
Then for all (x, y1), (x, y2), (x1, y), (x2, y) ∈ {(x, y) ∈ R

2 : ((x, y), T (x, y)) ∈ Γ} we have the
following.

If y1 6= y2 and T1(x, y1) = T1(x, y2), then
T2(x, y1)− T2(x, y2)

y1 − y2
≥ 0 (3.9)

and

if x1 6= x2 and T2(x1, y) = T2(x2, y), then
T1(x1, y)− T1(x2, y)

x1 − x2
≥ 0. (3.10)

proof Suppose that (3.9) does not hold for some (x, y1), (x, y2) ∈ F . We may assume that
y2 < y1 so that T2(x, y1) < T2(x, y2). By the cyclical monotonicity (3.6) we have |T1(x, y1)−
x| ≥ |T2(x, y1)− y1| and |T1(x, y2)− x| ≥ |T2(x, y2)− y2|. Therefore

||T (x, y1)− (x, y1)|| = ||T (x, y1)− (x, y2)|| = ||T (x, y2)− (x, y2)|| = ||T (x, y2)− (x, y1)||.

But now

|T2(x, y1)− y2|2 + |T2(x, y2)− y1|2 < |T2(x, y1)− y1|2 + |T2(x, y2)− y2|2

violating the cyclical monotonicity of (3.7). This proves (3.9). The inequality (3.10) follows
similarly from the cyclical monotonicities (3.6) and (3.8). �

In estimating the densities at the midpoints we will also need an infinitesimal version of
Lemma 3.3. Recalling the discussion from Section 2.3 we would like to use a Jacobian equation

ρ1(T (x, y))JT (x, y) = ρ0((x, y)) for µ0-almost every (x, y). (3.11)

Here a few comments are in order. As we mentioned in Section 2.3, usually in writing the
Jacobian equation the mapping is assumed to be at least approximately differentiable almost
everywhere. However, the optimal map T is not in general approximately differentiable. To
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see this, take a measurable function f : [0, 1] → [0, 1] that is not approximately differentiable
and consider the optimal transport between the uniform measures on [0, 1]2 and {(x+3, y) :
x ∈ [0, 1], y ∈ [f(x), f(x) + 1]}.

Nevertheless, because locally in H we are sending vertical lines to vertical lines by cyclical
monotonicity (3.6) the first coordinate function T1 is approximately differentiable almost
everywhere. Then, because of cyclical monotonicity (3.7) the second coordinate function T2

is approximately differentiable in the variable y for almost every x. Now, since T1 was locally
(approximately) constant in y, we get (3.11) in H using Proposition 2.1. Similarly we get it
also in V and D.

Lemma 3.4 Let µ0, µ1 ≪ L2 and Opt3(µ0, µ1) = {(id,T)♯}. Then the map T satisfies µ0-
almost everywhere

∂T1

∂x
≥ 0 and

∂T2

∂y
≥ 0, if ((x, y), T (x, y)) ∈ H ∪ V. (3.12)

Still µ0-almost everywhere we have that

T1 is locally constant in y, if ((x, y), T (x, y)) ∈ H and

T2 is locally constant in x, if ((x, y), T (x, y)) ∈ V.
(3.13)

proof In proving (3.12) assume first that ((x, y), T (x, y)) ∈ H. Then by the cyclical mono-
tonicity (3.6) we have ∂T1

∂x ≥ 0. Notice that in H vertical lines are locally sent to vertical

lines so that ∂T2

∂y ≥ 0 follows from (3.9). In a similar way we can prove (3.12) assuming
((x, y), T (x, y)) ∈ V .

The first claim in (3.13) follows again from the observation that in H vertical lines are
locally sent to vertical lines, and the second claim follows analogously. �

3.4 Defining the midpoint

As we already saw in the Introduction (Figure 1) we have to deviate the midpoint of a geodesic
from the Euclidean midpoint by an amount depending on the endpoints of the geodesics. A
geodesic going in the 45 degree direction has to remain the same geodesic and a geodesic
going in the horizontal direction can deviate the most.

The idea behind defining the midpoint the way we do here is that we want to keep the
height of the transport right for a (vertical) CD(0, 2) condition. If the height is exactly the
correct one for the condition between vertical strips with their base on the sphere bounding
our domain, it will also be infinitesimally correct.

Naturally the correction for the midpoints needs to be done only in the horizontal part H
of the transport. For the vertical part V and the diagonal part D we can use the Euclidean
midpoints (who will respectively give a CD(0, 2) and CD(0, 1) condition for those parts of the
transport).

The midpoint µ 1

2

will be defined using the mapping M : E ×E → R
2 given by

M ((x0, y0), (x1, y1)) =

(

x0 + x1
2

,
y0 + y1

2

)

, (3.14)

12



if ((x0, y0), (x1, y1)) /∈ H (corresponding to the Euclidean midpoint in the non horizontal
transport), and by

M ((x0, y0), (x1, y1)) =

(

x0 + x1
2

,
S(x0) + S(x1)

2
+ (x0 − x1)

2

+
1

4

(

√

y0 − S(x0) +
√

y1 − S(x1)
)2
)

,

(3.15)

if ((x0, y0), (x1, y1)) ∈ H (corresponding to the vertical shrinking to satisfy the CD(0, 2)
condition in the horizontal transport).

The first thing to check is thatM really gives midpoints. As usual, we writeM = (M1,M2).

Lemma 3.5 M ((x0, y0), (x1, y0)) ∈ Mid ((x0, y0), (x1, y0)).

proof We may assume x0 ≤ x1. If ((x0, y0), (x1, y1)) /∈ H, the claim is obvious. Let then
((x0, y0), (x1, y1)) ∈ H so that M is given by (3.15). By symmetry, we may assume that
y0 ≤ y1. We have to show that

M2 ((x0, y0), (x1, y1))− y0 ≤
x1 − x0

2
(3.16)

and

y1 −M2 ((x0, y0), (x1, y1)) ≤
x1 − x0

2
. (3.17)

Because M2 is increasing in y1, for verifying (3.16) it is enough to check the extreme case
y1 − y0 = x1 − x0 (even though in this case the mapping M is defined using (3.14)). Notice
that by assumption on the width and height of E we have

|y1 − y0|, |y1 − S(x1)| ≤
1

64
(3.18)

and by (3.1) we have

|S(x1)− S(x0)| ≤
1

2
|x1 − x0| =

1

2
|y1 − y0|. (3.19)

Together (3.18) and (3.19) yield

(|y1 − y0| − |S(x1)− S(x0)|)2 ≥ 1

4
|y1 − y0|2 ≥ 8(|y1 − S(x1)|+ |y1 − y0|)|y1 − y0|2.

This immediately gives

4(y1 − y0)
2 ≤

(

√

y0 − S(x0)−
√

y1 − S(x1)
)2

,

which is (3.16) in the extreme case y1 − y0 = x1 − x0.
In checking (3.17) we can use the fact that M2 is increasing in y0. Hence we only need to

check the extreme case y0 = y1. Again by symmetry we may assume S(x0) ≤ S(x1). Because
of (3.19) we have

2y0 − S(x0)− S(x1)− 2|x1 − x0| ≤ 2(y0 − S(x1)) ≤ 2
√

(y0 − S(x1))(y0 − S(x0)).

Therefore

1

4

(

√

y0 − S(x0)−
√

y0 − S(x1)
)2

≤ x1 − x0
2

≤ x1 − x0
2

+ (x1 − x0)
2,

which is the inequality (3.17) in the critical case. �
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The second thing to check is that the midpoints are inside our domain E.

Lemma 3.6 The mapping M has values in E.

proof Again, if ((x0, y0), (x1, y1)) /∈ H, the claim is obvious. Hence, suppose
((x0, y0), (x1, y1)) ∈ H. By Lemma 3.5 we know that M ((x0, y0), (x1, y0)) ∈
Mid ((x0, y0), (x1, y0)). Therefore the only thing to check is that

M ((x0, y0), (x1, y0)) > S

(

x0 + x1
2

)

.

This follows from our assumptions on the domain E, more precisely from (3.2). �

3.5 Verifying the local CD(0, 4) condition

In order to be able to use the Jacobian equation (2.4) for the midpoints we first have to check
that our mapping giving the midpoint is essentially one-to-one.

Lemma 3.7 Let µ0, µ1 ∈ P(E) with µ0, µ1 ≪ L2. Let T be the optimal map from Proposi-
tion 3.2. Then the map M ◦ (id, T ) is one-to-one outside a set of µ0-measure zero.

proof Let Γ be the set from Lemma 3.1. Suppose that there exist (x1, y1), (x2, y2) ∈ E so that
((x1, y1), T (x1, y1)), ((x2, y2), T (x2, y2)) ∈ Γ, (x1, y1) 6= (x2, y2) and

M ◦ (id, T )(x1, y1) = M ◦ (id, T )(x2, y2). (3.20)

We have three cases to check:

(i) ((x1, y1), T (x1, y1)), ((x2, y2), T (x2, y2)) ∈ H

(ii) ((x1, y1), T (x1, y1)), ((x2, y2), T (x2, y2)) /∈ H

(iii) ((x1, y1), T (x1, y1)) ∈ H, ((x2, y2), T (x2, y2)) /∈ H.

In the case (i) we may assume x1 = x2 and T1(x1, y1) = T1(x2, y2) by cyclical monotonicity
(3.6) and y1 < y2 by symmetry. Then by Lemma 3.3 we have T2(x1, y1) < T2(x2, y2). Since
M2 is strictly increasing in both of the y-coordinates, we have

M2 ◦ (id, T )(x1, y1) < M2 ◦ (id, T )(x2, y2)

contradicting the assumption (3.20).
In the case (ii) we may first of all assume y1 = y2 and T2(x1, y1) = T2(x2, y2) by cyclical

monotonicity (3.6). The assumption (3.20) gives

x1 + T1(x1, y1)

2
=

x2 + T1(x2, y2)

2
.

This implies via Lemma 3.3 that x1 = x2, which contradicts the assumption (x1, y1) 6= (x2, y2).
Finally we have the case (iii). We may assume x1 < T1(x1, y1). If T1(x2, y2) < T1(x1, y1),

then
||(x1, y1)− T (x2, y2)|| < ||(x1, y1)− T (x1, y1)|| = ||(x2, y2)− T (x2, y2)||

contradicting the cyclical monotonicity (3.6). On the other hand, if T1(x2, y2) = T1(x1, y1),
we have y2 < y1, x1 = x2 and T2(x1, y1) < T2(x2, y2) contradicting (3.9). �
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Now we are in a position to estimate the density of the midpoint measure.

Proposition 3.8 Let µ0, µ1 ∈ P(E) with µ0, µ1 ≪ L2. Then for all N ≥ 4 we have

EntN (µ 1

2

) ≤ 1

2
(EntN (µ0) + EntN (µ1)) ,

where µ 1

2

= (M ◦ (id, T ))♯µ0 with T being the optimal map from Proposition 3.2.

proof We will show that for µ0-almost every (x, y) ∈ E we have

ρ 1

2

(M((x, y), T (x, y))−
1

4 ≥ 1

2

(

ρ0((x, y))
− 1

4 + ρ1(T (x, y))
− 1

4

)

, (3.21)

where µ0 = ρ0L2, µ1 = ρ1L2 and µ 1

2

= (M ◦(id, T ))♯µ0 = ρ 1

2

L2. The claim of the Proposition

then follows by Hölder’s inequality and integration.
By Lemma 3.7 the mapping M ◦ (id, T ) is essentially one-to-one. Our claim (3.21) will

therefore follow if we are able to show that

JM◦(id,T )(x, y)
1

4 ≥ 1

2

(

1 + JT (x, y)
1

4

)

(3.22)

holds µ0-almost everywhere.
By Lemma 3.4 we have µ0-almost everywhere in H ∪ V that T1 is locally constant in y,

∂T1

∂x ≥ 0 and ∂T2

∂y ≥ 0. Thus µ0-almost everywhere in H ∪ V we can write, using Proposition
2.1,

JT (x, y) =
∂T1

∂x

∂T2

∂y
. (3.23)

For the density ρ 1

2

we will need to estimate the Jacobian determinant of the mapping M ◦
(id, T ) which is given by

(M ◦ (id, T ))(x, y) =
(

x+ T1

2
,
y + T2

2

)

,

if ((x, y), T (x, y)) /∈ H, and by

(M◦(id, T ))(x, y) =
(

x+ T1

2
,
S(x) + S(T1)

2
+

1

4

(

√

y − S(x) +
√

T2 − S(T1)
)2

+ (x− T1)
2

)

,

if ((x, y), T (x, y)) ∈ H.
Again by Lemma 3.4 we have µ0-almost everywhere

JM◦(id,T )(x, y) =
1

2

(

1 +
∂T1

∂x

)

· 1
2

(

1 +
∂T2

∂y

)

,

if ((x, y), T (x, y)) ∈ V , and

JM◦(id,T )(x, y) =
1

2

(

1 +
∂T1

∂x

)

· 1
4

(

1 +
∂T2

∂y
+

√

T2 − S(T1)

y − S(x)
+

√

y − S(x)

T2 − S(T1)

∂T2

∂y

)

,

if ((x, y), T (x, y)) ∈ H.
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Let us check (3.22) in the case ((x, y), T (x, y)) ∈ H. The case ((x, y), T (x, y)) ∈ V follows
easily and the case ((x, y), T (x, y)) ∈ D will be considered at the end of the proof. First
observe that

1 +
∂T1

∂x
≥ 1

2

(

1 +

√

∂T1

∂x

)2

and
√

T2 − S(T1)

y − S(x)
+

√

y − S(x)

T2 − S(T1)

∂T2

∂y
≥ 2

√

∂T2

∂y
.

Therefore

JM◦(id,T )(x, y) ≥
1

16

(

1 +

√

∂T1

∂x

)2(

1 +

√

∂T2

∂y

)2

.

Now, in order to obtain (3.22) it is then sufficient to have

(

1 +

√

∂T1

∂x

)(

1 +

√

∂T2

∂y

)

≥
(

1 +

(

∂T1

∂x

∂T2

∂y

)
1

4

)2

,

which immediately follows from

(

(

∂T1

∂x

)
1

4

−
(

∂T2

∂y

)
1

4

)2

≥ 0.

Let us then consider the case ((x, y), T (x, y)) ∈ D. By changing to coordinates x̃ =
1√
2
(x+ y), ỹ = 1√

2
(x− y) we may assume that either T̃1(x̃, ỹ)− x̃ or T̃2(x̃, ỹ)− ỹ (in the new

coordinates) is constant. Assuming the first, we have

∂T̃1

∂x̃
= 1 and

∂T̃1

∂ỹ
= 0

giving

JT̃ (x̃, ỹ) =
∂T̃2

∂ỹ
,

which is non negative µ0-almost everywhere in D by cyclical monotonicity (3.6), and

JM̃◦(id,T̃ )(x̃, ỹ) =
1

2

(

1 +
∂T̃1

∂x̃

)

· 1
2

(

1 +
∂T̃2

∂ỹ

)

=
1

2

(

1 + JT̃ (x̃, ỹ)
)

leading to (3.22). �

Proposition 3.8 then gives the CD(0, 4) condition in E. For the convenience of the reader
we now justify here the initial reductions.

Theorem 3.9 The space (E, || · ||∞,L2|E) satisfies CD(0, 4).
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proof We have to show that for any µ0, µ1 ∈ P(E) there exists a geodesic (µt) ⊂ P(E)
along which we have the estimate

EntN (µt) ≤ (1− t)EntN (µ0)− tEntN (µ1) (3.24)

for all N ≥ 4 and t ∈ (0, 1).
Let us first show that we can obtain this for t = 1

2 . Take ǫ > 0 and consider the approxi-
mated measures µ0,ǫ = ρ0,ǫL2, µ1,ǫ = ρ1,ǫL2 that are obtained from the measures µ0 and µ1

by setting

ρi,ǫ =
µi (E ∩ [nǫ, (n + 1)ǫ)× [mǫ, (m+ 1)ǫ))

L2 (E ∩ [nǫ, (n + 1)ǫ)× [mǫ, (m+ 1)ǫ))

on
E ∩ [nǫ, (n+ 1)ǫ) × [mǫ, (m+ 1)ǫ)

for every n,m ∈ Z, i = 0, 1.
Now EntN (µi,ǫ) ≤ EntN (µi) for all N > 1 by Jensen’s inequality, W2(µi,ǫ, µi) ≤ ǫ and

µi,ǫ ≪ L2. From µ0,ǫ to µ1,ǫ there exists an optimal map T given by Proposition 3.2 and by
Proposition 3.8 we get

EntN (µ 1

2
,ǫ) ≤

1

2
(EntN (µ0,ǫ) + EntN (µ1,ǫ)) ≤

1

2
(EntN (µ0) + EntN (µ1)) ,

with µ 1

2
,ǫ = (M ◦ (id, T ))♯µ0,ǫ. Letting ǫ ↓ 0 along a subsequence we find a weak limit measure

µ 1

2

∈ Mid(µ0, µ1) satisfying

EntN (µ 1

2

) ≤ 1

2
(EntN (µ0) + EntN (µ1))

for all N ≥ 4 by the lower semi-continuity of the entropies EntN .
Now that we have (3.24) at t = 1

2 we can continue by taking midpoints between µ0 and µ 1

2

,

and between µ 1

2

and µ1 and this way obtain (3.24) at t = 1
4 and t = 3

4 . Continuing iteratively

we get (3.24) for a dense set of times. Finally, by the lower semi-continuity of EntN we have
(3.24) for all t, the measures µt being obtained as weak limits of µs as s → t along the dyadic
time points. �

3.6 Failure of the global CD(K,∞) condition

Finally, let us show the calculation implying that the space X does not globally satisfy
CD(K,N). Because, given any K ∈ R and N ∈ [1,∞), the CD(K,N) condition implies the
CD(K,∞) condition, it suffices to check the case N = ∞.

Theorem 3.10 Given K ∈ R, the space (X, || · ||∞,L2|X) can be constructed so that it does

not satisfy CD(K,∞).

proof Let µ0 =
1

L2(A0)
L2|A0

and µ1 =
1

L2(A1)
L2|A1

for some sets A1, A2 ⊂ X with L2(A0) =

L2(A1) > 0 so that every optimal transport between µ0 and µ1 transports infinitesimal
measures by a constant distance l. (We can let A1 be a horizontal translation of A0 by l.)

17



µ0 µ1
h

l

< e
K

8
l2h

Figure 4: The space fails to satisfy the CD(K,∞) condition. The measure µ0 cannot be
transported to µ1 without the midpoint measure µ 1

2

having too small support.

Suppose that the space (X, || · ||∞,L2|X) satisfies CD(K,∞). Then there exists µ 1

2

=

ρ 1

2

L2 ∈ Mid(µ0, µ1) satisfying

Ent∞(µ 1

2

) =

∫

ρ 1

2

log ρ 1

2

dL2 ≤ − logL2(A0)−
K

8
l2.

On the other hand by Jensen’s inequality

Ent∞(µ 1

2

) ≥ − logL2(A),

where A = {x ∈ X : ρ 1

2

(x) > 0}. Therefore

L2(A) ≥ e
K

8
l2
L2(A0),

where the multiplicative factor e
K

8
l2 depends only on K and l. Therefore, by making the thin

part of the space thin enough and taking A0 and A1 to be identical rectangles on opposite
sides of the thin part, the corresponding midpoint measure does not fit into the thin part and
we have a contradiction. See Figure 4 for an illustration. �
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