Published Paper
Inserted: 15 oct 2009
Journal: Appl. Math.
Volume: 52
Number: 2
Pages: 137-169
Year: 2007
Abstract:
We prove some optimal
regularity results for minimizers of the integral functional $\int
f(x,u,Du)dx$ belonging to the class $ K:=\{u \in W^{1,p}(\Omega): u
\ge \psi\} ,$ where $\psi$ is a fixed function, under standard
growth conditions of $p$-type, i.e.
\[
L^{-1}
z
^p \le f(x,s,z) \le L(1+
z
^p).
\]
Keywords: obstacle problems, standard growth
Download: