Published Paper
Inserted: 25 nov 2004
Last Updated: 6 sep 2010
Journal: Calc. Var. Partial Differential Equations
Volume: 27
Number: 1
Pages: 1-23
Year: 2006
Notes:
The original paper is available on http:/www.springerlink.comcontentd0l14v304n6n3457
Abstract:
In recent works L.C. Evans has noticed a strong analogy between Mather's theory of minimal measures in Lagrangian dynamic and theory developed in the last years for the optimal mass transportation (or Monge-Kantorovich) problem. In this paper we start to investigate this analogy by proving that to each minimal measure it is possible to associate, in a natural way, a family of curves on the space of probability measures. These curves are absolutely continuous with respect to the metric structure related to the optimal mass transportation problem. Some minimality properties of such curves are also addressed.
Keywords: Mather's minimal measures, Monge-Kantorovich problem, normal 1-currents, optimal transport problems
Download: