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Abstract. In recent works L.C. Evans has noticed a strong analogy between
Mather’s theory of minimal measures in Lagrangian dynamic and the theory
developed in the last years for the optimal mass transportation (or Monge-
Kantorovich) problem. In this paper we start to investigate this analogy by
proving that to each minimal measure it is possible to associate, in a natural
way, a family of curves on the space of probability measures. These curves are
absolutely continuous with respect to the metric structure related to the optimal
mass transportation problem. Some minimality properties of such curves are
also addressed.
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1. Introduction

In this paper we study some aspects of a problem proposed by L.C. Evans about
the relationships between Mather’s problem of minimal measures and the Monge-
Kantorovich problem. The bridge between the two problems will be a careful
analysis of a minimization problem on the space N c

1 of normal closed 1-currents
which generalizes some results of [6].

An important point is that the Monge-Kantorovich problem requires on the
Lagrangian less regularity than the Theory of Mather. We will try to deal with a
less regular Lagrangian using suitable relaxed formulations when needed.

To give a more detailed description of the results of the paper we turn now our
attention to the description of the two problems and of the main results. Let us
start with the hypotheses which will be assumed to be true throughout the paper.

(M, g) will be a compact Riemannian manifold without boundary, L : TM → R
is a Lagrangian which satisfies the following properties:

(1) L is regular (say C1),
(2) L is uniformly superlinear in v,
(3) L(x, ·) is strictly convex in the fiber for all x.

(This means L(x, tv + (1 − t)w) ≤ tL(x, v) + (1 − t)L(x,w) for all v, w
and t ∈ (0, 1), equality holding if and only if v = w).
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H : T ∗M → R will denote the convex conjugate of L. The relationship between
L and H defines the Legendre transform ` : TM → T ∗M by (x, q) = `(x, p) if
H(x, q) = p·q−L(x, p) (q = ∂L

∂p
(x, p)). If L is more regular the flow associated to L

and the Hamiltonian flow of H are conjugate through `, however in this paper we
will need only that the Legendre transform is a Borel map (see [22] for a complete
introduction to the Legendre transform and its properties).

1.1. Mather’s minimal measures.
A measure µ ∈M(TM) will be said closed if and only if for all exact forms ω

∫

TM

〈ω(x), v〉dµ(x, v) = 0. (1.1)

According to this definition we set

Mc =

{
µ ∈M(TM) : µ is closed, µ ≥ 0 , µ(TM) = 1,

∫

TM

L(x, v)dµ <∞
}
.

To each measure µ ∈ Mc we can associate the homology class of µ which we
will denote by [µ] ∈ H1(M,R) (by duality with H1). Indeed, thanks to the fact
that L is superlinear and

∫
TM

L(x, v)dµ < ∞, µ acts in a natural way on the set
of the closed 1-forms on M by

ω 7→
∫

TM

〈ω(x), v〉dµ(x, v)

and thanks to condition (1.1) this action passes to the quotient by the exact forms.
Once we fix an homology class [h] Mather’s variational problem amounts to:

min
Mc

{∫

TM

L(x, v)dµ(x, v) : [µ] = [h]

}
. (P1)

We will use the notation

A(µ) :=

∫

TM

L(x, v)dµ(x, v).

The relevance of Mather theory is due to the fact that it is a theory of invariant
sets and measures under assumptions extremely weaker than those of KAM theory.
Actually, it is strictly related to the weak KAM theory developed by Fathi. We
will recall some more details throughout the paper. Some references for this are
[6, 13, 23].

A remarkable property of problem (P1) is the following: we minimize an action
functional which depends on L on measures which are merely closed (notice that
every invariant measure is also closed) and it turns out that, when L is more reg-
ular, the minimal measures are invariant for the flow associated to the Lagrangian
L (see for example [6, 13]).
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1.2. The Monge-Kantorovich problem.
Optimal transport problems, also known as Monge-Kantorovich problems, have

been very intensively studied in the last 10 years and, due to the numerous and
important applications to PDE, shape optimization and Calculus of variations,
we witnessed a spectacular development of the field. Describing in details this
theory is out of the aim of this paper, the interested reader may look at the
book and lecture notes [1, 11, 37], the paper [25] and for some of the applications
[8, 9, 30]. Our description will be restricted to the setting of a compact Riemannian
manifold M without boundary, however many of the concepts of this section could
be formulated in general metric spaces.

Let c : M ×M → R+ be a lower semicontinuous function. The Monge problem
is formulated as follows: given two probability measures ν+, ν− find a map t :
M → M such that t]ν

+ = ν− (] denotes the push-forward of measures) and such
that t minimizes ∫

M

c(x, t(x))dµ

among the maps with the same property. It may happen that the set of admissible
maps is empty (e.g. ν+ = δx and ν− = 1

2
(δy + δz)). Thus the problem is reformu-

lated in its Kantorovich’s relaxation. Find γ ∈ P(M ×M) such that π1
] γ = ν+

and π2
] γ = ν− (π1 and π2 are the projection on factors of M ×M) and such that

γ minimizes ∫

M×M
c(x, y)dγ(x, y).

If t is admissible for the Monge problem then the measure associated in the
usual way to the graph of t (i.e. (id × t)]ν

+) is admissible for the Kantorovich
problem. However the class of admissible measures for the Kantorovich problem is
never empty as it contains ν+ ⊗ ν−. Moreover the Kantorovich problem is linear.
Existence of minimizers for the Monge problem is difficult and may fail, while for
the Kantorovich problem semicontinuity of c is enough.

If c is a distance then the cost

dc(ν
+, ν−) = min

π1
]
γ=ν+

π2
] γ=ν−

∫

M×M
c(x, y)dγ(x, y),

defines a distance on P(M). If c is the distance of the manifold then for p ≥ 1
also

dp(ν
+, ν−) =

(
min
π1
]
γ=ν+

π2
] γ=ν−

∫

M×M
dp(x, y)dγ(x, y)

)1/p

defines a distance on P(M) called Wasserstein distance. Moreover (P(M), dp)
is complete, separable and dp metrizes the weak∗ convergence of measures. The
metric structure induced on P(M) is extremely rich and will play an important



4 LUIGI DE PASCALE, MARIA STELLA GELLI, LUCA GRANIERI

role in this paper. In particular (P(M), dp) admits a tangent space. We will get
in more details in a subsection of preliminary results.

Finally, whenever c(x, y) is a “length” cost, which means that there exists a
Lagrangian L : TM → R+ such that

c(x, y) = inf
γ∈AC([0,1],M)

γ(0)=x,γ(1)=y

∫
L(γ(t), γ̇(t))dt,

then the transport problem has a third formulation due to Brenier.
Minimize ∫ 1

0

∫

M

L(x, v(x, t))dρt(x)dt,

among the pair (ρ, v) where ρ : [0, 1] → P(M) is a curve, and for each t, v(·, t)
is a tangent vector field on M defined ρt almost everywhere, which satisfies the
continuity equation:





∂ρ

∂t
+∇ · (vρ) = 0 on (0, 1)×M,

ρ(0) = ν+, ρ(1) = ν− ,

(1.2)

in a distributional sense.

1.3. Description of the results of the paper.
The paper is devoted to different aims that we briefly summarize in the following,

referring to each section for more precise statements. In the first part we extend
some results of [6] to the case of Lagrangians not necessarily homogeneous in v (see
section 3), in the second part we give a description of minimal measures in terms
of curves on the space of probability measures which are solutions of equation
(1.2) (see section 4). This provides in some sense an Eulerian description of the
minimal measures as opposed to the Lagrangian description of [6]. Notice that in
our setting the flow associated to the Lagrangian, in general, is not defined in a
classical sense and that equation (1.2) is strictly related to the Cauchy problem
for non-smooth vector fields ([2, 15]). More in details in section 3 we show that
problem (P1) is equivalent to a variational problem on the space N1(M) of normal
1-currents (thus extending some result of [6] where this equivalence was proved for
L(x, v) = g(v, v)). Due to the non-homogeneity of L, the definition of the action
functional on the space of normal 1-currents requires some justifications and some
technical accuracy (see Lemma 3.1 and Lemma 3.3). The definition we give is
mostly inspired by the work of Brenier on transport problems.

As by-product of this first equivalence we obtain that each minimal measure is
supported on a graph. This last result was originally proved by Mather; here we
provide an extremely simple proof.
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In section 4 we prove that the problem on currents, introduced in section 3, is
in turn equivalent to the problem of minimizing a convex functional on the set of
periodic solutions of equation (1.2), which satisfy a suitable topological constraint.
This problem (dropping the constraint) is very similar to Brenier’s formulation of
the Monge-Kantorovich problem. The idea of this last equivalence stems from the
study of the transport density (see for example [9, 14]). In the same section we
also extend this equivalence to a larger set of solutions of equation (1.2) which are
in some sense quasi-periodic curves in the space of probability measures.

Each problem will be described in detail in the corresponding section.
Section 3 and 4 contain the main results of the paper. In section 4 we also

present some examples and address some question of minimality as a program for
future research. Indeed the equivalence proved in section 4 permits to associate
to each minimal measure µ a family of solutions of (1.2). Each ρ belonging to
this family can be interpreted as an absolutely continuous curve in the space
of probability measures equipped with the Wasserstein metric (see the previous
subsection).

The natural question that arises from our analysis is the following. Does ρ enjoy
any intrinsic minimality property? The right minimality property, in our opinion,
has been introduced in [7] using some costs studied also in [28]. We will be more
precise in the last section of the paper. The problem in dealing with such question
is that ρ minimizes a functional on AC([0, 1],P(M)) with an additional constraint
assigned on M instead of P(M).

Acknowledgments. The authors wish to thanks Luigi Ambrosio and Giuseppe
Buttazzo for the constant attention during the preparation of this paper.

A first version of this paper in which one more section was present circulated
for a while. In that version we made use of a result of some other authors which
was not completely correct. We are indebted to Albert Fathi who remarked that
something was not clear and helped us to find the point.

Note. Some months after this paper was written another paper on this topic
appeared [7]. In that paper the authors exploit the instruments of the weak
KAM theory of Albert Fathi to introduce a transport problem related to a generic
Lagrangian (even time depending) and to relate this transport problem to the
Mather’s one.

2. Preliminary results

2.1. Closed, normal 1-currents.
This section collects some definitions and technical facts about normal 1-currents

and their representations which will be used explicitly in the paper or which are
useful to give sense to some definitions. The exposition is adapted to the fact that
the manifold M is compact and then different from what would be on an open
subset Ω of RN .
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By Γ∞(T ∗M) we denote the space of C∞ 1-dimensional forms. Γ∞(T ∗M) is
usually equipped with the norm ‖ω‖∞ = supM |ω(x)|. The space of normal, 1-
dimensional currents is the space of linear, continuous functionals on Γ∞(T ∗M)
and will be denoted by N1(M). This last space is naturally endowed with a weak
convergence which will be denoted by Tn ⇀ T∞.

The subspace of the currents T ∈ N1(M) such that 〈T, ω〉 = 0 whenever ω is an
exact form is the space of normal, closed 1-currents and it is denoted by N c

1 (M).
The mass norm of a normal current (in short: “mass”) is defined as follows:

‖T‖ = sup{〈T, ω〉 | ‖ω‖∞ ≤ 1}.
The boundary of a current is defined by duality with the differential through

the formula:

〈T, dφ〉 = 〈∂T, φ〉 for all φ ∈ C∞(M).

Then for a current T , being closed is equivalent to ∂T = 0.
Another well known fact, following from the definition, is that given a sequence

Tn ∈ N c
1 (M) such that ‖Tn‖ ≤ C up to subsequences there exists T ∈ N c

1 (M)
such that for all ω ∈ Γ∞(T ∗M), limn〈Tn, ω〉 = 〈T, ω〉.

A very good property of this class of currents is that they can be represented by
integration. We will use two different representations for normal 1-currents. Any
T ∈ N c

1 (M) can be represented by integration using a probability measure σ on
M and a tangent vector field X defined σ-a.e. as follows:

〈T, ω〉 =

∫

M

〈ω(x), X〉dσ,

in this case we briefly write T = σ∧X. The vector field X belongs to L1
σ(M,TM)

to keep the notations compact we will sometime write X ∈ L1
σ instead. The same

convention will be adopted for forms.
In line with [6] we choose the following canonical representation (which we

denote by an underscript s which stands for “special”):

σs(B) =
1

‖T‖ sup{〈T, ω〉 | ω ∈ Γ∞(T ∗M), ‖ω‖∞ ≤ 1, spt(ω) ⊂ B}, (2.1)

for all open subsetsB ofM , andXs is determined by the Radon-Nikodym Theorem
and satisfies g(Xs, Xs) = ‖T‖2 σs-a.e. This special representation has no relevance
in the general results of this paper, but it is important to relate our results to the
geometric ones contained in [6].

There are many references in the literature for the representation theorem for
normal currents, among them we refer to [24] or Theorem 1 in section 2.3 of [26].

Given a representation σ∧X of a current T we can obtain another representation
(which in special cases will coincide with the first one) as follows: choose a function
c ∈ L1

σ such that
∫
M
c dσ = 1 and c(x) > 0 σ−a.e., then σ1 = c(x)σ is a probability

measure and X1 = X/c is a vector field such that σ1 ∧X1 = T .
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The second representation formula for closed normal 1-current is related to the
most elementary examples of such currents. Indeed the first example of closed
normal 1-current is given by the integration along a closed, Lipschitz path on the
manifold M . However periodicity is not the only way for a curve to produce a
closed current.

Example 2.1. Let v be an irrational direction on the torus Tn and consider the
curve γ(t) = x0 + tv (mod. Zn) defined for t ∈ R and x0 ∈ Tn fixed. For k ∈ N,
define the normal 1-current associated to the curve γ|(−k,k) as follows:

〈Tk, ω〉 =
1

2k

∫ k

−k
〈ω(γ(t)), γ̇(t)〉dt.

It is well known (see for example [5]) that we can consider the limit 〈T∞, ω〉 =
limk→+∞〈Tk, ω〉 for any 1-form ω on the torus. Since

〈T∞, df〉 = lim
k→+∞

f(γ(k))− f(γ(−k))

2k
= 0,

T∞ is a closed current. The same construction can be carried on for a γ which is
[0, 1]-periodic, in this case

〈T∞, ω〉 =

∫ 1

0

〈ω(γ(t)), γ̇(t)〉dt.

Indeed

〈Tk, ω〉 =
1

2k

∫ k

−k
〈ω(γ(t)), γ̇(t)〉dt =

1

2k

2k∑

h=1

∫ −k+h

−k+h−1

〈ω(γ(t)), γ̇(t)〉dt

=
1

2k

2k∑

h=1

∫ 1

0

〈ω(γ(t)), γ̇(t)〉dt =

∫ 1

0

〈ω(γ(t)), γ̇(t)〉dt.

It turns out that this example contains the building block of normal closed 1-
currents. Proofs of what follows here are contained in [6] and [35], although our
exposition is closer to the second reference.

Definition 2.2. A current T ∈ N c
1 is said an elementary solenoid if there exists

a Lipschitz curve γ : R→M enjoying the following properties:

(1) Lip(γ) ≤ ‖T‖;
(2) 〈T, ω〉 = lim

k→∞

1

2k

∫ k

−k
〈ω(γ(t)), γ̇(t)〉dt, for any 1-form ω;

(3) γ(R) ⊂ spt(T ).

In particular the semicontinuity of the mass together with (1), (2), (3) implies that
|γ̇(t)| = ‖T‖ a.e. We denote by S the set of all elementary solenoids.

The following is Theorem B in [35].
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Theorem 2.3. Every T ∈ N c
1 can be decomposed into elements of S in the sense

that there exists a probability measure ν on S such that

T =

∫

S
Rdν(R) and ‖T‖ =

∫

S
‖R‖dν(R).

2.2. The continuity equation and the tangent space to P(M).
The continuity equation (1.2) has been used in the Monge-Kantorovich theory

since its beginning for many applications. The fact that it characterizes the a.c.
curves on the space of probability measures equipped with the Wasserstein metric
was only recently proved in [3]. Here we summarize some results from that book.

We restrict our attention to the case of Pp(M) := (P(M), dp) for p > 1. The
tangent space to Pp(M) at a point µ is defined as the closure in Lp(µ) of the
images of gradients of smooth functions via the duality map i.e.:

TanµPp(M) := {jq(∇ϕ) : ϕ ∈ C∞(M)}Lp(µ)

where q is the dual exponent of p and jq : Lq(µ)→ Lp(µ) denotes the map

jq(v) = |v|q−2v.

The following theorem relates absolutely continuous curves in Pp(M) to the con-
tinuity equation and, in some sense, justifies the definition of the tangent space.

Theorem 2.4. Let ρ : [0, 1] → Pp(M) be a curve. If ρ is a.c. and |ρ′| ∈ L1(0, 1)
is its metric derivative, then there exists a Borel vector field v : (t, x) 7→ vt(x) such
that

vt ∈ Lp(ρt) and ‖vt‖Lp(ρt) ≤ |ρ′|(t) for L1 − a.e. t ∈ [0, 1] (2.2)

and the continuity equation

∂ρ

∂t
+∇ · vρ = 0 in (0, 1)×M,

is satisfied in the sense of distributions. Moreover for a.e. t ∈ (0, 1) vt belongs to
Tρ(t)Pp(M).

Conversely if ρ satisfies the continuity equation for some vector fields vt such
that ‖vt‖Lp(ρt) ∈ L1(0, 1) then t 7→ ρ(t) is a.c. and

|ρ′|(t) ≤ ‖vt‖Lp(ρt) for L1 − a.e. t ∈ [0, 1].

Remark 2.5. The minimality property (2.2) uniquely determines a tangent metric
field vt. Theorem 2.4 holds also for p = 1 (a proof is contained in [1]). In the case
p = 1 the tangent vector field vt is not uniquely determined anymore.

Theorem 2.4 and the definition of tangent space were motivated by the work
of Otto [34], where the concepts have been introduced in a different, but more
formal, point of view.

In [3] there is also an infinitesimal characterization of the tangent space in terms
of transport maps.
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3. Energy on currents and equivalence with Mather’s problem

In this section we will introduce an energy functional on N1 associated to the
Lagrangian L. As L is not homogeneous, after some considerations one is con-
vinced that the functional should depend not only on the current but also on the
parametrization we choose for it. And indeed the definition we give turns out to
be the natural one from many points of view that will be clear later on. However
some reader may prefer to take as the definition the formula given in Lemma 3.3.

For each σ ∈ P(M) and each T ∈ N c
1 we define the following functional:

L(σ, T ) := sup
α,ω

∫

M

α(x)dσ + 〈T, ω〉 (3.1)

where the sup is taken for α continuous function and ω ∈ Γ∞(T ∗M) which satisfy
α(x) + H(x, ω(x)) ≤ 0 pointwise. Observe that this definition is related to the
natural duality between C(M)× Γ∞(T ∗M) and M(M)×N1(M).

Lemma 3.1. L(σ, T ) is bounded from below and if it is finite then there exists a
vector field X ∈ L1

σ(M) such that T = σ ∧X.

Proof. Since L is bounded from below by a constant C one easily deduce that
H(x, 0) = sup{−L(x, v) | v ∈ TxM} ≤ −C, i.e. the couple (α ≡ C, ω = 0) is
admissible for the supremum in (3.1) for any (σ, T ). It follows that L(σ, T ) ≥ C.
Let us now fix (σ, T ) and assume that L(σ, T ) < +∞. First we consider the special
representation of T introduced in equation (2.1). The measure σs ∈ P(M) and
the vector field Xs ∈ L∞σs(M) satisfy T = σs ∧ Xs and g(Xs, Xs) = ‖T‖2 σs-a.e.,
moreover we extend Xs to all of M by setting Xs = 0 outside the support of σs.
The result is achieved if σs is a.c. with respect to σ. Let us decompose σs = σas +σss
where σas << σ and σss is singular w.r.t. σ; we will prove that |σss| = 0. We can
rewrite the functional L(σ, T ) as

L(σ, T ) = sup
α,ω

∫

M

α(x) dσ +

∫

M

〈ω(x), Xs(x)〉 dσs. (3.2)

Let us now consider the 1-form ω̃ such that ‖ω̃‖ = 1 for σs-a.e. x

〈ω̃(x), Xs(x)〉 = g(Xs(x), Xs(x))
1
2 = ‖T‖

and let A be a Borel set on which σss is concentrated and s.t. σ(A) = 0. We define
ω(x) := ω̃(x)χA(x). In general this form will be not continuous but, by using
Lusin’s Theorem with respect to the measure σ + σss on M, we can find regular
forms ωε(x) such that ||ωε||L∞(σ+σss) ≤ 1, ωε(x) → ω(x) pointwise (σ + σss)-a.e.

and (σ + σss)
(
{x ∈ M |ωε(x) 6= ω(x)}

)
< ε. Let us define αε(x) = −H(x, ωε(x)).

By the continuity of H we have that the functions αε are continuous functions on
M and they converge pointwise (σ + σss)-a.e. to α(x) := −H(x, ω(x)). Moreover,
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(αε, ωε) is admissible for (3.1). Thus we get

L(σ, T ) ≥
∫

M

αε(x) dσ +

∫

M

〈ωε(x), Xs(x)〉 dσs

=

∫

{ωε 6=ω}
αε(x) dσ −

∫

{ωε=ω}
H(x, ω(x)) dσ

+

∫

M

〈ωε(x), Xs(x)〉 dσs (3.3)

≥ −‖αε‖∞σ({ωε 6= ω})−
∫

{ωε=ω}
H(x, 0) dσ

+

∫

M

〈ωε(x), Xs(x)〉 dσs

≥ −C1ε+ C +

∫

M

〈ωε(x), Xs(x)〉 dσs

where C1 := supM×{|ω|≤1} |H(x, ω)| and we have used the bounds ‖αε‖∞ ≤ C1,

and H(x, 0) ≤ −C. Passing to the limit as ε → 0+ in (3.3), taking into account
that

lim
ε→0+

∫

M

〈ωε(x), Xs(x)〉 dσs =

∫

M

〈ω(x), Xs(x)〉 dσs ,

we get

L(σ, T ) ≥
∫

M

〈ω̃(x)χA(x), Xs(x)〉 dσs + C (3.4)

=

∫

A

〈ω̃(x), Xs(x)〉 dσss + C = ‖T‖|σss|+ C.

For any positive numberK ∈ R, one can repeat the same argument above replacing
ω(x) with Kω(x), that is, considering (αKε , Kωε) as a test couple in (3.1). The
previous estimates still hold and (3.3) reads now

L(σ, T ) ≥
∫

M

〈ω̃(x)χA(x), Xs(x)〉 dσs − C

= −CKε+ C +

∫

M

〈Kωε(x), Xs(x)〉 dσs

where CK := supM×{|ω|≤K} |H(x, ω)|. Passing to the limit as ε → 0+ eventually
we get that for any K > 0

L(σ, T ) ≥
∫

A

〈Kω̃(x), Xs(x)〉 dσss + C = K‖T‖|σss|+ C.

Since L(σ, T ) <∞ we than have |σss| = 0.
�
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Remark 3.2. In the definition of L(σ, T ) we can require that the constraint is
satisfied with equality rather than inequality i.e., taking the supremum on pairs
(α, ω) ∈ C(M) × Γ∞(T ∗M) such that α(x) + H(x, ω(x)) = 0 pointwise. Thus
L(σ, T ) can be rewritten also as

L(σ, T ) = sup
ω

∫

M

(−H(x, ω(x))) dσ + 〈T, ω〉

where the sup is taken for ω ∈ Γ∞(T ∗M). Moreover, if L(σ, T ) is finite, then we
can enlarge the class of admissible ω as follows. Let

Γσ := {ω forms with coefficients in L∞σ }
then

L(σ, T ) = sup
ω∈Γσ

∫

M

(−H(x, ω(x))) dσ + 〈T, ω〉. (3.5)

This fact can be easily proved following the same procedure of Lemma 3.1. Indeed,
given ω ∈ Γσ by Lusin’s Theorem we can find ωε ∈ Γ∞(T ∗M) such that ωε → ω
in L∞σ . Then

L(σ, T ) ≥
∫

M

(−H(x, ωε(x)) + 〈ωε(x), X(x)〉) dσ (3.6)

where we have taken X(x) as in the thesis of Lemma 3.1. It suffices then to
pass to the limit as ε → 0 and notice that H(x, ωε(x)) → H(x, ω(x)) in L1

σ

and limε→0

∫
M
〈ωε, X〉 dσ =

∫
M
〈ω,X〉 dσ to get (3.5), the inverse inequality being

obvious.

Lemma 3.3. If L(σ, T ) is finite then

L(σ, T ) =

∫

M

L(x,X(x))dσ,

where X is the vector field such that T = σ ∧X.

Proof. Let us fix (σ, T ) such that L(σ, T ) < +∞, and let X(x) ∈ L1
σ be such that

T = σ ∧X (see Lemma 3.1). We briefly recall that

L(x, v) +H(x, ω) ≥ 〈ω, v〉 ∀x ∈M, ∀v ∈ TxM, ∀ω ∈ T ∗xM (3.7)

with equality achieved in case (x, ω) = `(x, v), where ` is the Legendre Transform.
Thus for any couple (α, ω) such that α(x) +H(x, ω(x)) = 0 we have

∫

M

(α(x) + 〈ω,X(x)〉) dσ

=

∫

M

(−H(x, ω(x)) + 〈ω,X(x)〉) dσ ≤
∫

M

L(x,X(x))dσ.



12 LUIGI DE PASCALE, MARIA STELLA GELLI, LUCA GRANIERI

Taking the supremum with respect to (α, ω) we deduce

L(σ, T ) ≤
∫

M

L(x,X(x))dσ.

Let now ω(x) be such that (x, ω(x)) = `(x,X(x)) and let

ωK :=

{
ω(x) if |ω(x)| ≤ K
0 otherwise.

By the regularity of ` one obtain the right measurability properties for ω and then,
in particular, ωK ∈ L∞σ . Moreover, defined AK := {x : |ω(x)| ≤ K} we have that
AcK converges to ∅ in measure (or equivalently χAK → 1 in L1

σ).
Taking into account Remark 3.2 we can take ωK as admissible form and compute

L(σ, T ) ≥
∫

M

(−H(x, ωK(x)) + 〈ωK , X(x)〉) dσ

=

∫

Ak

(−H(x, ω(x)) + 〈ω,X(x)〉) dσ +

∫

Ack

(−H(x, ωK(x)) + 〈ωK , X〉) dσ

=

∫

M

L(x,X(x))χAK(x) dσ +

∫

M

(−H(x, 0))(1− χAK (x)) dσ.

Hence, since L is bounded from below and from the boundedness of H(x, 0), we
can take the limit as K → +∞ and get

L(σ, T ) ≥
∫

M

L(x,X(x)) dσ. (3.8)

�

To each measure µ ∈ Mc(TM) we can apply the disintegration theorem and
write µ = σ ⊗ νx for a suitable family of probability measures νx concentrated on
the fiber TxM and σ = π]µ where π : TM → M is the projection (x, v) 7→ x.
Moreover as seen in the introduction it is possible to associate to µ a closed normal
1-current p̃(µ) by the formula

〈p̃(µ), ω〉 :=

∫

TM

〈ω(x), v〉dµ(x, v) =

∫

M

∫

TxM

〈ω(x), v〉dνx(v)dσ(x).

By the definition of Mc(TM) and the Jensen inequality we have, using the
notation: m(x) =

∫
TxM

vdνx,

∞ >

∫

TM

L(x, v)dµ =

∫

M

∫

TxM

L(x, v)dνx(v)dσ(x) ≥
∫

M

L(x,m(x))dσ(x) ≥ L(π]µ, p̃(µ)).
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Then thanks to Lemmas 3.1 and 3.3

L(π]µ, p̃(µ)) =

∫

M

L(x,m(x))dσ. (3.9)

To each current T inN c
1 we can associate its homology class [T ]. Once an homology

class [h] is fixed it makes sense to study the following problem:

min{L(σ, T ) : σ ∈ P(M), T ∈ N c
1 (M), [T ] = [h]}. (P2)

In particular as the homology classes of µ and p̃(µ) coincide the digression above
implies that for each homology class the minimum in problem (P2) is finite.

Proposition 3.4. For each homology class [h] there exists at least a minimizer
for (P2).

Proof. Let T ∈ N c
1 be such that [T ] = [h]. By the superlinearity of L for the special

representation of T , (σs, Xs), we have
∫
M
L(x,Xs(x))dσs ≤ A for some constant A

depending on ‖T‖. Consider now a minimizing sequence (σn, Tn). We can assume
that L(σn, Tn) ≤ A. By Lemma 3.1 Tn = σn ∧Xn, with Xn ∈ L1

σn . We may also

assume that σn
∗
⇀ σ. Thanks to Remark 3.2 we can take a form ωn(x) such that

〈ωn(x), Xn(x)〉 = |Xn(x)| , with ‖ωn‖∞ ≤ 1. The functions αn(x) = −H(x, ωn(x))
are equibounded. We have∫

M

αn(x)dσn +

∫

M

|Xn(x)|dσn =

∫

M

αn(x)dσn + 〈Tn, ωn〉 ≤ L(σn, Tn) ≤ A.

Hence
∫
M
|Xn(x)|dσn ≤ A . For any form ω such that ‖ω‖∞ ≤ 1 , we can evaluate:

〈Tn, ω〉 =

∫

M

〈ω(x), Xn(x)〉dσn ≤
∫

M

|Xn(x)|dσn ≤ A.

Then ‖Tn‖ ≤ A. Compactness of 1-currents ensures that there exists T ∈ N c
1 (M)

such that Tn ⇀ T . It is easy to check that T is closed and [T ] = [h]. If a pair
(α, ω) is admissible for (P2) we have:

∫

M

α(x)dσ + 〈T, ω〉 = lim
n→+∞

∫

M

α(x)dσn + 〈Tn, ω〉 ≤ lim
n→+∞

L(σn, Tn).

Passing to the supremum we obtain L(σ, T ) ≤ lim
n→+∞

L(σn, Tn), i.e. (σ, T ) is

optimal. �
Let us denote by PN c

1 the set of pair (σ, T ) such that L(σ, T ) < ∞ and study
the relationship between minimizers of the two problems.

We can define i : PN c
1 →Mc(TM) as

i(σ, T ) = (id×X)]σ,

where T = σ ∧X (see Lemma 3.1). Then the following theorem holds.

Theorem 3.5. Problems (P1) and (P2) are equivalent in the sense that:
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(1) the minimal values in (P1) and (P2) coincide,
(2) for each (σ, T ) ∈ PN c

1 p̃(i(σ, T )) = T and [T ] = [i(σ, T )]. Moreover
A(i(σ, T )) = L(σ, T ).

Proof. Notice that by simple computations p̃(i(σ, T )) = T , [T ] = [i(σ, T )] and
A(i(σ, T )) = L(σ, T ). Thus the minimum in (P1) is smaller then the minimum in
(P2). The Jensen inequality implies the following

A(µ) =

∫

TM

L(x, v)dµ =

∫

M

∫

TxM

L(x, v)dνx(v)dσ ≥

≥
∫

M

L(x,

∫

TxM

vdνx(v))dσ = L(π]µ, p̃(µ)). (3.10)

Then the two minimal values coincide. �
Remark 3.6. From the proof of the previous theorem it follows that each minimal
measure is supported on a graph. In fact, if µ is a minimal measure, then

A(µ) ≥ L(π]µ, p̃(µ)) = A(i(π]µ, p̃(µ))) ≥ A(µ)

where the last inequality follows from the minimality of µ. Going back to inequality
(3.10) we obtain (still denoting by σ ⊗ νx the disintegration of µ) for σ-a.e. x the
equality ∫

TxM

L(x, v)dνx = L(x,

∫

TxM

vdνx),

and this last equality, together with the strict convexity of L, implies νx = δϕ(x).

We conclude this section with a proposition which connects the equivalence just
proved with a classical geometric problem in the space of currents and to the
results of [6].

For each T ∈ N c
1 we denote by σs ∧Xs the special parametrization introduced

in (2.1) and recall that σs is a probability measure and g(Xs, Xs) = ‖T‖2 σs-a.e.

Proposition 3.7. Let L(x, v) = g(v, v)α for some α > 1
2
, let T ∈ N c

1 and let
σ ∧X be any parametrization of T then

L(σ, T ) ≥ L(σs, T ) = ‖T‖2α.

Proof. We have σ = c(x)σs and X = 1
c(x)

Xs for a positive function c ∈ L1
σs such

that
∫
M
c(x)dσs = 1. Then

L(σ, T ) =

∫

M

g(X,X)αdσ =

∫

M

g(Xs, Xs)
α c(x)

c(x)2α
dσs =

= ‖T‖2α

∫

M

c(x)1−2αdσs ≥ ‖T‖2α
(∫

M

c(x)dσs

)1−2α

= ‖T‖2α,

where the inequality above follows from the Jensen inequality and the convexity
of the function y 7→ y1−2α. �
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The previous result in the case α = 1 was proved by Bangert in [6]. The
interpretation of Proposition 3.7 is that whenever L(x, v) = gα(v, v) for some
α > 1

2
our problem is equivalent to the classical problem of minimizing the mass

in a given homology class. As one expects the minimizers do not depend on α and
the minimal value is homogeneous with respect to α.

Remark 3.8. The probability measure σ in a minimal pair (σ, T ) has a counterpart
in the theory of optimal transport which is the so called transport density. The
transport density is a very useful tool in the optimal transport theory and in some
of its applications ([8, 9, 10, 14, 18]).

The weak KAM theory of A. Fathi [20, 21, 22], suggests that for a minimal
pair (σ, T ) the supremum in Remark 3.2 is achieved at a pair α(x) ≡ c and
ω(x) = du(x) where u is a viscosity solution of H(x, du(x)) = c. Let us discuss
the case of some special Hamiltonians.

First observe that if we denote by ω(x) the Legendre transform of X(x), then
the following equality is satisfied

L(σ, T ) =

∫

M

[−H(x, ω(x)) + 〈ω(x), X(x)〉]dσ,

since the supremum in (3.5) is in fact attained at ω. Since X(x) ∈ L1
σ in general

we cannot say too much about the regularity of ω(x).
Thus, assuming that (α, ω) is a maximizing pair in (3.1) we have

L(σ, T ) =

∫

M

L(x,X)dσ =

∫

M

α(x)dσ +

∫

M

〈ω,X〉dσ

≤
∫

M

[−H(x, ω) + 〈ω,X〉]dσ ≤
∫

M

L(x,X)dσ.

Then, in fact, equality holds in all the previous estimates. Thus, it follows that

α(x) +H(x, ω(x)) = 0 σ − a.e.
The weak KAM theory deals with weak solutions of the equation

c0 +H(x, du(x)) = 0.

Let us consider the constant

c0 = min
{∫

TM

L(x, v)dµ | µ ∈ Mc
}
. (3.11)

The constant c0 (with the opposite sign) is known as Mané critical value, see
[13, 22, 23]. This minimum will be attained in some homology class [h]. By the
existence theorem c0 =

∫
M
L(x,X)dσ for a suitable optimal pairs (σ, σ ∧ X) in

such homology class. We will now use this optimal pair to prove a well known
formula in a particular case.
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Lemma 3.9. For symmetric Lagrangians L(x, v) = L(x,−v) one has:

c0 = sup
u∈C1

min
x∈M
−H(x, du).

Proof. Let u ∈ C1 . We have:

c0 =

∫

M

L(x,X)dσ ≥
∫

M

〈du,X〉dσ −
∫

M

H(x, du)dσ =

∫

M

−H(x, du)dσ ≥ min
x∈M
−H(x, du),

where the second equality depends on the fact that σ ∧ X is closed. Taking the
supremum we obtain

c0 ≥ sup
u∈C1

min
x∈M
−H(x, du).

Viceversa, consider a point x0 ∈ M such that L(x0, 0) = minx∈M L(x, 0), and the
closed measure δ(x0,0) on TM . Observe that also the Hamiltonian H is strictly
convex, superlinear and symmetric. Then

∀(x, ω) ∈ T ∗M : H(x, 0) ≤ H(x, ω).

So we can evaluate

c0 ≤
∫

TM

L(x, v)dδ(x0,0) = L(x0, 0) ≤ L(x, 0) = −H(x, 0) = −H(x, dc),

where c denotes any constant function on the manifold M . But this holds for
every x ∈M , hence

c0 ≤ min
x∈M
−H(x, dc) ≤ sup

u∈C1

min
x∈M
−H(x, du).

�
Remark 3.10. This min-max formula is well known (see [13, 27]) and also holds
for non-symmetric Lagrangians. We have chosen symmetric Lagrangians in order
to have a simpler proof. Observe that in the symmetric case the above supremum
in the min-max formula is in fact attained, at least on constant functions.

Let u be a function such that c0 = minx∈M −H(x, du). Then the pair (c0, du)
is admissible for L(σ, T ). But we have also

0 =

∫

M

〈du,X〉dσ ≤
∫

M

[L(x,X) +H(x, du)]dσ =

∫

M

[c0 +H(x, du)]dσ ≤ 0,

where the first equality follows from the fact that T is closed. Hence

c0 +H(x, du) = 0 σ − a.e.
The above equation is true for every minimizing measure µ in (3.11), so if we

consider M0 ⊂ M as the projected Mather’s set π(
⋃
µ spt(µ)) (see [13, 22]) we

can state the following:
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Theorem 3.11. For symmetric Lagrangians the minimal measures are concen-
trated in the set of points where the function x 7→ H(x, 0) achieves its maximum.

Remark 3.12. In particular, considering Lagrangians of the type 1
2
|v|2 − V (x),

the previous theorem says that the minimal measures concentrate on the set of
maximum points of the potential−V . Moreover, this result explains in a particular
case the duality between the weak KAM theory and the Mather theory.

4. Transport equations and Eulerian representations of Mather’s
measures

In this section we will show that Mather’s problem is equivalent to two dif-
ferent minimization problems on some space of curves on P(M) which solve the
continuity equation.

The first problem we consider is the following: minimize the convex and l.s.c.
functional

K(ρ, v) =

∫ 1

0

∫

M

L(x, v(x, t))dρtdt, (4.1)

among all pairs ρ : [0, 1]→ P(M) and v : M × [0, 1]→ TM which solve




∂ρ

∂t
+∇ · (vρ) = 0 in (0, 1)×M,

ρ(0) = ρ(1)

(4.2)

and satisfy an homological constraint in a sense that will be explained right below.
To each solution (ρ, v) of (4.2) we can associate a closed, normal 1-current

Tρ,v : ω 7→
∫ 1

0

∫

M

〈ω(x), v(x, t)〉dρtdt.

As already noticed Tρ,v has a well defined homology class. Then the problem is
formulated as follows

min {K(ρ, v) | (4.2) holds, and [Tρ,v] = [h]} . (P3)

Definition 4.1. Each minimizing pair (ρ, v) will be called an Eulerian represen-
tation of the current Tρ,v and of the corresponding minimal measure.

Notice that different Eulerian representations can be associated to the same
current or measure. In the following we will shortly write ρt and vt to denote
respectively the measure ρ(t) and the vector field v(·, t).

To each pair (ρ, v) solution of (4.2) we can associate a pair (σ, T ) admissible for
problem (P2) by the map

(ρ, v)
c→
(∫ 1

0

ρdt, Tρ,v

)
.
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Viceversa, for each pair (σ, T ) which is admissible for problem (P2) we define the
map c(σ, T ) = (ρ, v) where ρt = σ and v(·, t) = X (recall that T = σ ∧X) for all
t. It is easy to check that c(σ, T ) = (ρ, v) is solution of (4.2).

Theorem 4.2. The minimal values in (P2) and (P3) coincide. Moreover the
maps c and c associate minimizers of one problem to minimizers of the other.

Proof. If (σ, T ) is such that L(σ, T ) < ∞ then ρ(t) ≡ σ and v ≡ X is a solution
of (4.2) and

K(ρ, v) =

∫ 1

0

∫

M

L(x,X(x))dσdt = L(σ, T ).

Moreover Tρ,v and T are in the same homology class.
On the other hand, let (ρ, v) be a solution of (4.2) such that K(ρ, v) <∞ then

c(ρ, v) is such that L(c(ρ, v)) <∞. We need to check that

|Tρ,v|(B) = 0 whenever

∫ 1

0

ρtdt(B) = 0

and this follows from the inequality

|Tρ,v|(B) ≤
∫ 1

0

∫

B

|vt|dρtdt,

the absolute continuity of vtρt with respect to ρt and the positivity of ρt.
Let us compare the values of K and L ◦ c. To do this we first remark that

the functional K can be also defined by duality in a similar way as already done
in equation (3.1) and Lemma 3.3, see for example [11] pag. 93. If (α, ω) is an
admissible test pair for (3.1) then we can use it as test also in the definition of K.
It follows that∫ 1

0

∫

M

α(x)dρtdt+

∫ 1

0

∫

M

〈ω(x), v〉dρtdt = 〈(α, ω), c(ρ, v)〉

which implies, taking the supremum over the test functions which do not depend
on t, L(c(ρ, v)) ≤ K(ρ, v). �
Remark 4.3. By the strict convexity of the Lagrangian L, once we fix the curve ρt
there exists essentially only one vector field vt such that (ρ, v) is solution of (4.2)
and K(ρ, v) is minimal.

It may happen that for some currents T ∈ N c
1 (M) the only periodic parametriza-

tion is the parametrization constant with respect to t. We now prove the equiva-
lence of problem (P2) with another problem (P4) which includes (P3) in a suitable
sense and guarantees the existence of non trivial minimal parametrizations for all
minimal measures.

Here we consider the pairs ρ : R→ P(M) and v : M × R→ TM which solves

∂ρ

∂t
+∇ · vρ = 0 on R×M, (4.3)
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and such that the sequence of currents Tk given by

〈Tk, ω〉 =
1

2k

∫ k

−k

∫

M

〈ω(x), v(x, t)〉dρtdt (4.4)

converges toward a closed, normal 1-current Tρ,v. If (ρ, v) is a periodic solution of
(4.2) then the limit of the sequence in (4.4) coincides with Tρ,v already defined so
that there is no abuse of notation here.

As already noticed Tρ,v has a well defined homology class.
The cost to be minimized will be given by

K1(ρ, v) = lim inf
k→∞

1

2k

∫ k

−k

∫

M

L(x, v(x, t))dρtdt. (4.5)

Then the new problem is written as

min {K1(ρ, v) | (4.3) holds, and [Tρ,v] = [h]} . (P4)

The equivalence between problems (P2) and (P4) can be proved exactly as in
Theorem 4.2 and then we will skip the proof. Let us now make a parallel between
the probabilistic representations of normal 1-dimensional currents (Theorem 2.3
which is Theorem B in [35] and Theorem 3.5 in [6]) and solutions of equations
(4.2) and of (4.3) (Theorem 8.2.1 of [3]). We will then use the structure of this
general theorem to produce an example of multiplicity of Eulerian representations
of a minimal measure.

Theorem 4.4. Let T ∈ N c
1 (M) \ {0} then there exists a non-constant solution

(ρ, v) of (4.3) such that Tρ,v = T .

Proof. By theorem 2.3 (see also Theorem 3.5 in [6]) there exists a probability
measure ν on the space of elementary solenoids S which represents T in the sense
explained in section 2.1, and at least one of these solenoids is non-constant. Each
solenoid R in the support of ν is identified by a curve γR. Rescaling the time

variable we replace γR(t) by γR( ‖T‖‖R‖t) so that the tangent vector has modulus ‖T‖
for a.e. t. Given two solenoids R1 and R2 in the support of ν, if γR1(A) = γR2(B)
for two sets of positive measure A and B in R then for a.e. t and s such that
γR1(t) = γR2(s) either γ̇R1(t) = γ̇R2(s) or γ̇R1(t) = −γ̇R2(s). The equality

‖T‖ =

∫

S
‖R‖dν,

forbids cancellations so that only γ̇R1(t) = γ̇R2(s) is allowed.
Then we define: ρ(t) =

∫
S δγ(t)dν(γ) and v(x, t) = γ̇(t) if γ(t) = x for some

γ ∈ spt(ν) and v(x, t) = 0 otherwise. It is easy to check that (ρ, v) is a solution
of (4.3). �
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Remark 4.5. In the previous proof we could also remark that

lim
k→∞

( 1

2k

∫ k

−k
ρtdt, Tk

)
= (σs, T ). (4.6)

Then by Proposition 3.7, in the case L(x, v) = gα(v, v), α > 1/2, the solution of
(4.3) given by Theorem 4.4 is an Eulerian representation of the associated minimal
measure.

Example 4.6. Using a variation of the technique we used in the previous proof it is
sometimes possible to build many explicit parametrizations of a minimal measure
µ. In this example we deal with the flat 2-torus T2. The example will be better
described with the help of the figure 4.1. By γ1 and γ2 we denote both the curves
and their supports. The distinction will be clear from the context.

Let γ1 and γ2 be as in Figure 4.1.

γ1 γ2

Figure 4.1. An example of path on the torus.

Consider µ ∈ P(TT2) defined by µ =
1

2
((H1 γ1)⊗ δe2 + (H1 γ2)⊗ δe2). The

measure µ is invariant for the geodesic flow, the homology class of µ is [µ] =
(0, 1) ∈ R × R = H1(T2), and µ is minimal being its cost equal to the length of
the minimal geodesic in this class.

The following are some of the minimal parametrizations of µ:

(1) ρ1(t) = 1
2
(δγ1(t) + δγ2(t)), v1(x, t) = e2,
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(2) ρ2(t) = 1
2
δγ1(t) + 1

2
H1 γ2, v2(x, t) = e2,

(3) Constant parametrization,
(4) Parametrizations obtained by exchanging the role of γ1 and γ2 in the pre-

vious examples,
(5) Compositions of the previous examples with time shift.

4.1. A notion of minimality. In this section we discuss a notion of local min-
imality which we expect should be satisfied by the Eulerian representations of a
minimal measure. This is also the occasion to make a better comparison with the
recent results of [7].

The homology class [h] can be seen as a parameter for problem (P1) and we
denote by β(h) the corresponding minimal value. The function β is a convex
function on H1(M) and its convex conjugate β∗ : H1(M) → R plays a role in
introducing the following modified Lagrangians. Notice that β = β∗∗. For a
fixed homology class [h] let us denote by ω a form in the cohomology class at
which max{〈h, ω〉 − β∗(ω)} is attained. Then problem (P1) is equivalent to the
unconstrained minimization of the action functional related to Lω := L− ω.

Let us now recall some results from [28] (and from [7] for time dependent La-
grangians). Let

cts(x, y) = inf
γ∈AC([s,t],M)

γ(s)=x,γ(t)=y

∫
Lω(γ(τ), γ̇(τ))dτ,

and let ν+ and ν− in P1(M). We look for γ ∈ P(M ×M) such that π1
] γ = ν+

and π2
] γ = ν− (π1 and π2 are the projection on factors of M ×M) and such that

γ minimizes

Ct
s(ν

+, ν−) = min
{∫

M×M
cts(x, y)dγ(x, y) | γ ∈ P(M ×M) π1

] γ = ν+, π2
] γ = ν−

}
.

By Theorem 4.5 of [28] this transport problem is equivalent to

Ct
s(ν

+, ν−) = min
{∫

M×(s,t)

L(x, v(x, t))dΣ(x, t)
}
, (4.7)

where the minimum is taken in the set of vector fields v and Σ ∈M+(M × [s, t])
such that ∂(Σ ∧ (v(x, t), 1)) = ν− ⊗ δt − ν+ ⊗ δs.

If ρ is admissible for problem (P3) (with fixed homology class [h]), then v(x, t)
and ρ|[s,t] ⊗ L1 are admissible for (4.7).

Under some more regularity assumption in [7] it is proved that every Eulerian
representation ρ of a minimal measure µ is locally minimal for the costs associated
to its homology class in the sense that for all s ≤ t ≤ τ

Cτ
s (ρs, ρτ ) = Ct

s(ρs, ρt) + Cτ
t (ρt, ρτ ).
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[26] M. Giaquinta, G. Modica, J. Souček, Cartesian currents in the calculus of variations.

I. Cartesian currents. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A
Series of Modern Surveys in Mathematics 37. Springer-Verlag, Berlin, 1998.

[27] D. Gomes, Viscosity solutions of Hamilton-Jacobi equations, and asymptotics for
Hamiltonian systems, Calc. Var. Partial Differential Equations 14 (2002), no. 3, 345–
357.

[28] L. Granieri, On action minimizing measures for the Monge-Kantorovich problem,
Preprint (july 2004), to appear on NoDEA Nonlinear Differential Equations Appl.

[29] S. Hohloch, Optimale Massebewegung im Monge-Kantorovich Transportproblem,
Diplomarbeit, Dezember 2002.

[30] R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Plank
equation, Siam J. Math. Anal. 29 (1998), 1-17.

[31] U. Lang, V. Schroeder, Kirszbraun’s theorem and metric spaces of bounded curvature,
GAFA Geom. Funct. Anal. 7 (1997), 535–560.

[32] J. Mather, Action minimizing invariant measures for positive definite Lagrangian sys-
tems, Math. Z. 207 (1991), no. 2, 169–207.

[33] J. Mather, Minimal measures, Comment. Math. Helv. 64 (1989), no. 3, 375–394.
[34] F. Otto, The geometry of dissipative evolution equations: the porus medium equation,

Comm. Partial Differential Equations 26 (2001) no. 1-2, 101-174.
[35] S.K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids

and the structure of normal one-dimensional currents, St. Petersburg Math. J. 5
(1994), no.4, 841-867.

[36] K.T. Sturm, Stochastics and Analysis on Metric Spaces, lecture notes in preparation.
[37] C. Villani, Topics in Mass Transportation, Graduate Studies in mathematics 58, AMS,

Providence, RI.

Dipartimento di Matematica Applicata, Università di Pisa, via Bonanno Pisano
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