[nardulli]

Professor Adjunto IV, CMCC-UFABC, Santo André, São Paulo, SP (Brasil)

**Email:** *nardulli AT im.ufrj.br*

**Home-page:** http://professor.ufabc.edu.br/~stefano.nardulli/index.html

- S. Nardulli (Accepted Paper:
*Bulletin of the Brazilian Mathematical Society*)

Regularity of isoperimetric regions that are close to a smooth manifold (2017) - S. Nardulli - L. E. Osorio Acevedo (Submitted Paper)

Sharp isoperimetric inequalities for small volumes in complete noncompact Riemannian manifolds of bounded geometry involving the scalar curvature (2016) - S. Nardulli - A. E. M. Flores (Submitted Paper)

The isoperimetric problem of a complete Riemannian manifolds with a finite number of C0-asymptotically Schwarzschild ends (2015) - S. Nardulli - A. Enrique Muñoz Flores (Submitted Paper)

Generalized compactness for finite perimeter sets and applications to the isoperimetric problem (2015) - S. Nardulli (Published:
*Calculus of Variations and Partial Differential Equations*)

The Isoperimetric Profile of a Non Compact Riemannian Manifold for small Volumes (2014) - S. Nardulli - A. Muñoz Flores (Submitted Paper)

Continuity and differentiability properties of the isoperimetric profile in complete noncompact Riemannian manifolds with bounded geometry (2014) - S. Nardulli (Submitted Paper)

The isoperimetric profile of a noncompact Riemannian manifold for small volumes (2012) - S. Nardulli (Accepted Paper:
*The Asian Journal of Mathematics*)

Generalized existence of isoperimetric regions in non-compact Riemannian manifolds and appl. to the isoperimetric profile (2012) - A. Mondino - S. Nardulli (Accepted Paper:
*Communications in Analysis and Geometry*)

Existence of isoperimetric regions in non-compact Riemannian manifolds under Ricci or scalar curvature conditions (2012)

*19 dec 2018:*Multiple solutions for the van der Waals--Allen--Cahn--Hilliard equation with a volume constraint*19 jun 2014:*Tba