Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

A. Braides - N. A. Nodargi

Homogenization of cohesive fracture in masonry structures

created by braidesa on 20 May 2019
modified on 24 Jul 2019

[BibTeX]

Accepted Paper

Inserted: 20 may 2019
Last Updated: 24 jul 2019

Journal: Math. Mech. Solids
Year: 2019

ArXiv: 1905.07171 PDF

Abstract:

We derive a homogenized mechanical model of a masonry-type structure constituted by a periodic assemblage of blocks with interposed mortar joints. The energy functionals in the model under investigation consist in (i) a linear elastic contribution within the blocks, (ii) a Barenblatt's cohesive contribution at contact surfaces between blocks and (iii) a suitable unilateral condition on the strain across contact surfaces, and are governed by a small parameter representing the typical ratio between the length of the blocks and the dimension of the structure. Using the terminology of $\Gamma$-convergence and within the functional setting supplied by the functions of bounded deformation, we analyze the asymptotic behavior of such energy functionals when the parameter tends to zero, and derive a simple homogenization formula for the limit energy. Furthermore, we highlight the main mathematical and mechanical properties of the homogenized energy, including its non-standard growth conditions under tension or compression. The key point in the limit process is the definition of macroscopic tensile and compressive stresses, which are determined by the unilateral conditions on contact surfaces and the geometry of the blocks.

Keywords: Homogenization, Gamma-convergence, Functions of Bounded Deformation, fracture, Masonry


Download:

Credits | Cookie policy | HTML 5 | CSS 2.1