Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

A. Mondino - T. Riviere

Immersed Spheres of Finite Total Curvature into Manifolds

created by mondino on 18 Sep 2012
modified on 26 Jun 2013


Accepted Paper

Inserted: 18 sep 2012
Last Updated: 26 jun 2013

Journal: Advances in Calc. Var.
Pages: 33
Year: 2011


We prove that a sequence of, possibly branched, weak immersions of the two-sphere $S^2$ into an arbitrary compact riemannian manifold $(M^m,h)$ with uniformly bounded area and uniformly bounded $L^2-$norm of the second fundamental form either collapse to a point or weakly converges as current, modulo extraction of a subsequence, to a Lipschitz mapping of $S^2$ and whose image is made of a connected union of finitely many, possibly branched, weak immersions of $S^2$ with finite total curvature. We prove moreover that if the sequence stays within a class $\gamma$ of $\pi_2(M^m)$ the limiting lipschitz mapping of $S^2$ realizes this class as well.

Tags: GeMeThNES


Credits | Cookie policy | HTML 5 | CSS 2.1