Published Paper
Inserted: 2 sep 2011
Last Updated: 6 mar 2013
Journal: Commun. Contemp. Math.
Volume: 14
Number: 6
Pages: 1250045 (12 pages)
Year: 2012
Abstract:
In this paper we prove that any complete conformal gradient soliton with nonnegative Ricci tensor is either isometric to a direct product $\mathbb{R}\times N^{n-1}$, or globally conformally equivalent to the Euclidean space $\mathbb{R}^{n}$ or to the round sphere $\mathbb{S}^{n}$. In particular, we show that any complete, noncompact, gradient Yamabe-type soliton with positive Ricci tensor is rotationally symmetric, whenever the potential function is nonconstant.
Download: