Published Paper
Inserted: 18 nov 2008
Last Updated: 26 jan 2009
Journal: Discrete Contin. Dyn. Syst. Ser. B
Volume: 11
Number: 1
Pages: 67-86
Year: 2009
Abstract:
We prove boundedness of minimizers of energy-functionals, for
instance of the anisotropic type (\ref{1}) below,
\begin{equation}
\mathcal{F}(u)=\int{\Omega
}\sum{i=1}{n}
u{x{i}}(x)
{p{i}\left( x\right) }\,dx
\label{1}
\end{equation}
under
\textit{sharp} assumptions on
the exponents $p_{i}$ in terms of ${\overline{p}}^{\ast }$: the \textit{%
Sobolev conjugate exponent} of ${\overline{p}}$; i.e.,
${\overline{p}}^{\ast
}=\frac{n\overline{p}}{n-\overline{p}}$, $\frac{1}{\overline{p}}=\frac{1}{n}%
\sum_{i=1}^{n}\frac{1}{p_{i}}$. As a consequence, by mean of
regularity results due to Lieberman \cite{lie}, we obtain the
local Lipschitz-continuity of minimizers under sharp assumptions
on the exponents of anisotropic growth.
Keywords: Minimizers, $L^{\infty }-$regularity, gradient estimates, anisotropic growth conditions
Download: