Published Paper
Inserted: 24 jan 2025
Last Updated: 24 jan 2025
Journal: Topol. Methods Nonlinear Anal.
Year: 2025
Doi: 10.12775/TMNA.2023.055
Abstract:
Let $\Omega$ be a multiply-connected domain in $\mathbb{R}^n$ ($n\geq 2$) of
the form $\Omega=\Omega_{\text{out}}\setminus \bar{\Omega_{\text{in}}}.$ Set
$\Omega_D$ to be either $\Omega_{\text{out}}$ or $\Omega_{\text{in}}$. For
$p\in (1,\infty),$ and $q\in [1,p],$ let $\tau_{1,q}(\Omega)$ be the first
eigenvalue of
\begin{equation} -\Deltap u =\tau \left(\int{\Omega}
u
q \text{d}x
\right){\frac{p-q}{q}}
u
{q-2}u\;\text{in} \;\Omega,\; u
=0\;\text{on}\;\partial\OmegaD, \frac{\partial u}{\partial
\eta}=0\;\text{on}\; \partial \Omega\setminus \partial \OmegaD.
\end{equation}
Under the assumption that $\Omega_D$ is convex, we establish the following
reverse Faber-Krahn inequality $$\tau{1,q}(\Omega)\leq
\tau{1,q}({\Omega}\bigstar),$$ where ${\Omega}^\bigstar=B_R\setminus
\bar{B_r}$ is a concentric annular region in $\mathbb{R}^n$ having the same
Lebesgue measure as $\Omega$ and such that (i) (when
$\Omega_D=\Omega_{\text{out}}$) $W_1(\Omega_D)= \omega_n R^{n-1}$, and
$(\Omega^\bigstar)_D=B_R$, (ii) (when $\Omega_D=\Omega_{\text{in}}$)
$W_{n-1}(\Omega_D)=\omega_nr$, and $(\Omega^\bigstar)_D=B_r$.
Here $W_{i}(\Omega_D)$ is the $i^{\text{th}}$ $quermassintegral$ of
$\Omega_D.$ We also establish Sz. Nagy's type inequalities for parallel sets of
a convex domain in $\mathbb{R}^n$ ($n\geq 3$) for our proof.