*preprint*

**Inserted:** 2 sep 2024

**Year:** 2024

**Abstract:**

The purpose of the paper is threefold: first, we prove optimal regularity results for the distance from $C^k$ submanifolds of general rank-varying sub-Riemannian structures. Then, we study the asymptotics of the volume of tubular neighbourhoods around such submanifolds. Finally, for the case of curves in the Heisenberg groups, we prove a Weyl's invariance result: the volume of small tubes around a curve does not depend on the way the curve is isometrically embedded, but only on its Reeb angle. The proof does not need the computation of the actual volume of the tube, and it is new even for the three-dimensional Heisenberg group.