preprint
Inserted: 12 jun 2024
Year: 2018
Abstract:
Suppose $\Omega\Subset \mathbb R^2$ and $f\in BV_{loc}(\Omega)\cap
C^0(\Omega)$ with $
f
>0$ in $\Omega$. Let $u\in C^0(\Omega)$ be a viscosity
solution to the inhomogeneous $\infty$-Laplace equation $$ -\Delta{\infty} u
:=-\frac12\sum{i=1}2(
Du
2)iui= -\sum{i,j=1}2uiuju{ij} =f \quad {\rm
in}\ \Omega. $$ The following are proved in this paper.
(i) For $ \alpha > 3/2$, we have $
Du
^{\alpha}\in W^{1,2}_{loc}(\Omega)$,
which is (asymptotic) sharp when $ \alpha \to 3/2$. Indeed, the function
$w(x_1,x_2)=-x_1^ {4/3} $ is a viscosity solution to $-\Delta_\infty
w=\frac{4^3}{3^4}$ in $\mathbb R^2$. For any $p> 2$,
$
Dw
^\alpha \notin W^{1,p}_{loc}(\mathbb R^2)$ whenever
$\alpha\in(3/2,3-3/p)$.
(ii) For $ \alpha \in(0, 3/2]$ and $p\in[1, 3/(3-\alpha))$, we have
$
Du
^{\alpha}\in W^{1,p}_{loc}(\Omega)$, which is sharp when $p\to
3/(3-\alpha)$. Indeed,
$
Dw
^\alpha \notin W^{1,3/(3-\alpha)}_{loc}(\mathbb R^2)$.
(iii) For $ \epsilon > 0$, we have $
Du
^{-3+\epsilon }\in L^1_{loc}(\Omega
)$, which is sharp when $\epsilon\to0$. Indeed, $
Dw
^{-3} \notin
L^1_{loc}(\mathbb R^2)$.
(iv) For $ \alpha > 0$, we have $$-(
Du
{\alpha})iui= 2\alpha
Du
{{
\alpha-2}}f \ \mbox{ almost everywhere in $\Omega$}.$$
Some quantative bounds are also given.