Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

S. Conti - F. Maggi - S. Müller

Rigorous derivation of Föppl's theory for clamped elastic membranes leads to relaxation

created by maggi on 09 Jun 2005
modified on 14 Dec 2006


Published Paper

Inserted: 9 jun 2005
Last Updated: 14 dec 2006

Journal: SIAM J. Math. Anal.
Volume: 38
Number: 2
Pages: 657-680
Year: 2006

The preprint is downloadable here: http:/analysis.math.uni-duisburg.depublicationsindex.html


We consider the nonlinear elastic energy of a thin membrane whose boundary is kept fixed, and assume that the energy per unit volume scales as $h^\beta$, with $h$ the film thickness and $\beta\in(0,4)$. We derive, by means of Gamma-convergence, a limiting theory for the scaled displacements, which takes a form similar to the one proposed by Föppl in 1907. The difference can be understood as due to the fact that we fully incorporate the possibility of buckling, and hence derive a theory which does not have any resistence to compression. If forces normal to the membrane are included, then our result predicts that the normal displacement scales as the cube root of the force. This scaling depends crucially on the clamped boundary conditions. Indeed, if the boundary is left free then a much softer response is obtained, as was recently shown by Friesecke, James and Müller.

Credits | Cookie policy | HTML 5 | CSS 2.1