Calculus of Variations and Geometric Measure Theory

V. Mottola - A. Corbo Esposito - G. Piscitelli - A. Tamburrino

Imaging of nonlinear materials via the Monotonicity Principle

created by piscitelli on 29 Feb 2024

[BibTeX]

preprint

Inserted: 29 feb 2024

Year: 2023

ArXiv: 2310.11234 PDF

Abstract:

Inverse problems, which are related to Maxwell's equations, in the presence of nonlinear materials is a quite new topic in the literature. The lack of contributions in this area can be ascribed to the significant challenges that such problems pose. Retrieving the spatial behaviour of some unknown physical property, from boundary measurements, is a nonlinear and highly ill-posed problem even in the presence of linear materials. Furthermore, this complexity grows exponentially in the presence of nonlinear materials. In the tomography of linear materials, the Monotonicity Principle (MP) is the foundation of a class of non-iterative algorithms able to guarantee excellent performances and compatibility with real-time applications. Recently, the MP has been extended to nonlinear materials under very general assumptions. Starting from the theoretical background for this extension, we develop a first real-time inversion method for the inverse obstacle problem in the presence of nonlinear materials. The proposed method is intendend for all problems governed by the quasilinear Laplace equation, i.e. static problems involving nonlinear materials. In this paper, we provide some preliminary results which give the foundation of our method and some extended numerical examples.