Calculus of Variations and Geometric Measure Theory

U. Das - R. Kumar - A. Sarkar

Characterizations of compactness and weighted eigenvalue problem for fractional $p$-Laplacian in $\mathbb{R}^N$

created by kumar2 on 03 Feb 2024

[BibTeX]

preprint

Inserted: 3 feb 2024
Last Updated: 3 feb 2024

Year: 2023

ArXiv: 2309.09532 PDF

Abstract:

In this article, we consider the following weighted fractional Hardy inequality: $$ \int{\mathbb{R}N}
w(x)|u(x)
p \mathrm{d}x \leq C \int{\mathbb{R}N \times \mathbb{R}N} \frac{
u(x)-u(y)
p}{
x
-y
{N+sp}} \mathrm{d}x\mathrm{d}y:= \
u\
{s,p}p\,, \ \forall u \in \mathcal{D}{s,p}(\mathbb{R}N), $$ where $0<s<1<p<\frac{N}{s}$, and $\mathcal{D}^{s,p}(\mathbb{R}^N)$ is the completion of $C_c^1(\mathbb{R}^N)$ with respect to the seminorm $\
\cdot\
_{s,p}$. We denote the space of admissible $w$ in \eqref{Fractional Hardyabst} by $\mathcal{H}_{s,p}(\mathbb{R}^N)$. Maz'ya-type characterization helps us to define a Banach function norm on $\mathcal{H}_{s,p}(\mathbb{R}^N)$. Using the Banach function space structure and the concentration compactness type arguments, we provide several characterizations for the compactness of the map ${W}(u)= \int_{{\mathbb{R}^N}}
w

u
^p \mathrm{d}x$ on $\mathcal{D}^{s,p}(\mathbb{R}^N)$. In particular, we prove that ${W}$ is compact on $\mathcal{D}^{s,p}(\mathbb{R}^N)$ if and only if $w \in \mathcal{H}_{s,p,0}(\mathbb{R}^N):=\overline{C_c(\mathbb{R}^N)} \ \mbox{in} \ \mathcal{H}_{s,p}(\mathbb{R}^N)$. Further, we study the following eigenvalue problem: \begin{equation} (-\Delta{p}){s}u = \lambda w(x)
u
{p-2}u ~~\text{in}~\mathbb{R}{N}, \end{equation
} where $(-\Delta_{p})^{s}$ is the fractional $p$-Laplace operator and $w = w_{1} - w_{2}~\text{with}~ w_{1},w_{2} \geq 0,$ is such that $ w_{1} \in \mathcal{H}_{s,p,0}(\mathbb{R}^N)$ and $w_{2} \in L^{1}_{loc}(\mathbb{R}^N)$.