Preprint
Inserted: 1 feb 2024
Last Updated: 1 feb 2024
Pages: 43
Year: 2024
Abstract:
In this paper, we study the fractional critical
Schr\"{o}dinger-Poisson system \[\begin{cases} (-\Delta)^su
+\lambda\phi
u= \alpha u+\mu
u
^{q-2}u+
u
^{2^*_s-2}u,&~~ \mbox{in}~\mathbb R^3,\\
(-\Delta)^t\phi=u^2,&~~ \mbox{in}~\mathbb R^3,\end{cases}
\] having
prescribed mass
\[\int_{\mathbb R^3}
u
^2dx=a^2,\] where $ s, t \in (0, 1)$ satisfies $2s+2t >
3, q\in(2,2^*_s), a>0$ and $\lambda,\mu>0$ parameters and
$\alpha\in\mathbb R$ is an undetermined parameter. Under the
$L^2$-subcritical perturbation $q\in (2, 2+\frac{4s}{3})$, we
derive the existence of multiple normalized solutions
by means of the truncation technique, concentration-compactness principle and the genus
theory. For the $L^2$-supercritical perturbation $q\in (2+\frac{4s}{3}, 2^*_s)$,
by applying the constrain variational methods and the mountain pass
theorem, we show the existence of positive normalized ground state
solutions.
Download: