Published Paper
Inserted: 29 jan 2024
Last Updated: 29 jul 2024
Journal: J. Math. Pures Appl. (9)
Volume: 189
Pages: 103593
Year: 2024
Doi: 10.1016/j.matpur.2024.06.008
Abstract:
We study Cheeger and $p$-eigenvalue partition problems depending on a given evaluation function $\Phi$ for $p\in[1,\infty)$. We prove existence and regularity of minima, relations among the problems, convergence, and stability with respect to $p$ and to $\Phi$.
Keywords: Cheeger constant, partition, isoperimetric, spectral, Dirichlet eigenvalue
Download: